gausspol.h 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
/* -*- mode:C++ ; compile-command: "g++ -I.. -g -c gausspol.cc" -*- */
/*
 *  Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef _GIAC_GAUSSPOL_H_
#define _GIAC_GAUSSPOL_H_
#include "first.h"
#include "poly.h"
#include "gen.h"
#ifdef HAVE_PTHREAD_H
#include <pthread.h>
#endif

#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC

#ifdef USE_GMP_REPLACEMENTS
#undef HAVE_GMPXX_H
#undef HAVE_LIBMPFR
#endif

  extern const int primes[100] ;

  class nfactor {
  public:
    gen fact;
    int mult;
    nfactor():fact(1),mult(0) {}
    nfactor(const nfactor &n) : fact(n.fact),mult(n.mult) {}
    nfactor(const gen & n, int m) : fact(n),mult(m) {}
  };
  std::vector<nfactor> trivial_n_factor(gen &n);
  vecteur cyclotomic(int n);

  // gen pow(const gen & n,int k);
  typedef std::vector< monomial<gen> > monomial_v;
  typedef tensor<gen> polynome;

  // function on polynomials
  polynome gen2polynome(const gen & e,int dim);
  // check type of coefficients
  int coefftype(const polynome & p,gen & coefft);
  // remove MODulo coefficients
  void unmodularize(const polynome & p,polynome & res);
  polynome unmodularize(const polynome & p);
  void modularize(polynome & d,const gen & m);
  // remove EXT, also checks that pmin is the min poly
  bool unext(const polynome & p,const gen & pmin,polynome & res);
  bool ext(polynome & res,const gen & pmin);
  void ext(const polynome & p,const gen & pmin,polynome & res);
  // arithmetic
  bool is_one(const polynome & p);
  bool operator < (const polynome & f,const polynome & g);
  bool operator < (const facteur<polynome> & f,const facteur<polynome> & g);
  polynome firstcoeff(const polynome & p);
  void void Add_gen ( std::vector< monomial<gen> >::const_iterator & a,
		 std::vector< monomial<gen> >::const_iterator & a_end,
		 std::vector< monomial<gen> >::const_iterator & b,
		 std::vector< monomial<gen> >::const_iterator & b_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_m &, const index_m &)) ; ( std::vector< monomial<gen> >::const_iterator & a,
		 std::vector< monomial<gen> >::const_iterator & a_end,
		 std::vector< monomial<gen> >::const_iterator & b,
		 std::vector< monomial<gen> >::const_iterator & b_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_m &, const index_m &)) void Add_gen ( std::vector< monomial<gen> >::const_iterator & a,
		 std::vector< monomial<gen> >::const_iterator & a_end,
		 std::vector< monomial<gen> >::const_iterator & b,
		 std::vector< monomial<gen> >::const_iterator & b_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_m &, const index_m &)) ;
  polynome operator + (const polynome & th,const polynome & other);
  void void Sub_gen ( std::vector< monomial<gen> >::const_iterator & a,
		 std::vector< monomial<gen> >::const_iterator & a_end,
		 std::vector< monomial<gen> >::const_iterator & b,
		 std::vector< monomial<gen> >::const_iterator & b_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_m &, const index_m &)) ; ( std::vector< monomial<gen> >::const_iterator & a,
		 std::vector< monomial<gen> >::const_iterator & a_end,
		 std::vector< monomial<gen> >::const_iterator & b,
		 std::vector< monomial<gen> >::const_iterator & b_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_m &, const index_m &)) void Sub_gen ( std::vector< monomial<gen> >::const_iterator & a,
		 std::vector< monomial<gen> >::const_iterator & a_end,
		 std::vector< monomial<gen> >::const_iterator & b,
		 std::vector< monomial<gen> >::const_iterator & b_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_m &, const index_m &)) ;
  polynome operator - (const polynome & th,const polynome & other);
  // Fast multiplication using hash maps, might also use an int for reduction
  // but there is no garantee that res is smod-ed modulo reduce
  // Use reduce=0 for non modular
  void mulpoly (const polynome & th, const polynome & other,polynome & res,const gen & reduce);
  polynome operator * (const polynome & th, const polynome & other) ;
  polynome & operator *= (polynome & th, const polynome & other) ;
  void void Mul_gen ( std::vector< monomial<gen> >::const_iterator & ita,
		 std::vector< monomial<gen> >::const_iterator & ita_end,
		 std::vector< monomial<gen> >::const_iterator & itb,
		 std::vector< monomial<gen> >::const_iterator & itb_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_t &, const index_t &),
		 const std::pointer_to_binary_function < const monomial<gen> &, const monomial<gen> &, bool> m_is_greater
		 ) ; ( std::vector< monomial<gen> >::const_iterator & ita,
		 std::vector< monomial<gen> >::const_iterator & ita_end,
		 std::vector< monomial<gen> >::const_iterator & itb,
		 std::vector< monomial<gen> >::const_iterator & itb_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_t &, const index_t &),
		 const std::pointer_to_binary_function < const monomial<gen> &, const monomial<gen> &, bool> m_is_greater
		 ) void Mul_gen ( std::vector< monomial<gen> >::const_iterator & ita,
		 std::vector< monomial<gen> >::const_iterator & ita_end,
		 std::vector< monomial<gen> >::const_iterator & itb,
		 std::vector< monomial<gen> >::const_iterator & itb_end,
		 std::vector< monomial<gen> > & new_coord,
