power.cpp 37.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#include <poincare/power.h>

#include <poincare/addition.h>
#include <poincare/arithmetic.h>
#include <poincare/binomial_coefficient.h>
#include <poincare/cosine.h>
#include <poincare/division.h>
#include <poincare/matrix.h>
#include <poincare/matrix_inverse.h>
#include <poincare/nth_root.h>
#include <poincare/opposite.h>
#include <poincare/parenthesis.h>
#include <poincare/simplification_root.h>
#include <poincare/sine.h>
#include <poincare/square_root.h>
#include <poincare/symbol.h>
#include <poincare/subtraction.h>
#include <poincare/undefined.h>

#include "layout/horizontal_layout.h"
#include "layout/vertical_offset_layout.h"

#include <cmath>
#include <math.h>
#include <ion.h>

extern "C" {
#include <assert.h>
#include <stdlib.h>
}


namespace Poincare {

Expression::Type Power::type() const {
  return Type::Power;
}

Expression * Power::clone() const {
  return new Power(m_operands, true);
}

Expression::Sign Power::sign() const {
  if (shouldStopProcessing()) {
    return Sign::Unknown;
  }
  if (operand(0)->sign() == Sign::Positive && operand(1)->sign() != Sign::Unknown) {
    return Sign::Positive;
  }
  if (operand(0)->sign() == Sign::Negative && operand(1)->type() == Type::Rational) {
    const Rational * r = static_cast<const Rational *>(operand(1));
    if (r->denominator().isOne()) {
      if (Integer::Division(r->numerator(), Integer(2)).remainder.isZero()) {
        return Sign::Positive;
      } else {
        return Sign::Negative;
      }
    }
  }
  return Sign::Unknown;
}

int Power::polynomialDegree(char symbolName) const {
  int deg = Expression::polynomialDegree(symbolName);
  if (deg == 0) {
    return deg;
  }
  int op0Deg = operand(0)->polynomialDegree(symbolName);
  if (op0Deg < 0) {
    return -1;
  }
  if (operand(1)->type() == Type::Rational) {
    const Rational * r = static_cast<const Rational *>(operand(1));
    if (!r->denominator().isOne() || r->sign() == Sign::Negative) {
      return -1;
    }
    if (Integer::NaturalOrder(r->numerator(), Integer(Integer::k_maxExtractableInteger)) > 0) {
      return -1;
    }
    op0Deg *= r->numerator().extractedInt();
    return op0Deg;
  }
  return -1;
}

int Power::privateGetPolynomialCoefficients(char symbolName, Expression * coefficients[]) const {
  int deg = polynomialDegree(symbolName);
  if (deg <= 0) {
    return Expression::privateGetPolynomialCoefficients(symbolName, coefficients);
  }
  /* Here we only consider the case x^4 as privateGetPolynomialCoefficients is
   * supposed to be called after reducing the expression. */
  if (operand(0)->type() == Type::Symbol && static_cast<const Symbol *>(operand(0))->name() == symbolName && operand(1)->type() == Type::Rational) {
    const Rational * r = static_cast<const Rational *>(operand(1));
    if (!r->denominator().isOne() || r->sign() == Sign::Negative) {
      return -1;
    }
    if (Integer::NaturalOrder(r->numerator(), Integer(Integer::k_maxExtractableInteger)) > 0) {
      return -1;
    }
    int n = r->numerator().extractedInt();
    if (n <= k_maxPolynomialDegree) {
      for (int i = 0; i < n; i++) {
        coefficients[i] = new Rational(0);
      }
      coefficients[n] = new Rational(1);
      return n;
    }
  }
  return -1;
}

Expression * Power::setSign(Sign s, Context & context, AngleUnit angleUnit) {
  assert(s == Sign::Positive);
  assert(operand(0)->sign() == Sign::Negative);
  editableOperand(0)->setSign(Sign::Positive, context, angleUnit);
  return this;
}

template<typename T>
std::complex<T> Power::compute(const std::complex<T> c, const std::complex<T> d) {
  /* Openbsd trigonometric functions are numerical implementation and thus are
   * approximative.
   * The error epsilon is ~1E-7 on float and ~1E-15 on double. In order to
   * avoid weird results as e(i*pi) = -1+6E-17*i, we compute the argument of
   * the result of c^d and if arg ~ 0 [Pi], we discard the residual imaginary
   * part and if arg ~ Pi/2 [Pi], we discard the residual real part. */
  std::complex<T> result = std::pow(c, d);
  return ApproximationEngine::truncateRealOrImaginaryPartAccordingToArgument(result);
}

template<typename T> MatrixComplex<T> Power::computeOnComplexAndMatrix(const std::complex<T> c, const MatrixComplex<T> n) {
  return MatrixComplex<T>::Undefined();
}

