#include #include #include #include "layout/absolute_value_layout.h" extern "C" { #include } #include namespace Poincare { Expression::Type AbsoluteValue::type() const { return Type::AbsoluteValue; } Expression * AbsoluteValue::clone() const { AbsoluteValue * a = new AbsoluteValue(m_operands, true); return a; } Expression * AbsoluteValue::setSign(Sign s, Context & context, AngleUnit angleUnit) { assert(s == Sign::Positive); return this; } ExpressionLayout * AbsoluteValue::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const { assert(floatDisplayMode != FloatDisplayMode::Default); assert(complexFormat != ComplexFormat::Default); return new AbsoluteValueLayout(operand(0)->createLayout(floatDisplayMode, complexFormat)); } Expression * AbsoluteValue::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } Expression * op = editableOperand(0); #if MATRIX_EXACT_REDUCING if (op->type() == Type::Matrix) { return SimplificationEngine::map(this, context, angleUnit); } #endif if (op->sign() == Sign::Positive) { return replaceWith(op, true); } if (op->sign() == Sign::Negative) { Expression * newOp = op->setSign(Sign::Positive, context, angleUnit); return replaceWith(newOp, true); } return this; } template Complex AbsoluteValue::computeOnComplex(const Complex c, AngleUnit angleUnit) { return Complex::Float(c.r()); } }