		 bool (* is_strictly_greater)( const index_t &, const index_t &),
		 const std::pointer_to_binary_function < const monomial<gen> &, const monomial<gen> &, bool> m_is_greater
		 ) ;
  void mulpoly(const polynome & th,const gen & fact,polynome & res);
  polynome operator * (const polynome & th, const gen & fact) ;
  inline polynome operator * (const gen & fact, const polynome & th){ return th*fact; }
  // a*b+c*d
  gen foisplus(const polynome & a,const polynome & b,const polynome & c,const polynome & d);
  gen foisplus(const gen & a,const gen & b,const gen & c,const gen & d);
  polynome operator - (const polynome & th) ;
  polynome operator / (const polynome & th,const polynome & other);
  polynome operator / (const polynome & th,const gen & fact );
  polynome operator % (const polynome & th,const polynome & other);
  polynome operator % (const polynome & th, const gen & modulo);
  polynome re(const polynome & th);
  polynome im(const polynome & th);
  polynome conj(const polynome & th);
  polynome poly1_2_polynome(const vecteur & v, int dimension);
  void polynome2poly1(const polynome & p,int var,vecteur & v);
  vecteur polynome12poly1(const polynome & p);
  int inner_POLYdim(const vecteur & v);
  vecteur polynome2poly1(const polynome & p,int var);
  vecteur polynome2poly1(const polynome & p); // for algebraic ext.
  gen polynome2poly1(const gen & e,int var);
  void poly12polynome(const vecteur & v, int var,polynome & p,int dimension=0);
  polynome poly12polynome(const vecteur & v,int var,int dimension=0);
  polynome poly12polynome(const vecteur & v);
  gen untrunc(const gen & e,int degree,int dimension);
  gen vecteur2polynome(const vecteur & v,int dimension);
  bool bool divrem1(const polynome & a,const polynome & b,polynome & quo,polynome & r,int exactquo=0,bool allowrational=false) ;(const polynome & a,const polynome & b,polynome & quo,polynome & r,int exactquo=0,bool allowrational=false) bool divrem1(const polynome & a,const polynome & b,polynome & quo,polynome & r,int exactquo=0,bool allowrational=false) ;
  bool divrem (const polynome & th, const polynome & other, polynome & quo, polynome & rem, bool allowrational = false );
  bool divremmod (const polynome & th,const polynome & other, const gen & modulo,polynome & quo, polynome & rem);
  bool exactquotient(const polynome & a,const polynome & b,polynome & quo,bool allowrational=true);
  bool powpoly (const polynome & th, int u,polynome & res);
  polynome pow(const polynome & th,int n);
  bool is_positive(const polynome & p);
  polynome pow(const polynome & p,const gen & n);
  polynome powmod(const polynome &p,int n,const gen & modulo);
  polynome gcd(const polynome & p,const polynome & q);
  void gcd(const polynome & p,const polynome & q,polynome & d);
  void lcmdeno(const polynome & p, gen & res);
  gen lcoeffn(const polynome & p);
  gen lcoeff1(const polynome & p);
  polynome ichinrem(const polynome &p,const polynome & q,const gen & pmod,const gen & qmod);
  // set i to i+(j-i)*B mod A, inplace operation
  void ichrem_smod_inplace(mpz_t * Az,mpz_t * Bz,mpz_t * iz,mpz_t * tmpz,gen & i,const gen & j);
  polynome resultant(const polynome & p,const polynome & q);
  bool resultant_sylvester(const polynome &p,const polynome &q,matrice & S,polynome & res);
  bool resultant_sylvester(const polynome &p,const polynome &q,vecteur &pv,vecteur &qv,matrice & S,gen & determinant);
  polynome lgcd(const polynome & p);
  gen ppz(polynome & p,bool divide=true);
  void lgcdmod(const polynome & p,const gen & modulo,polynome & pgcd);
  polynome gcdmod(const polynome &p,const polynome & q,const gen & modulo);
  polynome content1mod(const polynome & p,const gen & modulo,bool setdim=true);
  void contentgcdmod(const polynome &p, const polynome & q, const gen & modulo, polynome & cont,polynome & prim);
  polynome pp1mod(const polynome & p,const gen & modulo);
  // modular gcd via PSR, used when not enough eval points available
  // a and b must be primitive and will be scratched
  void psrgcdmod(polynome & a,polynome & b,const gen & modulo,polynome & prim);
  // Find non zeros coeffs of p, res contains the positions of non-0 coeffs
  int find_nonzero(const polynome & p,index_t & res);
  polynome pzadic(const polynome &p,const gen & n);
  bool gcd_modular_algo(polynome &p,polynome &q, polynome &d,bool compute_cof);
  bool listmax(const polynome &p,gen & n );
  bool gcdheu(const polynome &p,const polynome &q, polynome & p_simp, gen & np_simp, polynome & q_simp, gen & nq_simp, polynome & d, gen & d_content ,bool skip_test=false,bool compute_cofactors=true);
  polynome gcdpsr(const polynome &p,const polynome &q,int gcddeg=0);
  void simplify(polynome & p,polynome & q,polynome & p_gcd);
  polynome simplify(polynome &p,polynome &q);
  void egcdlgcd(const polynome &p1, const polynome & p2, polynome & u,polynome & v,polynome & d);
  void egcdpsr(const polynome &p1, const polynome & p2, polynome & u,polynome & v,polynome & d);
  void egcd(const polynome &p1, const polynome & p2, polynome & u,polynome & v,polynome & d);
  // Input a,b,c,u,v,d such that a*u+b*v=d, 
  // Output u,v,C such that a*u+b*v=c*C
  void egcdtoabcuv(const tensor<gen> & a,const tensor<gen> &b, const tensor<gen> &c, tensor<gen> &u,tensor<gen> &v, tensor<gen> & d, tensor<gen> & C);