template<typename T> MatrixComplex<T> Power::computeOnMatrixAndComplex(const MatrixComplex<T> m, const std::complex<T> d) {
 if (m.numberOfRows() != m.numberOfColumns()) {
    return MatrixComplex<T>::Undefined();
  }
  T power = Complex<T>(d).toScalar();
  if (std::isnan(power) || std::isinf(power) || power != (int)power || std::fabs(power) > k_maxApproximatePowerMatrix) {
    return MatrixComplex<T>::Undefined();
  }
  if (power < 0) {
    MatrixComplex<T> * inverse = m.createInverse();
    if (inverse == nullptr) {
      return MatrixComplex<T>::Undefined();
    }
    Complex<T> minusC = Complex<T>(-d);
    MatrixComplex<T> result = Power::computeOnMatrixAndComplex(*inverse, minusC);
    delete inverse;
    return result;
  }
  MatrixComplex<T> result = MatrixComplex<T>::createIdentity(m.numberOfRows());
  // TODO: implement a quick exponentiation
  for (int k = 0; k < (int)power; k++) {
    if (shouldStopProcessing()) {
      return MatrixComplex<T>::Undefined();
    }
    result = Multiplication::computeOnMatrices<T>(result, m);
  }
  return result;
}

template<typename T> MatrixComplex<T> Power::computeOnMatrices(const MatrixComplex<T> m, const MatrixComplex<T> n) {
  return MatrixComplex<T>::Undefined();
}

bool Power::needParenthesisWithParent(const Expression * e) const {
  Type types[] = {Type::Power, Type::Factorial};
  return e->isOfType(types, 2);
}

ExpressionLayout * Power::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
  const Expression * indiceOperand = m_operands[1];
  // Delete eventual parentheses of the indice in the pretty print
  if (m_operands[1]->type() == Type::Parenthesis) {
    indiceOperand = m_operands[1]->operand(0);
  }
  HorizontalLayout * result = new HorizontalLayout();
  result->addOrMergeChildAtIndex(m_operands[0]->createLayout(floatDisplayMode, numberOfSignificantDigits), 0, false);
  result->addChildAtIndex(new VerticalOffsetLayout(
        indiceOperand->createLayout(floatDisplayMode, numberOfSignificantDigits),
        VerticalOffsetLayout::Type::Superscript,
        false),
      result->numberOfChildren());
  return result;
}

int Power::simplificationOrderSameType(const Expression * e, bool canBeInterrupted) const {
  int baseComparison = SimplificationOrder(operand(0), e->operand(0), canBeInterrupted);
  if (baseComparison != 0) {
    return baseComparison;
  }
  return SimplificationOrder(operand(1), e->operand(1), canBeInterrupted);
}

int Power::simplificationOrderGreaterType(const Expression * e, bool canBeInterrupted) const {
  int baseComparison = SimplificationOrder(operand(0), e, canBeInterrupted);
  if (baseComparison != 0) {
    return baseComparison;
  }
  Rational one(1);
  return SimplificationOrder(operand(1), &one, canBeInterrupted);
}

Expression * Power::shallowReduce(Context& context, AngleUnit angleUnit) {
  Expression * e = Expression::shallowReduce(context, angleUnit);
  if (e != this) {
    return e;
  }
#if MATRIX_EXACT_REDUCING
  /* Step 0: get rid of matrix */
  if (operand(1)->type() == Type::Matrix) {
    return replaceWith(new Undefined(), true);
  }
  if (operand(0)->type() == Type::Matrix) {
    Matrix * mat = static_cast<Matrix *>(editableOperand(0));
    if (operand(1)->type() != Type::Rational || !static_cast<const Rational *>(operand(1))->denominator().isOne()) {
      return replaceWith(new Undefined(), true);
    }
    Integer exponent = static_cast<const Rational *>(operand(1))->numerator();
    if (mat->numberOfRows() != mat->numberOfColumns()) {
      return replaceWith(new Undefined(), true);
    }
    if (exponent.isNegative()) {
      editableOperand(1)->setSign(Sign::Positive, context, angleUnit);
      Expression * newMatrix = shallowReduce(context, angleUnit);
      Expression * parent = newMatrix->parent();
      MatrixInverse * inv = new MatrixInverse(newMatrix, false);
      parent->replaceOperand(newMatrix, inv, false);
      return inv;
    }
    if (Integer::NaturalOrder(exponent, Integer(k_maxExactPowerMatrix)) > 0) {
      return this;
    }
    int exp = exponent.extractedInt(); // Ok, because 0 < exponent < k_maxExactPowerMatrix
    Matrix * id = Matrix::createIdentity(mat->numberOfRows());
    if (exp == 0) {
      return replaceWith(id, true);
    }
    Multiplication * result = new Multiplication(id, mat->clone());
    // TODO: implement a quick exponentiation
    for (int k = 1; k < exp; k++) {
      result->addOperand(mat->clone());
    }
    replaceWith(result, true);
    return result->shallowReduce(context, angleUnit);
  }
#endif

  /* Step 0: if both operands are true complexes, the result is undefined.
   * We can assert that evaluations is a complex as matrix are not simplified */
  Complex<float> * op0 = static_cast<Complex<float> *>(operand(0)->privateApproximate(float(), context, angleUnit));
  Complex<float> * op1 = static_cast<Complex<float> *>(operand(1)->privateApproximate(float(), context, angleUnit));
  bool bothOperandsComplexes = op0->imag() != 0 && op1->imag() != 0;
  bool nonComplexNegativeOperand0 = op0->imag() == 0 && op0->real() < 0;
  delete op0;
  delete op1;
  if (bothOperandsComplexes) {
    return this;
  }

