sine.cpp 1.58 KB
#include <poincare/sine.h>
#include <poincare/trigonometry.h>
#include <poincare/hyperbolic_sine.h>
#include <poincare/complex.h>
#include <poincare/multiplication.h>
#include <poincare/symbol.h>
#include <poincare/simplification_engine.h>
#include <ion.h>
extern "C" {
#include <assert.h>
}
#include <cmath>

namespace Poincare {

Expression::Type Sine::type() const {
  return Expression::Type::Sine;
}

Expression * Sine::clone() const {
  Sine * a = new Sine(m_operands, true);
  return a;
}

Expression * Sine::shallowReduce(Context& context, AngleUnit angleUnit) {
  Expression * e = Expression::shallowReduce(context, angleUnit);
  if (e != this) {
    return e;
  }
#if MATRIX_EXACT_REDUCING
  Expression * op = editableOperand(0);
  if (op->type() == Type::Matrix) {
    return SimplificationEngine::map(this, context, angleUnit);
  }
#endif
  return Trigonometry::shallowReduceDirectFunction(this, context, angleUnit);
}

template<typename T>
Complex<T> Sine::computeOnComplex(const Complex<T> c, AngleUnit angleUnit) {
  if (c.b() == 0) {
    T input = c.a();
    if (angleUnit == AngleUnit::Degree) {
      input *= M_PI/180;
    }
    T result = std::sin(input);
    /* Cheat: see comment in cosine.cpp
     * We cheat to avoid returning sin(Pi) = epsilon */
    if (input !=  0 && std::fabs(result/input) <= epsilon<T>()) {
      return Complex<T>::Float(0);
    }
    return Complex<T>::Float(result);
  }
  Complex<T> arg = Complex<T>::Cartesian(-c.b(), c.a());
  Complex<T> sinh = HyperbolicSine::computeOnComplex(arg, angleUnit);
  return Multiplication::compute(Complex<T>::Cartesian(0, -1), sinh);
}

}