  bool findabcdelta(const polynome & p,polynome & a,polynome &b,polynome & c,polynome & delta);
  bool findde(const polynome & p,polynome & d,polynome &e);
  factorization sqff(const polynome &p );
  // factorize a square-free univariate polynomial
  bool sqfffactor(const polynome &p, vectpoly & v,bool with_sqrt,bool test_composite,bool complexmode);
  bool sqff_evident(const polynome & p,factorization & f,bool withsqrt,bool complexmode);
  // factorization over Z[i]
  bool cfactor(const polynome & p, gen & an,factorization & f,bool withsqrt,gen & extra_div);
  // add a dimension in front of pcur for algebraic extension variable
  bool algext_convert(const polynome & pcur,const gen & e,polynome & p_y);
  // convert minimal polynomial of algebraic extension
  void algext_vmin2pmin(const vecteur & v_mini,polynome & p_mini);

  // factorization over an algebraic extension
  // the main variable of G is the algebraic extension variable
  // the minimal polynomial of this variable is p_mini
  // G is assumed to be square-free
  // See algorithm 3.6.4 in Henri Cohen book starting at step 3
  bool algfactor(const polynome & G,const polynome & p_mini,int & k,factorization & f,bool complexmode,gen & extra_div,polynome & Gtry);
  // sqff factorization over a finite field
  factorization squarefree_fp(const polynome & p,unsigned n,unsigned exposant);
  // univariate factorization over a finite field, once sqff
  bool sqff_ffield_factor(const factorization & sqff_f,int n,environment * env,factorization & f);
  // p is primitive wrt the main var
  bool mod_factor(const polynome & p_orig,polynome & p_content,int n,factorization & f);

