#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "layout/horizontal_layout.h" #include "layout/vertical_offset_layout.h" #include #include #include extern "C" { #include #include } namespace Poincare { Expression::Type Power::type() const { return Type::Power; } Expression * Power::clone() const { return new Power(m_operands, true); } Expression::Sign Power::sign() const { if (shouldStopProcessing()) { return Sign::Unknown; } if (operand(0)->sign() == Sign::Positive && operand(1)->sign() != Sign::Unknown) { return Sign::Positive; } if (operand(0)->sign() == Sign::Negative && operand(1)->type() == Type::Rational) { const Rational * r = static_cast(operand(1)); if (r->denominator().isOne()) { if (Integer::Division(r->numerator(), Integer(2)).remainder.isZero()) { return Sign::Positive; } else { return Sign::Negative; } } } return Sign::Unknown; } int Power::polynomialDegree(char symbolName) const { int deg = Expression::polynomialDegree(symbolName); if (deg == 0) { return deg; } int op0Deg = operand(0)->polynomialDegree(symbolName); if (op0Deg < 0) { return -1; } if (operand(1)->type() == Type::Rational) { const Rational * r = static_cast(operand(1)); if (!r->denominator().isOne() || r->sign() == Sign::Negative) { return -1; } if (Integer::NaturalOrder(r->numerator(), Integer(Integer::k_maxExtractableInteger)) > 0) { return -1; } op0Deg *= r->numerator().extractedInt(); return op0Deg; } return -1; } int Power::privateGetPolynomialCoefficients(char symbolName, Expression * coefficients[]) const { int deg = polynomialDegree(symbolName); if (deg <= 0) { return Expression::privateGetPolynomialCoefficients(symbolName, coefficients); } /* Here we only consider the case x^4 as privateGetPolynomialCoefficients is * supposed to be called after reducing the expression. */ if (operand(0)->type() == Type::Symbol && static_cast(operand(0))->name() == symbolName && operand(1)->type() == Type::Rational) { const Rational * r = static_cast(operand(1)); if (!r->denominator().isOne() || r->sign() == Sign::Negative) { return -1; } if (Integer::NaturalOrder(r->numerator(), Integer(Integer::k_maxExtractableInteger)) > 0) { return -1; } int n = r->numerator().extractedInt(); if (n <= k_maxPolynomialDegree) { for (int i = 0; i < n; i++) { coefficients[i] = new Rational(0); } coefficients[n] = new Rational(1); return n; } } return -1; } Expression * Power::setSign(Sign s, Context & context, AngleUnit angleUnit) { assert(s == Sign::Positive); assert(operand(0)->sign() == Sign::Negative); editableOperand(0)->setSign(Sign::Positive, context, angleUnit); return this; } template std::complex Power::compute(const std::complex c, const std::complex d) { /* Openbsd trigonometric functions are numerical implementation and thus are * approximative. * The error epsilon is ~1E-7 on float and ~1E-15 on double. In order to * avoid weird results as e(i*pi) = -1+6E-17*i, we compute the argument of * the result of c^d and if arg ~ 0 [Pi], we discard the residual imaginary * part and if arg ~ Pi/2 [Pi], we discard the residual real part. */ std::complex result = std::pow(c, d); return ApproximationEngine::truncateRealOrImaginaryPartAccordingToArgument(result); } template MatrixComplex Power::computeOnComplexAndMatrix(const std::complex c, const MatrixComplex n) { return MatrixComplex::Undefined(); } template MatrixComplex Power::computeOnMatrixAndComplex(const MatrixComplex m, const std::complex d) { if (m.numberOfRows() != m.numberOfColumns()) { return MatrixComplex::Undefined(); } T power = Complex(d).toScalar(); if (std::isnan(power) || std::isinf(power) || power != (int)power || std::fabs(power) > k_maxApproximatePowerMatrix) { return MatrixComplex::Undefined(); } if (power < 0) { MatrixComplex * inverse = m.createInverse(); if (inverse == nullptr) { return MatrixComplex::Undefined(); } Complex minusC = Complex(-d); MatrixComplex result = Power::computeOnMatrixAndComplex(*inverse, minusC); delete inverse; return result; } MatrixComplex result = MatrixComplex::createIdentity(m.numberOfRows()); // TODO: implement a quick exponentiation for (int k = 0; k < (int)power; k++) { if (shouldStopProcessing()) { return MatrixComplex::Undefined(); } result = Multiplication::computeOnMatrices(result, m); } return result; } template MatrixComplex Power::computeOnMatrices(const MatrixComplex m, const MatrixComplex n) { return MatrixComplex::Undefined(); } bool Power::needParenthesisWithParent(const Expression * e) const { Type types[] = {Type::Power, Type::Factorial}; return e->isOfType(types, 2); } ExpressionLayout * Power::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const { const Expression * indiceOperand = m_operands[1]; // Delete eventual parentheses of the indice in the pretty print if (m_operands[1]->type() == Type::Parenthesis) { indiceOperand = m_operands[1]->operand(0); } HorizontalLayout * result = new HorizontalLayout(); result->addOrMergeChildAtIndex(m_operands[0]->createLayout(floatDisplayMode, numberOfSignificantDigits), 0, false); result->addChildAtIndex(new VerticalOffsetLayout( indiceOperand->createLayout(floatDisplayMode, numberOfSignificantDigits), VerticalOffsetLayout::Type::Superscript, false), result->numberOfChildren()); return result; } int Power::simplificationOrderSameType(const Expression * e, bool canBeInterrupted) const { int baseComparison = SimplificationOrder(operand(0), e->operand(0), canBeInterrupted); if (baseComparison != 0) { return baseComparison; } return SimplificationOrder(operand(1), e->operand(1), canBeInterrupted); } int Power::simplificationOrderGreaterType(const Expression * e, bool canBeInterrupted) const { int baseComparison = SimplificationOrder(operand(0), e, canBeInterrupted); if (baseComparison != 0) { return baseComparison; } Rational one(1); return SimplificationOrder(operand(1), &one, canBeInterrupted); } Expression * Power::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } #if MATRIX_EXACT_REDUCING /* Step 0: get rid of matrix */ if (operand(1)->type() == Type::Matrix) { return replaceWith(new Undefined(), true); } if (operand(0)->type() == Type::Matrix) { Matrix * mat = static_cast(editableOperand(0)); if (operand(1)->type() != Type::Rational || !static_cast(operand(1))->denominator().isOne()) { return replaceWith(new Undefined(), true); } Integer exponent = static_cast(operand(1))->numerator(); if (mat->numberOfRows() != mat->numberOfColumns()) { return replaceWith(new Undefined(), true); } if (exponent.isNegative()) { editableOperand(1)->setSign(Sign::Positive, context, angleUnit); Expression * newMatrix = shallowReduce(context, angleUnit); Expression * parent = newMatrix->parent(); MatrixInverse * inv = new MatrixInverse(newMatrix, false); parent->replaceOperand(newMatrix, inv, false); return inv; } if (Integer::NaturalOrder(exponent, Integer(k_maxExactPowerMatrix)) > 0) { return this; } int exp = exponent.extractedInt(); // Ok, because 0 < exponent < k_maxExactPowerMatrix Matrix * id = Matrix::createIdentity(mat->numberOfRows()); if (exp == 0) { return replaceWith(id, true); } Multiplication * result = new Multiplication(id, mat->clone()); // TODO: implement a quick exponentiation for (int k = 1; k < exp; k++) { result->addOperand(mat->clone()); } replaceWith(result, true); return result->shallowReduce(context, angleUnit); } #endif /* Step 0: if both operands are true complexes, the result is undefined. * We can assert that evaluations is a complex as matrix are not simplified */ Complex * op0 = static_cast *>(operand(0)->privateApproximate(float(), context, angleUnit)); Complex * op1 = static_cast *>(operand(1)->privateApproximate(float(), context, angleUnit)); bool bothOperandsComplexes = op0->imag() != 0 && op1->imag() != 0; bool nonComplexNegativeOperand0 = op0->imag() == 0 && op0->real() < 0; delete op0; delete op1; if (bothOperandsComplexes) { return this; } /* Step 1: We handle simple cases as x^0, x^1, 0^x and 1^x first for 2 reasons: * - we can assert this step that there is no division by 0: * for instance, 0^(-2)->undefined * - we save computational time by early escaping for these cases. */ if (operand(1)->type() == Type::Rational) { const Rational * b = static_cast(operand(1)); // x^0 if (b->isZero()) { // 0^0 = undef if (operand(0)->type() == Type::Rational && static_cast(operand(0))->isZero()) { return replaceWith(new Undefined(), true); } /* Warning: in all other case but 0^0, we replace x^0 by one. This is * almost always true except when x = 0. However, not substituting x^0 by * one would prevent from simplifying many expressions like x/x->1. */ return replaceWith(new Rational(1), true); } // x^1 if (b->isOne()) { return replaceWith(editableOperand(0), true); } } if (operand(0)->type() == Type::Rational) { Rational * a = static_cast(editableOperand(0)); // 0^x if (a->isZero()) { if (operand(1)->sign() == Sign::Positive) { return replaceWith(new Rational(0), true); } if (operand(1)->sign() == Sign::Negative) { return replaceWith(new Undefined(), true); } } // 1^x if (a->isOne()) { return replaceWith(new Rational(1), true); } } /* Step 2: We look for square root and sum of square roots (two terms maximum * so far) at the denominator and move them to the numerator. */ Expression * r = removeSquareRootsFromDenominator(context, angleUnit); if (r) { return r; } if (operand(1)->type() == Type::Rational) { const Rational * b = static_cast(operand(1)); // i^(p/q) if (operand(0)->type() == Type::Symbol && static_cast(operand(0))->name() == Ion::Charset::IComplex) { Rational r = Rational::Multiplication(*b, Rational(1, 2)); return replaceWith(CreateNthRootOfUnity(r))->shallowReduce(context, angleUnit); } } bool letPowerAtRoot = parentIsALogarithmOfSameBase(); if (operand(0)->type() == Type::Rational) { Rational * a = static_cast(editableOperand(0)); // p^q with p, q rationals if (!letPowerAtRoot && operand(1)->type() == Type::Rational) { Rational * exp = static_cast(editableOperand(1)); if (RationalExponentShouldNotBeReduced(a, exp)) { return this; } return simplifyRationalRationalPower(this, a, exp, context, angleUnit); } } // (a)^(1/2) with a < 0 --> i*(-a)^(1/2) if (!letPowerAtRoot && nonComplexNegativeOperand0 && operand(1)->type() == Type::Rational && static_cast(operand(1))->numerator().isOne() && static_cast(operand(1))->denominator().isTwo()) { Expression * o0 = editableOperand(0); Expression * m0 = new Multiplication(new Rational(-1), o0, false); replaceOperand(o0, m0, false); m0->shallowReduce(context, angleUnit); Multiplication * m1 = new Multiplication(); replaceWith(m1, false); m1->addOperand(new Symbol(Ion::Charset::IComplex)); m1->addOperand(this); shallowReduce(context, angleUnit); return m1->shallowReduce(context, angleUnit); } // e^(i*Pi*r) with r rational if (!letPowerAtRoot && isNthRootOfUnity()) { Expression * m = editableOperand(1); detachOperand(m); Expression * i = m->editableOperand(m->numberOfOperands()-1); static_cast(m)->removeOperand(i, false); if (angleUnit == AngleUnit::Degree) { const Expression * pi = m->operand(m->numberOfOperands()-1); m->replaceOperand(pi, new Rational(180), true); } Expression * cos = new Cosine(m, false); m = m->shallowReduce(context, angleUnit); Expression * sin = new Sine(m, true); Expression * complexPart = new Multiplication(sin, i, false); sin->shallowReduce(context, angleUnit); Expression * a = new Addition(cos, complexPart, false); cos->shallowReduce(context, angleUnit); complexPart->shallowReduce(context, angleUnit); return replaceWith(a, true)->shallowReduce(context, angleUnit); } // x^log(y,x)->y if y > 0 if (operand(1)->type() == Type::Logarithm) { if (operand(1)->numberOfOperands() == 2 && operand(0)->isIdenticalTo(operand(1)->operand(1))) { // y > 0 if (operand(1)->operand(0)->sign() == Sign::Positive) { return replaceWith(editableOperand(1)->editableOperand(0), true); } } // 10^log(y) if (operand(1)->numberOfOperands() == 1 && operand(0)->type() == Type::Rational && static_cast(operand(0))->isTen()) { return replaceWith(editableOperand(1)->editableOperand(0), true); } } // (a^b)^c -> a^(b*c) if a > 0 or c is integer if (operand(0)->type() == Type::Power) { Power * p = static_cast(editableOperand(0)); // Check is a > 0 or c is Integer if (p->operand(0)->sign() == Sign::Positive || (operand(1)->type() == Type::Rational && static_cast(editableOperand(1))->denominator().isOne())) { return simplifyPowerPower(p, editableOperand(1), context, angleUnit); } } // (a*b*c*...)