#include #include #include #include #include #include #include #include extern "C" { #include } #include namespace Poincare { Expression::Type Sine::type() const { return Expression::Type::Sine; } Expression * Sine::clone() const { Sine * a = new Sine(m_operands, true); return a; } Expression * Sine::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } #if MATRIX_EXACT_REDUCING Expression * op = editableOperand(0); if (op->type() == Type::Matrix) { return SimplificationEngine::map(this, context, angleUnit); } #endif return Trigonometry::shallowReduceDirectFunction(this, context, angleUnit); } template Complex Sine::computeOnComplex(const Complex c, AngleUnit angleUnit) { if (c.b() == 0) { T input = c.a(); if (angleUnit == AngleUnit::Degree) { input *= M_PI/180; } T result = std::sin(input); /* Cheat: see comment in cosine.cpp * We cheat to avoid returning sin(Pi) = epsilon */ if (input != 0 && std::fabs(result/input) <= epsilon()) { return Complex::Float(0); } return Complex::Float(result); } Complex arg = Complex::Cartesian(-c.b(), c.a()); Complex sinh = HyperbolicSine::computeOnComplex(arg, angleUnit); return Multiplication::compute(Complex::Cartesian(0, -1), sinh); } }