  // factorization over Z[e] where e is an algebraic extension
  bool ext_factor(const polynome &p,const gen & e,gen & an,polynome & p_content,factorization & f,bool complexmode,gen &extra_div);
  // factorization over Z[coeff_of_p]
  bool factor(const polynome &p,polynome & p_content,factorization & f,bool isprimitive,bool withsqrt,bool complexmode,const gen & divide_by_an,gen & extra_div);
  void unitarize(const polynome &pcur, polynome &unitaryp, polynome & an);
  polynome ununitarize(const polynome & unitaryp, const polynome & an);
  void partfrac(const polynome & num, const polynome & den, const std::vector< facteur< polynome > > & v , std::vector < pf <gen> > & pfde_VECT, polynome & ipnum, polynome & ipden, bool rational=true );
  pf<gen> intreduce_pf(const pf<gen> & p_cst, std::vector< pf<gen> > & intde_VECT ,bool residue=false);
  // Sturm sequences
  vecteur vector_of_polynome2vecteur(const vectpoly & v);
  vecteur sturm_seq(const polynome & p,polynome & cont);

  // prototype of factorization of univariate sqff unitary polynomial
  // provided e.g. by smodular
  bool factorunivsqff(const polynome & q,environment * env,vectpoly & v,int & ithprime,int debug,int modfactor_primes);
  // find linear factor only 
  int linearfind(const polynome & q,environment * env,polynome & qrem,vectpoly & v,int & ithprime);
  // prototype of modular 1-d gcd algorithm
  bool gcd_modular_algo1(polynome &p,polynome &q,polynome &d,bool compute_cof);
  polynome smod(const polynome & th, const gen & modulo);
  void smod(const polynome & th, const gen & modulo,polynome & res);
  bool gcdmod_dim1(const polynome &p,const polynome & q,const gen & modulo,polynome & d,polynome & pcof,polynome & qcof,bool compute_cof,bool & real);

  // evaluate p at v by replacing the last variables of p with values of v
  gen peval(const polynome & p,const vecteur & v,const gen &m,bool simplify_at_end=false,std::vector<int_unsigned> * pptr=0);
  int total_degree(const polynome & p);

  // build a multivariate poly
  // with normal coeff from a multivariate poly with multivariate poly coeffs
  polynome unsplitmultivarpoly(const polynome & p,int inner_dim);
  polynome splitmultivarpoly(const polynome & p,int inner_dim);
  polynome split(const polynome & p,int inner_dim);


  template <class U>
  bool convert_myint(const polynome & p,const index_t & deg,std::vector< T_unsigned<my_mpz,U> >  & v){
    typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    v.clear();
    v.reserve(itend-it);
    U u;
    my_mpz tmp;
    index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
    T_unsigned<my_mpz,U> gu;
    for (;it!=itend;++it){
      u=0;
      itit=it->index.begin();
      for (dit=ditbeg;dit!=ditend;++itit,++dit)
	u=u*unsigned(*dit)+unsigned(*itit);
      gu.u=u;
      if (it->value.type==_ZINT)
	mpz_set(gu.g.ptr,*it->value._ZINTptr);
      else {
	if (it->value.type!=_INT_)
	  return false;
	mpz_set_si(gu.g.ptr,it->value.val);
      }
      v.push_back(gu);
    }
    return true;
  }


#ifdef HAVE_GMPXX_H
  template <class U>
  bool convert_myint(const polynome & p,const index_t & deg,std::vector< T_unsigned<mpz_class,U> >  & v){
    typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    v.clear();
    v.reserve(itend-it);
    U u;
    index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
    for (;it!=itend;++it){
      u=0;
      itit=it->index.begin();
      for (dit=ditbeg;dit!=ditend;++itit,++dit)
	u=u*unsigned(*dit)+unsigned(*itit);
      T_unsigned<mpz_class,U> gu;
      gu.u=u;
      if (it->value.type==_ZINT){
	mpz_set(gu.g.get_mpz_t(),*it->value._ZINTptr);
      }
      else {
	if (it->value.type!=_INT_)
	  return false;
	gu.g=it->value.val;
      }
      v.push_back(gu);
    }
    return true;
  }
#endif

