absolute_value.cpp
1.61 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <poincare/absolute_value.h>
#include <poincare/complex.h>
#include <poincare/simplification_engine.h>
#include "layout/absolute_value_layout.h"
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type AbsoluteValue::type() const {
return Type::AbsoluteValue;
}
Expression * AbsoluteValue::clone() const {
AbsoluteValue * a = new AbsoluteValue(m_operands, true);
return a;
}
Expression * AbsoluteValue::setSign(Sign s, Context & context, AngleUnit angleUnit) {
assert(s == Sign::Positive);
return this;
}
ExpressionLayout * AbsoluteValue::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const {
assert(floatDisplayMode != FloatDisplayMode::Default);
assert(complexFormat != ComplexFormat::Default);
return new AbsoluteValueLayout(operand(0)->createLayout(floatDisplayMode, complexFormat));
}
Expression * AbsoluteValue::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
Expression * op = editableOperand(0);
#if MATRIX_EXACT_REDUCING
if (op->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
if (op->sign() == Sign::Positive) {
return replaceWith(op, true);
}
if (op->sign() == Sign::Negative) {
Expression * newOp = op->setSign(Sign::Positive, context, angleUnit);
return replaceWith(newOp, true);
}
return this;
}
template<typename T>
Complex<T> AbsoluteValue::computeOnComplex(const Complex<T> c, AngleUnit angleUnit) {
return Complex<T>::Float(c.r());
}
}