  /* Step 1: We handle simple cases as x^0, x^1, 0^x and 1^x first for 2 reasons:
   * - we can assert this step that there is no division by 0:
   *   for instance, 0^(-2)->undefined
   * - we save computational time by early escaping for these cases. */
  if (operand(1)->type() == Type::Rational) {
    const Rational * b = static_cast<const Rational *>(operand(1));
    // x^0
    if (b->isZero()) {
      // 0^0 = undef
      if (operand(0)->type() == Type::Rational && static_cast<const Rational *>(operand(0))->isZero()) {
        return replaceWith(new Undefined(), true);
      }
      /* Warning: in all other case but 0^0, we replace x^0 by one. This is
       * almost always true except when x = 0. However, not substituting x^0 by
       * one would prevent from simplifying many expressions like x/x->1. */
      return replaceWith(new Rational(1), true);
    }
    // x^1
    if (b->isOne()) {
      return replaceWith(editableOperand(0), true);
    }
  }
  if (operand(0)->type() == Type::Rational) {
    Rational * a = static_cast<Rational *>(editableOperand(0));
    // 0^x
    if (a->isZero()) {
      if (operand(1)->sign() == Sign::Positive) {
        return replaceWith(new Rational(0), true);
      }
      if (operand(1)->sign() == Sign::Negative) {
        return replaceWith(new Undefined(), true);
      }
    }
    // 1^x
    if (a->isOne()) {
      return replaceWith(new Rational(1), true);
    }
  }

  /* Step 2: We look for square root and sum of square roots (two terms maximum
   * so far) at the denominator and move them to the numerator. */
  Expression * r = removeSquareRootsFromDenominator(context, angleUnit);
  if (r) {
    return r;
  }