  template<class U> int coeff_type(const std::vector< T_unsigned<gen,U> > & p,unsigned & maxint){
    maxint=0;
    typename std::vector< T_unsigned<gen,U> >::const_iterator it=p.begin(),itend=p.end();
    if (it==itend)
      return -1;
    int t=it->g.type,tt;
    register int tmp;
    for (++it;it!=itend;++it){
      tt=it->g.type;
      if (tt!=t)
	return -1;
      if (!tt){
	if (it->g.val>0)
	  tmp=it->g.val;
	else
	  tmp=-it->g.val;
	if (maxint<tmp)
	  maxint=tmp;
      }
    }
    return t;
  }

  bool is_integer_poly(const polynome & p,bool intonly);

  template <class U>
  bool convert_double(const polynome & p,const index_t & deg,std::vector< T_unsigned<double,U> >  & v){
    typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    v.clear();
    v.reserve(itend-it);
    T_unsigned<double,U> gu;
    U u;
    index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
    for (;it!=itend;++it){
      u=0;
      itit=it->index.begin();
      for (dit=ditbeg;dit!=ditend;++itit,++dit)
	u=u*unsigned(*dit)+unsigned(*itit);
      gu.u=u;
      if (it->value.type!=_DOUBLE_)
	return false;
      gu.g=it->value._DOUBLE_val;
      v.push_back(gu);
    }
    return true;
  }

  template <class U>
  bool convert_int32(const polynome & p,const index_t & deg,std::vector< T_unsigned<int,U> > & v,int modulo=0){
    typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    v.clear();
    v.reserve(itend-it);
    U u;
    index_t::const_iterator itit,oldit,ititend,ditbeg=deg.begin(),ditend=deg.end(),dit;
    for (;it!=itend;++it){
      u=0;
      oldit=itit=it->index.begin();
      for (dit=ditbeg;dit!=ditend;++itit,++dit)
	u=u*unsigned(*dit)+unsigned(*itit);
      if (it->value.type==_INT_){
	if (modulo)
	  v.push_back(T_unsigned<int,U>(it->value.val % modulo,u));
	else
	  v.push_back(T_unsigned<int,U>(it->value.val,u));
      }
      else {
	if (modulo && it->value.type==_ZINT)
	  v.push_back(T_unsigned<int,U>(smod(it->value,modulo).val,u));
	else
	  return false;
      }
      int nterms=*(itit-1);
      if (nterms<=1 || nterms>=itend-it)
	continue;
      itit = (it+nterms)->index.begin();
      ititend = itit + p.dim-1;
      if (*(ititend))
	continue;
      for (;itit!=ititend;++oldit,++itit){
	if (*itit!=*oldit)
	  break;
      }
      if (itit!=ititend)
	continue;
      // for dense poly, make all terms with the same x1..xn-1 powers
      for (;nterms;--nterms){
	++it;
	--u;
	if (it->value.type==_INT_){
	  if (modulo)
	    v.push_back(T_unsigned<int,U>(it->value.val % modulo,u));
	  else
	    v.push_back(T_unsigned<int,U>(it->value.val,u));
	}
	else {
	  if (modulo && it->value.type==_ZINT)
	    v.push_back(T_unsigned<int,U>(smod(it->value,modulo).val,u));
	  else
	    return false;
	}
      }
    }
    return true;
  }

  template <class U>
  bool convert_int(const polynome & p,const index_t & deg,std::vector< T_unsigned<longlong,U> >  & v,longlong & maxp){
    typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    v.clear();
    v.reserve(itend-it);
    T_unsigned<longlong,U> gu;
    U u;
    maxp=0;
    longlong tmp;
    mpz_t tmpz;
    mpz_init(tmpz);
    index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
    for (;it!=itend;++it){
      u=0;
      itit=it->index.begin();
      for (dit=ditbeg;dit!=ditend;++itit,++dit)
	u=u*unsigned(*dit)+unsigned(*itit);
      gu.u=u;
      if (it->value.type==_INT_)
	gu.g=it->value.val;
      else {
	if (it->value.type!=_ZINT || mpz_sizeinbase(*it->value._ZINTptr,2)>62){
	  mpz_clear(tmpz);
	  return false;
	}
	mpz2longlong(it->value._ZINTptr,&tmpz,gu.g);
      }
      tmp=gu.g>0?gu.g:-gu.g;
      if (tmp>maxp)
	maxp=tmp;
      v.push_back(gu);
    }
    mpz_clear(tmpz);
    return true;
  }