^r ? if (!letPowerAtRoot && operand(0)->type() == Type::Multiplication) { Multiplication * m = static_cast(editableOperand(0)); // (a*b*c*...)^n = a^n*b^n*c^n*... if n integer if (operand(1)->type() == Type::Rational && static_cast(editableOperand(1))->denominator().isOne()) { return simplifyPowerMultiplication(m, editableOperand(1), context, angleUnit); } // (a*b*...)^r -> |a|^r*(sign(a)*b*...)^r if a rational for (int i = 0; i < m->numberOfOperands(); i++) { // a is signed and a != -1 if (m->operand(i)->sign() != Sign::Unknown && (m->operand(i)->type() != Type::Rational || !static_cast(m->operand(i))->isMinusOne())) { //if (m->operand(i)->sign() == Sign::Positive || m->operand(i)->type() == Type::Rational) { Expression * r = editableOperand(1); Expression * rCopy = r->clone(); Expression * factor = m->editableOperand(i); if (factor->sign() == Sign::Negative) { m->replaceOperand(factor, new Rational(-1), false); factor = factor->setSign(Sign::Positive, context, angleUnit); } else { m->removeOperand(factor, false); } m->shallowReduce(context, angleUnit); Power * p = new Power(factor, rCopy, false); Multiplication * root = new Multiplication(p, clone(), false); p->shallowReduce(context, angleUnit); root->editableOperand(1)->shallowReduce(context, angleUnit); replaceWith(root, true); return root->shallowReduce(context, angleUnit); } } } // a^(b+c) -> Rational(a^b)*a^c with a and b rational and a != 0 if (!letPowerAtRoot && operand(0)->type() == Type::Rational && !static_cast(operand(0))->isZero() && operand(1)->type() == Type::Addition) { Addition * a = static_cast(editableOperand(1)); // Check is b is rational if (a->operand(0)->type() == Type::Rational) { const Rational * rationalBase = static_cast(operand(0)); const Rational * rationalIndex = static_cast(a->operand(0)); if (RationalExponentShouldNotBeReduced(rationalBase, rationalIndex)) { return this; } Power * p1 = static_cast(clone()); replaceOperand(a, a->editableOperand(1), true); Power * p2 = static_cast(clone()); Multiplication * m = new Multiplication(p1, p2, false); simplifyRationalRationalPower(p1, static_cast(p1->editableOperand(0)), static_cast(p1->editableOperand(1)->editableOperand(0)), context, angleUnit); replaceWith(m, true); return m->shallowReduce(context, angleUnit); } } // (a0+a1+...am)^n with n integer -> a^n+?a^(n-1)*b+?a^(n-2)*b^2+...+b^n (Multinome) if (!letPowerAtRoot && operand(1)->type() == Type::Rational && static_cast(operand(1))->denominator().isOne() && operand(0)->type() == Type::Addition) { // Exponent n Rational * nr = static_cast(editableOperand(1)); Integer n = nr->numerator(); n.setNegative(false); /* if n is above 25, the resulting sum would have more than * k_maxNumberOfTermsInExpandedMultinome terms so we do not expand it. */ if (Integer(k_maxNumberOfTermsInExpandedMultinome).isLowerThan(n) || n.isOne()) { return this; } int clippedN = n.extractedInt(); // Authorized because n < k_maxNumberOfTermsInExpandedMultinome // Number of terms in addition m int m = operand(0)->numberOfOperands(); /* The multinome (a0+a2+...+a(m-1))^n has BinomialCoefficient(n+m-1,n) terms; * we expand the multinome only when the number of terms in the resulting * sum has less than k_maxNumberOfTermsInExpandedMultinome terms. */ if (k_maxNumberOfTermsInExpandedMultinome < BinomialCoefficient::compute(static_cast(clippedN), static_cast(clippedN+m-1))) { return this; } Expression * result = editableOperand(0); Expression * a = result->clone(); for (int i = 2; i <= clippedN; i++) { if (result->type() == Type::Addition) { Expression * a0 = new Addition(); for (int j = 0; j < a->numberOfOperands(); j++) { Multiplication * m = new Multiplication(result, a->editableOperand(j), true); SimplificationRoot rootM(m); // m need to have a parent when applying distributeOnOperandAtIndex Expression * expandM = m->distributeOnOperandAtIndex(0, context, angleUnit); rootM.detachOperands(); if (a0->type() == Type::Addition) { static_cast(a0)->addOperand(expandM); } else { a0 = new Addition(a0, expandM, false); } SimplificationRoot rootA0(a0); // a0 need a parent to be reduced. a0 = a0->shallowReduce(context, angleUnit); rootA0.detachOperands(); } result = result->replaceWith(a0, true); } else { Multiplication * m = new Multiplication(a, result, true); SimplificationRoot root(m); result = result->replaceWith(m->distributeOnOperandAtIndex(0, context, angleUnit), true); result = result->shallowReduce(context, angleUnit); root.detachOperands(); } } delete a; if (nr->sign() == Sign::Negative) { nr->replaceWith(new Rational(-1), true); return shallowReduce(context, angleUnit); } else { return replaceWith(result, true); } } #if 0 /* We could use the Newton formula instead which is quicker but not immediate * to implement in the general case (Newton multinome). */ // (a+b)^n with n integer -> a^n+?a^(n-1)*b+?a^(n-2)*b^2+...+b^n (Newton) if (!letPowerAtRoot && operand(1)->type() == Type::Rational && static_cast(operand(1))->denominator().isOne() && operand(0)->type() == Type::Addition && operand(0)->numberOfOperands() == 2) { Rational * nr = static_cast(editableOperand(1)); Integer n = nr->numerator(); n.setNegative(false); if (Integer(k_maxExpandedBinome).isLowerThan(n) || n.isOne()) { return this; } int clippedN = n.extractedInt(); // Authorized because n < k_maxExpandedBinome < k_maxNValue Expression * x0 = editableOperand(0)->editableOperand(0); Expression * x1 = editableOperand(0)->editableOperand(1); Addition * a = new Addition(); for (int i = 0; i <= clippedN; i++) { Rational * r = new Rational(static_cast(BinomialCoefficient::compute(static_cast(i), static_cast(clippedN)))); Power * p0 = new Power(x0->clone(), new Rational(i), false); Power * p1 = new Power(x1->clone(), new Rational(clippedN-i), false); const Expression * operands[3] = {r, p0, p1}; Multiplication * m = new Multiplication(operands, 3, false); p0->shallowReduce(context, angleUnit); p1->shallowReduce(context, angleUnit); a->addOperand(m); m->shallowReduce(context, angleUnit); } if (nr->sign() == Sign::Negative) { nr->replaceWith(new Rational(-1), true); editableOperand(0)->replaceWith(a, true)->shallowReduce(context, angleUnit); return shallowReduce(context, angleUnit); } else { return replaceWith(a, true)->shallowReduce(context, angleUnit); } } #endif return this; } bool Power::parentIsALogarithmOfSameBase() const { if (parent()->type() == Type::Logarithm && parent()->operand(0) == this) { // parent = log(10^x) if (parent()->numberOfOperands() == 1) { if (operand(0)->type() == Type::Rational && static_cast(operand(0))->isTen()) { return true; } return false; } // parent = log(x^y,x) if (operand(0)->isIdenticalTo(parent()->operand(1))) { return true; } } // parent = ln(e^x) if (parent()->type() == Type::NaperianLogarithm && parent()->operand(0) == this && operand(0)->type() == Type::Symbol && static_cast(operand(0))->name() == Ion::Charset::Exponential) { return true; } return false; } Expression * Power::simplifyPowerPower(Power * p, Expression * e, Context& context, AngleUnit angleUnit) { Expression * p0 = p->editableOperand(0); Expression * p1 = p->editableOperand(1); p->detachOperands(); Multiplication * m = new Multiplication(p1, e, false); replaceOperand(e, m, false); replaceOperand(p, p0, true); m->shallowReduce(context, angleUnit); return shallowReduce(context, angleUnit); } Expression * Power::simplifyPowerMultiplication(Multiplication * m, Expression * r, Context& context, AngleUnit angleUnit) { for (int index = 0; index < m->numberOfOperands(); index++) { Expression * factor = m->editableOperand(index); Power * p = new Power(factor, r, true); // We copy r and factor to avoid inheritance issues m->replaceOperand(factor, p, true); p->shallowReduce(context, angleUnit); } detachOperand(m); return replaceWith(m, true)->shallowReduce(context, angleUnit); // delete r } Expression * Power::simplifyRationalRationalPower(Expression * result, Rational * a, Rational * b, Context& context, AngleUnit angleUnit) { if (b->denominator().isOne()) { Rational r = Rational::Power(*a, b->numerator()); return result->replaceWith(new Rational(r),true); } Expression * n = nullptr; Expression * d = nullptr; if (b->sign() == Sign::Negative) { b->setSign(Sign::Positive); n = CreateSimplifiedIntegerRationalPower(a->denominator(), b, false, context, angleUnit); d = CreateSimplifiedIntegerRationalPower(a->numerator(), b, true, context, angleUnit); } else { n = CreateSimplifiedIntegerRationalPower(a->numerator(), b, false, context, angleUnit); d = CreateSimplifiedIntegerRationalPower(a->denominator(), b, true, context, angleUnit); } Multiplication * m = new Multiplication(n, d, false); result->replaceWith(m, true); return m->shallowReduce(context, angleUnit); } Expression * Power::CreateSimplifiedIntegerRationalPower(Integer i, Rational * r, bool isDenominator, Context & context, AngleUnit angleUnit) { assert(!i.isZero()); assert(r->sign() == Sign::Positive); if (i.isOne()) { return new Rational(1); } Integer absI = i; absI.setNegative(false); Integer factors[Arithmetic::k_maxNumberOfPrimeFactors]; Integer coefficients[Arithmetic::k_maxNumberOfPrimeFactors]; Arithmetic::PrimeFactorization(&i, factors, coefficients, Arithmetic::k_maxNumberOfPrimeFactors); if (coefficients[0].isMinusOne()) { /* We could not break i in prime factor (either it might take too many * factors or too much time). */ r->setSign(isDenominator ? Sign::Negative : Sign::Positive); return new Power(new Rational(i), r->clone(), false); } Integer r1(1); Integer r2(1); int index = 0; while (!coefficients[index].isZero() && index < Arithmetic::k_maxNumberOfPrimeFactors) { Integer n = Integer::Multiplication(coefficients[index], r->numerator()); IntegerDivision div = Integer::Division(n, r->denominator()); r1 = Integer::Multiplication(r1, Integer::Power(factors[index], div.quotient)); r2 = Integer::Multiplication(r2, Integer::Power(factors[index], div.remainder)); index++; } Rational * p1 = new Rational(r2); Integer one = isDenominator ? Integer(-1) : Integer(1); Rational * p2 = new Rational(one, r->denominator()); Power * p = new Power(p1, p2, false); if (r1.isEqualTo(Integer(1)) && !i.isNegative()) { return p; } Rational * r3 = isDenominator ? new Rational(Integer(1), r1) : new Rational(r1); Multiplication * m = new Multiplication(r3, p, false); if (r2.isOne()) { m->removeOperand(p); } if (i.isNegative()) { Expression * nthRootOfUnity = CreateNthRootOfUnity(*r); m->addOperand(nthRootOfUnity); nthRootOfUnity->shallowReduce(context, angleUnit); } m->sortOperands(SimplificationOrder, false); return m; } Expression * Power::CreateNthRootOfUnity(const Rational r) { const Symbol * exp = new Symbol(Ion::Charset::Exponential); const Symbol * iComplex = new Symbol(Ion::Charset::IComplex); const Symbol * pi = new Symbol(Ion::Charset::SmallPi); const Expression * multExpOperands[3] = {iComplex, pi, new Rational(r)}; Multiplication * mExp = new Multiplication(multExpOperands, 3, false); mExp->sortOperands(SimplificationOrder, false); return new Power(exp, mExp, false); #if 0 const Symbol * iComplex = new Symbol(Ion::Charset::IComplex); const Symbol * pi = new Symbol(Ion::Charset::SmallPi); Expression * op = new Multiplication(pi, r->clone(), false); Cosine * cos = new Cosine(op, false); op = op->shallowReduce(context, angleUnit); Sine * sin = new Sine(op, true); Expression * m = new Multiplication(iComplex, sin, false); sin->shallowReduce(context, angleUnit); Expression * a = new Addition(cos, m, false); cos->shallowReduce(context, angleUnit); const Expression * multExpOperands[3] = {pi, r->clone()}; #endif } Expression * Power::shallowBeautify(Context& context, AngleUnit angleUnit) { // X^-y -> 1/(X->shallowBeautify)^y if (operand(1)->sign() == Sign::Negative) { Expression * p = cloneDenominator(context, angleUnit); Division * d = new Division(new Rational(1), p, false); p->shallowReduce(context, angleUnit); replaceWith(d, true); return d->shallowBeautify(context, angleUnit); } if (operand(1)->type() == Type::Rational && static_cast(operand(1))->numerator().isOne()) { Integer index = static_cast(operand(1))->denominator(); if (index.isEqualTo(Integer(2))) { const Expression * sqrtOperand[1] = {operand(0)}; SquareRoot * sqr = new SquareRoot(sqrtOperand, true); return replaceWith(sqr, true); } const Expression * rootOperand[2] = {operand(0)->clone(), new Rational(index)}; NthRoot * nr = new NthRoot(rootOperand, false); return replaceWith(nr, true); } // +(a,b)^c ->(+(a,b))^c if (operand(0)->type() == Type::Addition || operand(0)->type() == Type::Multiplication) { const Expression * o[1] = {operand(0)}; Parenthesis * p = new Parenthesis(o, true); replaceOperand(operand(0), p, true); } return this; } Expression * Power::cloneDenominator(Context & context, AngleUnit angleUnit) const { if (operand(1)->sign() == Sign::Negative) { Expression * denominator = clone(); Expression * newExponent = denominator->editableOperand(1)->setSign(Sign::Positive, context, angleUnit); if (newExponent->type() == Type::Rational && static_cast(newExponent)->isOne()) { delete denominator; return operand(0)->clone(); } return denominator; } return nullptr; } bool Power::TermIsARationalSquareRootOrRational(const Expression * e) { if (e->type() == Type::Rational) { return true; } if (e->type() == Type::Power && e->operand(0)->type() == Type::Rational && e->operand(1)->type() == Type::Rational && static_cast(e->operand(1))->isHalf()) { return true; } if (e->type() == Type::Multiplication && e->numberOfOperands() == 2 && e->operand(0)->type() == Type::Rational && e->operand(1)->type() == Type::Power && e->operand(1)->operand(0)->type() == Type::Rational && e->operand(1)->operand(1)->type() == Type::Rational && static_cast(e->operand(1)->operand(1))->isHalf()) { return true; } return false; } const Rational * Power::RadicandInExpression(const Expression * e) { if (e->type() == Type::Rational) { return nullptr; } else if (e->type() == Type::Power) { assert(e->type() == Type::Power); assert(e->operand(0)->type() == Type::Rational); return static_cast(e->operand(0)); } else { assert(e->type() == Type::Multiplication); assert(e->operand(1)->type() == Type::Power); assert(e->operand(1)->operand(0)->type() == Type::Rational); return static_cast(e->operand(1)->operand(0)); } } const Rational * Power::RationalFactorInExpression(const Expression * e) { if (e->type() == Type::Rational) { return static_cast(e); } else if (e->type() == Type::Power) { return nullptr; } else { assert(e->type() == Type::Multiplication); assert(e->operand(0)->type() == Type::Rational); return static_cast(e->operand(0)); } } Expression * Power::removeSquareRootsFromDenominator(Context & context, AngleUnit angleUnit) { Expression * result = nullptr; if (operand(0)->type() == Type::Rational && operand(1)->type() == Type::Rational && (static_cast(operand(1))->isHalf() || static_cast(operand(1))->isMinusHalf())) { /* We're considering a term of the form sqrt(p/q) (or 1/sqrt(p/q)), with * p and q integers. * We'll turn those into sqrt(p*q)/q (or sqrt(p*q)/p) . */ Integer p = static_cast(operand(0))->numerator(); assert(!p.isZero()); // We eliminated case of form 0^(-1/2) at first step of shallowReduce Integer q = static_cast(operand(0))->denominator(); // We do nothing for terms of the form sqrt(p) if (!q.isOne() || static_cast(operand(1))->isMinusHalf()) { Power * sqrt = new Power(new Rational(Integer::Multiplication(p, q)), new Rational(1, 2), false); if (static_cast(operand(1))->isHalf()) { result = new Multiplication(new Rational(Integer(1), q), sqrt, false); } else { result = new Multiplication(new Rational(Integer(1), p), sqrt, false); // We use here the assertion that p != 0 } sqrt->shallowReduce(context, angleUnit); } } else if (operand(1)->type() == Type::Rational && static_cast(operand(1))->isMinusOne() && operand(0)->type() == Type::Addition && operand(0)->numberOfOperands() == 2 && TermIsARationalSquareRootOrRational(operand(0)->operand(0)) && TermIsARationalSquareRootOrRational(operand(0)->operand(1))) { /* We're considering a term of the form * * 1/(n1/d1*sqrt(p1/q1) + n2/d2*sqrt(p2/q2)) * * and we want to turn it into * * n1*q2*d1*d2^2*sqrt(p1*q1) - n2*q1*d2*d1^2*sqrt(p2*q2) * ------------------------------------------------------- * n1^2*d2^2*p1*q2 - n2^2*d1^2*p2*q1 */ const Rational * f1 = RationalFactorInExpression(operand(0)->operand(0)); const Rational * f2 = RationalFactorInExpression(operand(0)->operand(1)); const Rational * r1 = RadicandInExpression(operand(0)->operand(0)); const