  if (operand(1)->type() == Type::Rational) {
    const Rational * b = static_cast<const Rational *>(operand(1));
    // i^(p/q)
    if (operand(0)->type() == Type::Symbol && static_cast<const Symbol *>(operand(0))->name() == Ion::Charset::IComplex) {
      Rational r = Rational::Multiplication(*b, Rational(1, 2));
      return replaceWith(CreateNthRootOfUnity(r))->shallowReduce(context, angleUnit);
    }
  }
  bool letPowerAtRoot = parentIsALogarithmOfSameBase();
  if (operand(0)->type() == Type::Rational) {
    Rational * a = static_cast<Rational *>(editableOperand(0));
    // p^q with p, q rationals
    if (!letPowerAtRoot && operand(1)->type() == Type::Rational) {
      Rational * exp = static_cast<Rational *>(editableOperand(1));
      if (RationalExponentShouldNotBeReduced(a, exp)) {
        return this;
      }
      return simplifyRationalRationalPower(this, a, exp, context, angleUnit);
    }
  }
  // (a)^(1/2) with a < 0 --> i*(-a)^(1/2)
  if (!letPowerAtRoot && nonComplexNegativeOperand0 && operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->numerator().isOne() && static_cast<const Rational *>(operand(1))->denominator().isTwo()) {
    Expression * o0 = editableOperand(0);
    Expression * m0 = new Multiplication(new Rational(-1), o0, false);
    replaceOperand(o0, m0, false);
    m0->shallowReduce(context, angleUnit);
    Multiplication * m1 = new Multiplication();
    replaceWith(m1, false);
    m1->addOperand(new Symbol(Ion::Charset::IComplex));
    m1->addOperand(this);
    shallowReduce(context, angleUnit);
    return m1->shallowReduce(context, angleUnit);
  }
  // e^(i*Pi*r) with r rational
  if (!letPowerAtRoot && isNthRootOfUnity()) {
    Expression * m = editableOperand(1);
    detachOperand(m);
    Expression * i = m->editableOperand(m->numberOfOperands()-1);
    static_cast<Multiplication *>(m)->removeOperand(i, false);
    if (angleUnit == AngleUnit::Degree) {
      const Expression * pi = m->operand(m->numberOfOperands()-1);
      m->replaceOperand(pi, new Rational(180), true);
    }
    Expression * cos = new Cosine(m, false);
    m = m->shallowReduce(context, angleUnit);
    Expression * sin = new Sine(m, true);
    Expression * complexPart = new Multiplication(sin, i, false);
    sin->shallowReduce(context, angleUnit);
    Expression * a = new Addition(cos, complexPart, false);
    cos->shallowReduce(context, angleUnit);
    complexPart->shallowReduce(context, angleUnit);
    return replaceWith(a, true)->shallowReduce(context, angleUnit);
  }
  // x^log(y,x)->y if y > 0
  if (operand(1)->type() == Type::Logarithm) {
    if (operand(1)->numberOfOperands() == 2 && operand(0)->isIdenticalTo(operand(1)->operand(1))) {
      // y > 0
      if (operand(1)->operand(0)->sign() == Sign::Positive) {
        return replaceWith(editableOperand(1)->editableOperand(0), true);
      }
    }
    // 10^log(y)
    if (operand(1)->numberOfOperands() == 1 && operand(0)->type() == Type::Rational && static_cast<const Rational *>(operand(0))->isTen()) {
      return replaceWith(editableOperand(1)->editableOperand(0), true);
    }
  }
  // (a^b)^c -> a^(b*c) if a > 0 or c is integer
  if (operand(0)->type() == Type::Power) {
    Power * p = static_cast<Power *>(editableOperand(0));
    // Check is a > 0 or c is Integer
    if (p->operand(0)->sign() == Sign::Positive ||
        (operand(1)->type() == Type::Rational && static_cast<Rational *>(editableOperand(1))->denominator().isOne())) {
      return simplifyPowerPower(p, editableOperand(1), context, angleUnit);
    }
  }
  // (a*b*c*...)^r ?
  if (!letPowerAtRoot && operand(0)->type() == Type::Multiplication) {
    Multiplication * m = static_cast<Multiplication *>(editableOperand(0));
    // (a*b*c*...)^n = a^n*b^n*c^n*... if n integer
    if (operand(1)->type() == Type::Rational && static_cast<Rational *>(editableOperand(1))->denominator().isOne()) {
      return simplifyPowerMultiplication(m, editableOperand(1), context, angleUnit);
    }
    // (a*b*...)^r -> |a|^r*(sign(a)*b*...)^r if a rational
    for (int i = 0; i < m->numberOfOperands(); i++) {
      // a is signed and a != -1
      if (m->operand(i)->sign() != Sign::Unknown && (m->operand(i)->type() != Type::Rational || !static_cast<const Rational *>(m->operand(i))->isMinusOne())) {
      //if (m->operand(i)->sign() == Sign::Positive || m->operand(i)->type() == Type::Rational) {
        Expression * r = editableOperand(1);
        Expression * rCopy = r->clone();
        Expression * factor = m->editableOperand(i);
        if (factor->sign() == Sign::Negative) {
          m->replaceOperand(factor, new Rational(-1), false);
          factor = factor->setSign(Sign::Positive, context, angleUnit);
        } else {
          m->removeOperand(factor, false);
        }
        m->shallowReduce(context, angleUnit);
        Power * p = new Power(factor, rCopy, false);
        Multiplication * root = new Multiplication(p, clone(), false);
        p->shallowReduce(context, angleUnit);
        root->editableOperand(1)->shallowReduce(context, angleUnit);
        replaceWith(root, true);
        return root->shallowReduce(context, angleUnit);
      }
    }
  }
  // a^(b+c) -> Rational(a^b)*a^c with a and b rational and a != 0
  if (!letPowerAtRoot && operand(0)->type() == Type::Rational && !static_cast<const Rational *>(operand(0))->isZero() && operand(1)->type() == Type::Addition) {
    Addition * a = static_cast<Addition *>(editableOperand(1));
    // Check is b is rational
    if (a->operand(0)->type() == Type::Rational) {
      const Rational * rationalBase = static_cast<const Rational *>(operand(0));
      const Rational * rationalIndex = static_cast<const Rational *>(a->operand(0));
      if (RationalExponentShouldNotBeReduced(rationalBase, rationalIndex)) {
        return this;
      }
      Power * p1 = static_cast<Power *>(clone());
      replaceOperand(a, a->editableOperand(1), true);
      Power * p2 = static_cast<Power *>(clone());
      Multiplication * m = new Multiplication(p1, p2, false);
      simplifyRationalRationalPower(p1, static_cast<Rational *>(p1->editableOperand(0)), static_cast<Rational *>(p1->editableOperand(1)->editableOperand(0)), context, angleUnit);
      replaceWith(m, true);
      return m->shallowReduce(context, angleUnit);
    }
  }