#ifdef INT128
  template <class U>
  bool convert_int(const polynome & p,const index_t & deg,std::vector< T_unsigned<int128_t,U> >  & v,int128_t & maxp){
    typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    v.clear();
    v.reserve(itend-it);
    T_unsigned<int128_t,U> gu;
    U u;
    maxp=0;
    int128_t tmp;
    mpz_t tmpz;
    mpz_init(tmpz);
    index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
    for (;it!=itend;++it){
      u=0;
      itit=it->index.begin();
      for (dit=ditbeg;dit!=ditend;++itit,++dit)
	u=u*unsigned(*dit)+unsigned(*itit);
      gu.u=u;
      if (it->value.type==_INT_)
	gu.g=it->value.val;
      else {
	if (it->value.type!=_ZINT || mpz_sizeinbase(*it->value._ZINTptr,2)>124){
	  mpz_clear(tmpz);
	  return false;
	}
	mpz2int128(it->value._ZINTptr,&tmpz,gu.g);
      }
      tmp=gu.g>0?gu.g:-gu.g;
      if (tmp>maxp)
	maxp=tmp;
      v.push_back(gu);
    }
    mpz_clear(tmpz);
    return true;
  }
#endif

  template<class U> void convert_longlong(const std::vector< T_unsigned<gen,U> > & p,std::vector< T_unsigned<longlong,U> > & pd){
    typename std::vector< T_unsigned<gen,U> >::const_iterator it=p.begin(),itend=p.end();
    pd.reserve(itend-it);
    for (;it!=itend;++it)
      pd.push_back(T_unsigned<longlong,U>(it->g.val,it->u));
  }

  template<class T,class U> void convert_from(const std::vector< T_unsigned<T,U> > & p,std::vector< T_unsigned<gen,U> > & pd){
    typename std::vector< T_unsigned<T,U> >::const_iterator it=p.begin(),itend=p.end();
    pd.reserve(itend-it);
    for (;it!=itend;++it){
      if (it->g)
	pd.push_back(T_unsigned<gen,U>(gen(it->g),it->u));
    }
  }

  // mode=0: fill both, =1 fill the gen part, =2 fill the index_m part
  template<class T,class U>
  void convert_from(typename std::vector< T_unsigned<T,U> >::const_iterator it,typename std::vector< T_unsigned<T,U> >::const_iterator itend,const index_t & deg,typename std::vector< monomial<gen> >::iterator jt,int mode=0){
    if (mode==1){
      for (;it!=itend;++jt,++it){
	jt->value=gen(it->g);
      }
      return;
    }
    index_t::const_reverse_iterator ditbeg=deg.rbegin(),ditend=deg.rend(),dit;
    int pdim=int(deg.size());
    U u,prevu=0;
    int k;
    int count=0;
#if defined(GIAC_NO_OPTIMIZATIONS) || ((defined(VISUALC) || defined(__APPLE__)) && !defined(GIAC_VECTOR)) || defined __clang__ // || defined NSPIRE
    if (0){ count=0; }
#else
    if (pdim<=POLY_VARS){
      deg_t i[POLY_VARS+1];
      i[0]=2*pdim+1;
      deg_t * iitbeg=i+1,*iit,*iitback=i+pdim,*iitbackm1=iitback-1;
      for (iit=iitbeg;iit!=iitback;++iit)
	*iit=0;
      *iitback=0;
      for (--prevu;it!=itend;++it,++jt){
	u=it->u;
	if (prevu<=u+*iitback){
	  *iitback -= deg_t(prevu-u);
	  prevu=u;
	}
	else {
	  if (pdim>1 && (*iitbackm1)>0 && prevu<=u+*ditbeg+*iitback){
	    --(*iitbackm1);
	    *iitback += deg_t((u+(*ditbeg))-prevu);
	    prevu=u;
	  }
	  else 
	  {
	    prevu=u;
	    for (k=pdim,dit=ditbeg;dit!=ditend;++dit,--k){
	      // qr=div(u,*dit);
	      i[k]=u % (*dit); // qr.rem;
	      u= u / (*dit); // qr.quot;
	      count += pdim;
	    }
	  }
	}
	jt->index=i;
	if (mode)
	  continue;
	jt->value=gen(it->g);
	// p.coord.push_back(monomial<gen>(gen(it->g),i));
      }
    }
#endif
    else {
      index_t i(pdim);
      index_t::iterator iitbeg=i.begin(),iitback=i.end()-1,iitbackm1=iitback-1;
      for (--prevu;it!=itend;++it,++jt){
	u=it->u;
	if (prevu<=u+*iitback){
	  *iitback -= short(prevu-u);
	  prevu=u;
	}
	else {
	  if (pdim>1 && (*iitbackm1)>0 && prevu<=u+*ditbeg+*iitback){
	    --(*iitbackm1);
	    *iitback += short((u+(*ditbeg))-prevu);
	    prevu=u;
	    // cerr << "/" << u << ":" << i << endl;
	  }
	  else 
          {
	    prevu=u;
	    for (k=pdim-1,dit=ditbeg;dit!=ditend;++dit,--k){
	      // qr=div(u,*dit);
	      i[k]=u % (*dit); // qr.rem;
	      u= u / (*dit); // qr.quot;
	      count += pdim;
	      // i[k]=u % unsigned(*dit);
	      // u = u/unsigned(*dit);
	    }
	  }
	}
	jt->index=i;
	if (mode)
	  continue;
	jt->value=gen(it->g);
	// p.coord.push_back(monomial<gen>(gen(it->g),i));
      }
    }
    if (debug_infolevel>5)
      CERR << "Divisions: " << count << std::endl;
  }