Rational * r2 = RadicandInExpression(operand(0)->operand(1)); Integer n1 = (f1 ? f1->numerator() : Integer(1)); Integer d1 = (f1 ? f1->denominator() : Integer(1)); Integer p1 = (r1 ? r1->numerator() : Integer(1)); Integer q1 = (r1 ? r1->denominator() : Integer(1)); Integer n2 = (f2 ? f2->numerator() : Integer(1)); Integer d2 = (f2 ? f2->denominator() : Integer(1)); Integer p2 = (r2 ? r2->numerator() : Integer(1)); Integer q2 = (r2 ? r2->denominator() : Integer(1)); // Compute the denominator = n1^2*d2^2*p1*q2 - n2^2*d1^2*p2*q1 Integer denominator = Integer::Subtraction( Integer::Multiplication( Integer::Multiplication( Integer::Power(n1, Integer(2)), Integer::Power(d2, Integer(2))), Integer::Multiplication(p1, q2)), Integer::Multiplication( Integer::Multiplication( Integer::Power(n2, Integer(2)), Integer::Power(d1, Integer(2))), Integer::Multiplication(p2, q1))); // Compute the numerator Power * sqrt1 = new Power(new Rational(Integer::Multiplication(p1, q1)), new Rational(1, 2), false); Power * sqrt2 = new Power(new Rational(Integer::Multiplication(p2, q2)), new Rational(1, 2), false); Integer factor1 = Integer::Multiplication( Integer::Multiplication(n1, d1), Integer::Multiplication(Integer::Power(d2, Integer(2)), q2)); Multiplication * m1 = new Multiplication(new Rational(factor1), sqrt1, false); Integer factor2 = Integer::Multiplication( Integer::Multiplication(n2, d2), Integer::Multiplication(Integer::Power(d1, Integer(2)), q1)); Multiplication * m2 = new Multiplication(new Rational(factor2), sqrt2, false); Subtraction * numerator = nullptr; if (denominator.isNegative()) { numerator = new Subtraction(m2, m1, false); denominator.setNegative(false); } else { numerator = new Subtraction(m1, m2, false); } result = new Multiplication(numerator, new Rational(Integer(1), denominator), false); numerator->deepReduce(context, angleUnit); } if (result) { replaceWith(result, true); result = result->shallowReduce(context, angleUnit); } return result; } bool Power::isNthRootOfUnity() const { if (operand(0)->type() != Type::Symbol || static_cast(operand(0))->name() != Ion::Charset::Exponential) { return false; } if (operand(1)->type() != Type::Multiplication) { return false; } if (operand(1)->numberOfOperands() < 2 || operand(1)->numberOfOperands() > 3) { return false; } const Expression * i = operand(1)->operand(operand(1)->numberOfOperands()-1); if (i->type() != Type::Symbol || static_cast(i)->name() != Ion::Charset::IComplex) { return false; } const Expression * pi = operand(1)->operand(operand(1)->numberOfOperands()-2); if (pi->type() != Type::Symbol || static_cast(pi)->name() != Ion::Charset::SmallPi) { return false; } if (numberOfOperands() == 2) { return true; } if (operand(1)->operand(0)->type() == Type::Rational) { return true; } return false; } bool Power::RationalExponentShouldNotBeReduced(const Rational * b, const Rational * r) { if (r->isMinusOne()) { return false; } /* We check that the simplification does not involve too complex power of * integers (ie 3^999, 120232323232^50) that would take too much time to * compute: * - we cap the exponent at k_maxExactPowerMatrix * - we cap the resulting power at DBL_MAX * The complexity of computing a power of rational is mainly due to computing * the GCD of the resulting numerator and denominator. Euclide algorithm's * complexity is apportionned to the number of decimal digits in the smallest * integer. */ Integer maxIntegerExponent = r->numerator(); maxIntegerExponent.setNegative(false); if (Integer::NaturalOrder(maxIntegerExponent, Integer(k_maxExactPowerMatrix)) > 0) { return true; } double index = maxIntegerExponent.approximate(); double powerNumerator = std::pow(std::fabs(b->numerator().approximate()), index); double powerDenominator = std::pow(std::fabs(b->denominator().approximate()), index); if (std::isnan(powerNumerator) || std::isnan(powerDenominator) || std::isinf(powerNumerator) || std::isinf(powerDenominator)) { return true; } return false; } template std::complex Power::compute(std::complex, std::complex); template std::complex Power::compute(std::complex, std::complex); }