  // (a0+a1+...am)^n with n integer -> a^n+?a^(n-1)*b+?a^(n-2)*b^2+...+b^n (Multinome)
  if (!letPowerAtRoot && operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->denominator().isOne() && operand(0)->type() == Type::Addition) {
    // Exponent n
    Rational * nr = static_cast<Rational *>(editableOperand(1));
    Integer n = nr->numerator();
    n.setNegative(false);
    /* if n is above 25, the resulting sum would have more than
     * k_maxNumberOfTermsInExpandedMultinome terms so we do not expand it. */
    if (Integer(k_maxNumberOfTermsInExpandedMultinome).isLowerThan(n) || n.isOne()) {
      return this;
    }
    int clippedN = n.extractedInt(); // Authorized because n < k_maxNumberOfTermsInExpandedMultinome
    // Number of terms in addition m
    int m = operand(0)->numberOfOperands();
    /* The multinome (a0+a2+...+a(m-1))^n has BinomialCoefficient(n+m-1,n) terms;
     * we expand the multinome only when the number of terms in the resulting
     * sum has less than k_maxNumberOfTermsInExpandedMultinome terms. */
    if (k_maxNumberOfTermsInExpandedMultinome < BinomialCoefficient::compute(static_cast<double>(clippedN), static_cast<double>(clippedN+m-1))) {
      return this;
    }
    Expression * result = editableOperand(0);
    Expression * a = result->clone();
    for (int i = 2; i <= clippedN; i++) {
      if (result->type() == Type::Addition) {
        Expression * a0 = new Addition();
        for (int j = 0; j < a->numberOfOperands(); j++) {
          Multiplication * m = new Multiplication(result, a->editableOperand(j), true);
          SimplificationRoot rootM(m); // m need to have a parent when applying distributeOnOperandAtIndex
          Expression * expandM = m->distributeOnOperandAtIndex(0, context, angleUnit);
          rootM.detachOperands();
          if (a0->type() == Type::Addition) {
            static_cast<Addition *>(a0)->addOperand(expandM);
          } else {
            a0 = new Addition(a0, expandM, false);
          }
          SimplificationRoot rootA0(a0); // a0 need a parent to be reduced.
          a0 = a0->shallowReduce(context, angleUnit);
          rootA0.detachOperands();
        }
        result = result->replaceWith(a0, true);
      } else {
        Multiplication * m = new Multiplication(a, result, true);
        SimplificationRoot root(m);
        result = result->replaceWith(m->distributeOnOperandAtIndex(0, context, angleUnit), true);
        result = result->shallowReduce(context, angleUnit);
        root.detachOperands();
      }
    }
    delete a;
    if (nr->sign() == Sign::Negative) {
      nr->replaceWith(new Rational(-1), true);
      return shallowReduce(context, angleUnit);
    } else {
      return replaceWith(result, true);
    }
  }
#if 0
  /* We could use the Newton formula instead which is quicker but not immediate
   * to implement in the general case (Newton multinome). */
  // (a+b)^n with n integer -> a^n+?a^(n-1)*b+?a^(n-2)*b^2+...+b^n (Newton)
  if (!letPowerAtRoot && operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->denominator().isOne() && operand(0)->type() == Type::Addition && operand(0)->numberOfOperands() == 2) {
    Rational * nr = static_cast<Rational *>(editableOperand(1));
    Integer n = nr->numerator();
    n.setNegative(false);
    if (Integer(k_maxExpandedBinome).isLowerThan(n) || n.isOne()) {
      return this;
    }
    int clippedN = n.extractedInt(); // Authorized because n < k_maxExpandedBinome < k_maxNValue
    Expression * x0 = editableOperand(0)->editableOperand(0);
    Expression * x1 = editableOperand(0)->editableOperand(1);
    Addition * a = new Addition();
    for (int i = 0; i <= clippedN; i++) {
      Rational * r = new Rational(static_cast<int>(BinomialCoefficient::compute(static_cast<double>(i), static_cast<double>(clippedN))));
      Power * p0 = new Power(x0->clone(), new Rational(i), false);
      Power * p1 = new Power(x1->clone(), new Rational(clippedN-i), false);
      const Expression * operands[3] = {r, p0, p1};
      Multiplication * m = new Multiplication(operands, 3, false);
      p0->shallowReduce(context, angleUnit);
      p1->shallowReduce(context, angleUnit);
      a->addOperand(m);
      m->shallowReduce(context, angleUnit);
    }
    if (nr->sign() == Sign::Negative) {
      nr->replaceWith(new Rational(-1), true);
      editableOperand(0)->replaceWith(a, true)->shallowReduce(context, angleUnit);
      return shallowReduce(context, angleUnit);
    } else {
      return replaceWith(a, true)->shallowReduce(context, angleUnit);
    }
  }
#endif
  return this;
}

bool Power::parentIsALogarithmOfSameBase() const {
  if (parent()->type() == Type::Logarithm && parent()->operand(0) == this) {
    // parent = log(10^x)
    if (parent()->numberOfOperands() == 1) {
      if (operand(0)->type() == Type::Rational && static_cast<const Rational *>(operand(0))->isTen()) {
        return true;
      }
      return false;
    }
    // parent = log(x^y,x)
    if (operand(0)->isIdenticalTo(parent()->operand(1))) {
      return true;
    }
  }
  // parent = ln(e^x)
  if (parent()->type() == Type::NaperianLogarithm && parent()->operand(0) == this && operand(0)->type() == Type::Symbol && static_cast<const Symbol *>(operand(0))->name() == Ion::Charset::Exponential) {
    return true;
  }
  return false;
}

Expression * Power::simplifyPowerPower(Power * p, Expression * e, Context& context, AngleUnit angleUnit) {
  Expression * p0 = p->editableOperand(0);
  Expression * p1 = p->editableOperand(1);
  p->detachOperands();
  Multiplication * m = new Multiplication(p1, e, false);
  replaceOperand(e, m, false);
  replaceOperand(p, p0, true);
  m->shallowReduce(context, angleUnit);
  return shallowReduce(context, angleUnit);
}

Expression * Power::simplifyPowerMultiplication(Multiplication * m, Expression * r, Context& context, AngleUnit angleUnit) {
  for (int index = 0; index < m->numberOfOperands(); index++) {
    Expression * factor = m->editableOperand(index);
    Power * p = new Power(factor, r, true); // We copy r and factor to avoid inheritance issues
    m->replaceOperand(factor, p, true);
    p->shallowReduce(context, angleUnit);
  }
  detachOperand(m);
  return replaceWith(m, true)->shallowReduce(context, angleUnit); // delete r
}