  
  template<class T,class U>
  struct convert_t {
    typename std::vector< T_unsigned<T,U> >::const_iterator it,itend;
    const index_t * degptr;
    typename std::vector< monomial<gen> >::iterator jt;
    int mode;
  };

  template<class T,class U> 
  void * do_convert_from(void * ptr){
    convert_t<T,U> * argptr = (convert_t<T,U> *) ptr;
    convert_from<T,U>(argptr->it,argptr->itend,*argptr->degptr,argptr->jt,argptr->mode);
    return 0;
  }

  extern int threads;

  template<class T,class U>
  void convert_from(const std::vector< T_unsigned<T,U> > & v,const index_t & deg,polynome & p,bool threaded=false){
    typename std::vector< T_unsigned<T,U> >::const_iterator it=v.begin(),itend=v.end();
    p.dim=int(deg.size());
    // p.coord.clear(); p.coord.reserve(itend-it);
    p.coord=std::vector< monomial<gen> >(itend-it);
    std::vector< monomial<gen> >::iterator jt=p.coord.begin();
    int nthreads=threads;
    if (nthreads==1 || !threaded || p.dim>POLY_VARS){
      convert_from<T,U>(it,itend,deg,jt,0); 
      return;
    }
#if defined(HAVE_PTHREAD_H) && !defined(EMCC) // && !defined(__clang__)
    unsigned taille=itend-it;
    if (nthreads>1 
	&& int(taille)>nthreads*1000
	){
      pthread_t tab[nthreads];
      std::vector< convert_t<T,U> > arg(nthreads);
      for (int i=0;i<nthreads;i++){
	convert_t<T,U> tmp={it+i*(taille/nthreads),it+(i+1)*taille/nthreads,&deg,jt+i*(taille/nthreads),0};
	if (i==nthreads-1){
	  tmp.itend=itend;
	  convert_from<T,U>(tmp.it,tmp.itend,deg,tmp.jt,tmp.mode);
	}
	else {
	  arg[i]=tmp;
	  int res=pthread_create(&tab[i],(pthread_attr_t *) NULL,do_convert_from<T,U>,(void *) &arg[i]);
	  if (res)
	    convert_from<T,U>(tmp.it,tmp.itend,deg,tmp.jt,tmp.mode);
	}
      }
      for (int i=0;i<nthreads-1;++i){
	void * ptr;
	pthread_join(tab[i],&ptr);
      }
      return;
    } // end if (nthreads>1)
#endif
    convert_from<T,U>(it,itend,deg,jt,0); 
  }

#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC

#endif // _GIAC_GAUSSPOL_H_