sine.cpp
1.58 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <poincare/sine.h>
#include <poincare/trigonometry.h>
#include <poincare/hyperbolic_sine.h>
#include <poincare/complex.h>
#include <poincare/multiplication.h>
#include <poincare/symbol.h>
#include <poincare/simplification_engine.h>
#include <ion.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type Sine::type() const {
return Expression::Type::Sine;
}
Expression * Sine::clone() const {
Sine * a = new Sine(m_operands, true);
return a;
}
Expression * Sine::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
Expression * op = editableOperand(0);
if (op->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
return Trigonometry::shallowReduceDirectFunction(this, context, angleUnit);
}
template<typename T>
Complex<T> Sine::computeOnComplex(const Complex<T> c, AngleUnit angleUnit) {
if (c.b() == 0) {
T input = c.a();
if (angleUnit == AngleUnit::Degree) {
input *= M_PI/180;
}
T result = std::sin(input);
/* Cheat: see comment in cosine.cpp
* We cheat to avoid returning sin(Pi) = epsilon */
if (input != 0 && std::fabs(result/input) <= epsilon<T>()) {
return Complex<T>::Float(0);
}
return Complex<T>::Float(result);
}
Complex<T> arg = Complex<T>::Cartesian(-c.b(), c.a());
Complex<T> sinh = HyperbolicSine::computeOnComplex(arg, angleUnit);
return Multiplication::compute(Complex<T>::Cartesian(0, -1), sinh);
}
}