Expression * Power::simplifyRationalRationalPower(Expression * result, Rational * a, Rational * b, Context& context, AngleUnit angleUnit) {
  if (b->denominator().isOne()) {
    Rational r = Rational::Power(*a, b->numerator());
    return result->replaceWith(new Rational(r),true);
  }
  Expression * n = nullptr;
  Expression * d = nullptr;
  if (b->sign() == Sign::Negative) {
    b->setSign(Sign::Positive);
    n = CreateSimplifiedIntegerRationalPower(a->denominator(), b, false, context, angleUnit);
    d = CreateSimplifiedIntegerRationalPower(a->numerator(), b, true, context, angleUnit);
  } else {
    n = CreateSimplifiedIntegerRationalPower(a->numerator(), b, false, context, angleUnit);
    d = CreateSimplifiedIntegerRationalPower(a->denominator(), b, true, context, angleUnit);
  }
  Multiplication * m = new Multiplication(n, d, false);
  result->replaceWith(m, true);
  return m->shallowReduce(context, angleUnit);
}

Expression * Power::CreateSimplifiedIntegerRationalPower(Integer i, Rational * r, bool isDenominator, Context & context, AngleUnit angleUnit) {
  assert(!i.isZero());
  assert(r->sign() == Sign::Positive);
  if (i.isOne()) {
    return new Rational(1);
  }
  Integer absI = i;
  absI.setNegative(false);
  Integer factors[Arithmetic::k_maxNumberOfPrimeFactors];
  Integer coefficients[Arithmetic::k_maxNumberOfPrimeFactors];
  Arithmetic::PrimeFactorization(&i, factors, coefficients, Arithmetic::k_maxNumberOfPrimeFactors);

  if (coefficients[0].isMinusOne()) {
    /* We could not break i in prime factor (either it might take too many
     * factors or too much time). */
    r->setSign(isDenominator ? Sign::Negative : Sign::Positive);
    return new Power(new Rational(i), r->clone(), false);
  }

  Integer r1(1);
  Integer r2(1);
  int index = 0;
  while (!coefficients[index].isZero() && index < Arithmetic::k_maxNumberOfPrimeFactors) {
    Integer n = Integer::Multiplication(coefficients[index], r->numerator());
    IntegerDivision div = Integer::Division(n, r->denominator());
    r1 = Integer::Multiplication(r1, Integer::Power(factors[index], div.quotient));
    r2 = Integer::Multiplication(r2, Integer::Power(factors[index], div.remainder));
    index++;
  }
  Rational * p1 = new Rational(r2);
  Integer one = isDenominator ? Integer(-1) : Integer(1);
  Rational * p2 = new Rational(one, r->denominator());
  Power * p = new Power(p1, p2, false);
  if (r1.isEqualTo(Integer(1)) && !i.isNegative()) {
    return p;
  }
  Rational * r3 = isDenominator ? new Rational(Integer(1), r1) : new Rational(r1);
  Multiplication * m = new Multiplication(r3, p, false);
  if (r2.isOne()) {
    m->removeOperand(p);
  }
  if (i.isNegative()) {
    Expression * nthRootOfUnity = CreateNthRootOfUnity(*r);
    m->addOperand(nthRootOfUnity);
    nthRootOfUnity->shallowReduce(context, angleUnit);

  }
  m->sortOperands(SimplificationOrder, false);
  return m;
}

Expression * Power::CreateNthRootOfUnity(const Rational r) {
  const Symbol * exp = new Symbol(Ion::Charset::Exponential);
  const Symbol * iComplex = new Symbol(Ion::Charset::IComplex);
  const Symbol * pi = new Symbol(Ion::Charset::SmallPi);
  const Expression * multExpOperands[3] = {iComplex, pi, new Rational(r)};
  Multiplication * mExp = new Multiplication(multExpOperands, 3, false);
  mExp->sortOperands(SimplificationOrder, false);
  return new Power(exp, mExp, false);
#if 0
  const Symbol * iComplex = new Symbol(Ion::Charset::IComplex);
  const Symbol * pi = new Symbol(Ion::Charset::SmallPi);
  Expression * op = new Multiplication(pi, r->clone(), false);
  Cosine * cos = new Cosine(op, false);
  op = op->shallowReduce(context, angleUnit);
  Sine * sin = new Sine(op, true);
  Expression * m = new Multiplication(iComplex, sin, false);
  sin->shallowReduce(context, angleUnit);
  Expression * a = new Addition(cos, m, false);
  cos->shallowReduce(context, angleUnit);
  const Expression * multExpOperands[3] = {pi, r->clone()};
#endif
}

Expression * Power::shallowBeautify(Context& context, AngleUnit angleUnit) {
  // X^-y -> 1/(X->shallowBeautify)^y
  if (operand(1)->sign() == Sign::Negative) {
    Expression * p = cloneDenominator(context, angleUnit);
    Division * d = new Division(new Rational(1), p, false);
    p->shallowReduce(context, angleUnit);
    replaceWith(d, true);
    return d->shallowBeautify(context, angleUnit);
  }
  if (operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->numerator().isOne()) {
    Integer index = static_cast<const Rational *>(operand(1))->denominator();
    if (index.isEqualTo(Integer(2))) {
      const Expression * sqrtOperand[1] = {operand(0)};
      SquareRoot * sqr = new SquareRoot(sqrtOperand, true);
      return replaceWith(sqr, true);
    }
    const Expression * rootOperand[2] = {operand(0)->clone(), new Rational(index)};
    NthRoot * nr = new NthRoot(rootOperand, false);
    return replaceWith(nr, true);
  }
  // +(a,b)^c ->(+(a,b))^c
  if (operand(0)->type() == Type::Addition || operand(0)->type() == Type::Multiplication) {
    const Expression * o[1] = {operand(0)};
    Parenthesis * p = new Parenthesis(o, true);
    replaceOperand(operand(0), p, true);
  }
  return this;
}

Expression * Power::cloneDenominator(Context & context, AngleUnit angleUnit) const {
  if (operand(1)->sign() == Sign::Negative) {
    Expression * denominator = clone();
    Expression * newExponent = denominator->editableOperand(1)->setSign(Sign::Positive, context, angleUnit);
    if (newExponent->type() == Type::Rational && static_cast<Rational *>(newExponent)->isOne()) {
      delete denominator;
      return operand(0)->clone();
    }
    return denominator;
  }
  return nullptr;
}

bool Power::TermIsARationalSquareRootOrRational(const Expression * e) {
  if (e->type() == Type::Rational) {
    return true;
  }
  if (e->type() == Type::Power && e->operand(0)->type() == Type::Rational && e->operand(1)->type() == Type::Rational && static_cast<const Rational *>(e->operand(1))->isHalf()) {
    return true;
  }
  if (e->type() == Type::Multiplication && e->numberOfOperands() == 2 && e->operand(0)->type() == Type::Rational && e->operand(1)->type() == Type::Power && e->operand(1)->operand(0)->type() == Type::Rational && e->operand(1)->operand(1)->type() == Type::Rational && static_cast<const Rational *>(e->operand(1)->operand(1))->isHalf()) {
  return true;
  }
  return false;
}

const Rational * Power::RadicandInExpression(const Expression * e) {
  if (e->type() == Type::Rational) {
    return nullptr;
  } else if (e->type() == Type::Power) {
    assert(e->type() == Type::Power);
    assert(e->operand(0)->type() == Type::Rational);
    return static_cast<const Rational *>(e->operand(0));
  } else {
    assert(e->type() == Type::Multiplication);
    assert(e->operand(1)->type() == Type::Power);
    assert(e->operand(1)->operand(0)->type() == Type::Rational);
    return static_cast<const Rational *>(e->operand(1)->operand(0));
  }
}

const Rational * Power::RationalFactorInExpression(const Expression * e) {
  if (e->type() == Type::Rational) {
    return static_cast<const Rational *>(e);
  } else if (e->type() == Type::Power) {
    return nullptr;
  } else {
    assert(e->type() == Type::Multiplication);
    assert(e->operand(0)->type() == Type::Rational);
    return static_cast<const Rational *>(e->operand(0));
  }
}

Expression * Power::removeSquareRootsFromDenominator(Context & context, AngleUnit angleUnit) {
  Expression * result = nullptr;

  if (operand(0)->type() == Type::Rational && operand(1)->type() == Type::Rational && (static_cast<const Rational *>(operand(1))->isHalf() || static_cast<const Rational *>(operand(1))->isMinusHalf())) {
      /* We're considering a term of the form sqrt(p/q) (or 1/sqrt(p/q)), with
       * p and q integers.
       * We'll turn those into sqrt(p*q)/q (or sqrt(p*q)/p) . */
      Integer p = static_cast<const Rational *>(operand(0))->numerator();
      assert(!p.isZero()); // We eliminated case of form 0^(-1/2) at first step of shallowReduce
      Integer q = static_cast<const Rational *>(operand(0))->denominator();
      // We do nothing for terms of the form sqrt(p)
      if (!q.isOne() || static_cast<const Rational *>(operand(1))->isMinusHalf()) {
        Power * sqrt = new Power(new Rational(Integer::Multiplication(p, q)), new Rational(1, 2), false);
        if (static_cast<const Rational *>(operand(1))->isHalf()) {
          result = new Multiplication(new Rational(Integer(1), q), sqrt, false);
        } else {
          result = new Multiplication(new Rational(Integer(1), p), sqrt, false); // We use here the assertion that p != 0
        }
        sqrt->shallowReduce(context, angleUnit);
      }
  } else if (operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->isMinusOne() && operand(0)->type() == Type::Addition && operand(0)->numberOfOperands() == 2 && TermIsARationalSquareRootOrRational(operand(0)->operand(0)) && TermIsARationalSquareRootOrRational(operand(0)->operand(1))) {
    /* We're considering a term of the form
     *
     * 1/(n1/d1*sqrt(p1/q1) + n2/d2*sqrt(p2/q2))
     *
     * and we want to turn it into
     *
     *  n1*q2*d1*d2^2*sqrt(p1*q1) - n2*q1*d2*d1^2*sqrt(p2*q2)
     * -------------------------------------------------------
     *          n1^2*d2^2*p1*q2 - n2^2*d1^2*p2*q1
     */
    const Rational * f1 = RationalFactorInExpression(operand(0)->operand(0));
    const Rational * f2 = RationalFactorInExpression(operand(0)->operand(1));
    const Rational * r1 = RadicandInExpression(operand(0)->operand(0));
    const Rational * r2 = RadicandInExpression(operand(0)->operand(1));
    Integer n1 = (f1 ? f1->numerator() : Integer(1));
    Integer d1 = (f1 ? f1->denominator() : Integer(1));
    Integer p1 = (r1 ? r1->numerator() : Integer(1));
    Integer q1 = (r1 ? r1->denominator() : Integer(1));
    Integer n2 = (f2 ? f2->numerator() : Integer(1));
    Integer d2 = (f2 ? f2->denominator() : Integer(1));
    Integer p2 = (r2 ? r2->numerator() : Integer(1));
    Integer q2 = (r2 ? r2->denominator() : Integer(1));

    // Compute the denominator = n1^2*d2^2*p1*q2 - n2^2*d1^2*p2*q1
    Integer denominator = Integer::Subtraction(
        Integer::Multiplication(
          Integer::Multiplication(
            Integer::Power(n1, Integer(2)),
            Integer::Power(d2, Integer(2))),
          Integer::Multiplication(p1, q2)),
        Integer::Multiplication(
          Integer::Multiplication(
            Integer::Power(n2, Integer(2)),
            Integer::Power(d1, Integer(2))),
          Integer::Multiplication(p2, q1)));

    // Compute the numerator
    Power * sqrt1 = new Power(new Rational(Integer::Multiplication(p1, q1)), new Rational(1, 2), false);
    Power * sqrt2 = new Power(new Rational(Integer::Multiplication(p2, q2)), new Rational(1, 2), false);
    Integer factor1 = Integer::Multiplication(
        Integer::Multiplication(n1, d1),
        Integer::Multiplication(Integer::Power(d2, Integer(2)), q2));
    Multiplication * m1 = new Multiplication(new Rational(factor1), sqrt1, false);
    Integer factor2 = Integer::Multiplication(
        Integer::Multiplication(n2, d2),
        Integer::Multiplication(Integer::Power(d1, Integer(2)), q1));
    Multiplication * m2 = new Multiplication(new Rational(factor2), sqrt2, false);
    Subtraction * numerator = nullptr;
    if (denominator.isNegative()) {
      numerator = new Subtraction(m2, m1, false);
      denominator.setNegative(false);
    } else {
      numerator = new Subtraction(m1, m2, false);
    }

    result = new Multiplication(numerator, new Rational(Integer(1), denominator), false);
    numerator->deepReduce(context, angleUnit);
  }

  if (result) {
    replaceWith(result, true);
    result = result->shallowReduce(context, angleUnit);
  }
  return result;
}

bool Power::isNthRootOfUnity() const {
  if (operand(0)->type() != Type::Symbol || static_cast<const Symbol *>(operand(0))->name() != Ion::Charset::Exponential) {
    return false;
  }
  if (operand(1)->type() != Type::Multiplication) {
    return false;
  }
  if (operand(1)->numberOfOperands() < 2 || operand(1)->numberOfOperands() > 3) {
    return false;
  }
  const Expression * i = operand(1)->operand(operand(1)->numberOfOperands()-1);
  if (i->type() != Type::Symbol || static_cast<const Symbol *>(i)->name() != Ion::Charset::IComplex) {
    return false;
  }
  const Expression * pi = operand(1)->operand(operand(1)->numberOfOperands()-2);
  if (pi->type() != Type::Symbol || static_cast<const Symbol *>(pi)->name() != Ion::Charset::SmallPi) {
    return false;
  }
  if (numberOfOperands() == 2) {
    return true;
  }
  if (operand(1)->operand(0)->type() == Type::Rational) {
    return true;
  }
  return false;
}

bool Power::RationalExponentShouldNotBeReduced(const Rational * b, const Rational * r) {
  if (r->isMinusOne()) {
    return false;
  }
  /* We check that the simplification does not involve too complex power of
   * integers (ie 3^999, 120232323232^50) that would take too much time to
   * compute:
   *  - we cap the exponent at k_maxExactPowerMatrix
   *  - we cap the resulting power at DBL_MAX
   * The complexity of computing a power of rational is mainly due to computing
   * the GCD of the resulting numerator and denominator. Euclide algorithm's
   * complexity is apportionned to the number of decimal digits in the smallest
   * integer. */
  Integer maxIntegerExponent = r->numerator();
  maxIntegerExponent.setNegative(false);
  if (Integer::NaturalOrder(maxIntegerExponent, Integer(k_maxExactPowerMatrix)) > 0) {
    return true;
  }
  double index = maxIntegerExponent.approximate<double>();
  double powerNumerator = std::pow(std::fabs(b->numerator().approximate<double>()), index);
  double powerDenominator = std::pow(std::fabs(b->denominator().approximate<double>()), index);
  if (std::isnan(powerNumerator) || std::isnan(powerDenominator) || std::isinf(powerNumerator) || std::isinf(powerDenominator)) {
    return true;
  }
  return false;
}

template std::complex<float> Power::compute<float>(std::complex<float>, std::complex<float>);
template std::complex<double> Power::compute<double>(std::complex<double>, std::complex<double>);
}