6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
|
/* -*- mode:C++ ; compile-command: "g++ -I.. -g -c gausspol.cc" -*- */
/*
* Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _GIAC_GAUSSPOL_H_
#define _GIAC_GAUSSPOL_H_
#include "first.h"
#include "poly.h"
#include "gen.h"
#ifdef HAVE_PTHREAD_H
#include <pthread.h>
#endif
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
#ifdef USE_GMP_REPLACEMENTS
#undef HAVE_GMPXX_H
#undef HAVE_LIBMPFR
#endif
extern const int primes[100] ;
class nfactor {
public:
gen fact;
int mult;
nfactor():fact(1),mult(0) {}
nfactor(const nfactor &n) : fact(n.fact),mult(n.mult) {}
nfactor(const gen & n, int m) : fact(n),mult(m) {}
};
std::vector<nfactor> trivial_n_factor(gen &n);
vecteur cyclotomic(int n);
// gen pow(const gen & n,int k);
typedef std::vector< monomial<gen> > monomial_v;
typedef tensor<gen> polynome;
// function on polynomials
polynome gen2polynome(const gen & e,int dim);
// check type of coefficients
int coefftype(const polynome & p,gen & coefft);
// remove MODulo coefficients
void unmodularize(const polynome & p,polynome & res);
polynome unmodularize(const polynome & p);
void modularize(polynome & d,const gen & m);
// remove EXT, also checks that pmin is the min poly
bool unext(const polynome & p,const gen & pmin,polynome & res);
bool ext(polynome & res,const gen & pmin);
void ext(const polynome & p,const gen & pmin,polynome & res);
// arithmetic
bool is_one(const polynome & p);
bool operator < (const polynome & f,const polynome & g);
bool operator < (const facteur<polynome> & f,const facteur<polynome> & g);
polynome firstcoeff(const polynome & p);
void Add_gen ( std::vector< monomial<gen> >::const_iterator & a,
std::vector< monomial<gen> >::const_iterator & a_end,
std::vector< monomial<gen> >::const_iterator & b,
std::vector< monomial<gen> >::const_iterator & b_end,
std::vector< monomial<gen> > & new_coord,
bool (* is_strictly_greater)( const index_m &, const index_m &)) ;
polynome operator + (const polynome & th,const polynome & other);
void Sub_gen ( std::vector< monomial<gen> >::const_iterator & a,
std::vector< monomial<gen> >::const_iterator & a_end,
std::vector< monomial<gen> >::const_iterator & b,
std::vector< monomial<gen> >::const_iterator & b_end,
std::vector< monomial<gen> > & new_coord,
bool (* is_strictly_greater)( const index_m &, const index_m &)) ;
polynome operator - (const polynome & th,const polynome & other);
// Fast multiplication using hash maps, might also use an int for reduction
// but there is no garantee that res is smod-ed modulo reduce
// Use reduce=0 for non modular
void mulpoly (const polynome & th, const polynome & other,polynome & res,const gen & reduce);
polynome operator * (const polynome & th, const polynome & other) ;
polynome & operator *= (polynome & th, const polynome & other) ;
void Mul_gen ( std::vector< monomial<gen> >::const_iterator & ita,
std::vector< monomial<gen> >::const_iterator & ita_end,
std::vector< monomial<gen> >::const_iterator & itb,
std::vector< monomial<gen> >::const_iterator & itb_end,
std::vector< monomial<gen> > & new_coord,
bool (* is_strictly_greater)( const index_t &, const index_t &),
const std::pointer_to_binary_function < const monomial<gen> &, const monomial<gen> &, bool> m_is_greater
) ;
void mulpoly(const polynome & th,const gen & fact,polynome & res);
polynome operator * (const polynome & th, const gen & fact) ;
inline polynome operator * (const gen & fact, const polynome & th){ return th*fact; }
// a*b+c*d
gen foisplus(const polynome & a,const polynome & b,const polynome & c,const polynome & d);
gen foisplus(const gen & a,const gen & b,const gen & c,const gen & d);
polynome operator - (const polynome & th) ;
polynome operator / (const polynome & th,const polynome & other);
polynome operator / (const polynome & th,const gen & fact );
polynome operator % (const polynome & th,const polynome & other);
polynome operator % (const polynome & th, const gen & modulo);
polynome re(const polynome & th);
polynome im(const polynome & th);
polynome conj(const polynome & th);
polynome poly1_2_polynome(const vecteur & v, int dimension);
void polynome2poly1(const polynome & p,int var,vecteur & v);
vecteur polynome12poly1(const polynome & p);
int inner_POLYdim(const vecteur & v);
vecteur polynome2poly1(const polynome & p,int var);
vecteur polynome2poly1(const polynome & p); // for algebraic ext.
gen polynome2poly1(const gen & e,int var);
void poly12polynome(const vecteur & v, int var,polynome & p,int dimension=0);
polynome poly12polynome(const vecteur & v,int var,int dimension=0);
polynome poly12polynome(const vecteur & v);
gen untrunc(const gen & e,int degree,int dimension);
gen vecteur2polynome(const vecteur & v,int dimension);
bool bool divrem1(const polynome & a,const polynome & b,polynome & quo,polynome & r,int exactquo=0,bool allowrational=false) ;(const polynome & a,const polynome & b,polynome & quo,polynome & r,int exactquo=0,bool allowrational=false) bool divrem1(const polynome & a,const polynome & b,polynome & quo,polynome & r,int exactquo=0,bool allowrational=false) ;
bool divrem (const polynome & th, const polynome & other, polynome & quo, polynome & rem, bool allowrational = false );
bool divremmod (const polynome & th,const polynome & other, const gen & modulo,polynome & quo, polynome & rem);
bool exactquotient(const polynome & a,const polynome & b,polynome & quo,bool allowrational=true);
bool powpoly (const polynome & th, int u,polynome & res);
polynome pow(const polynome & th,int n);
bool is_positive(const polynome & p);
polynome pow(const polynome & p,const gen & n);
polynome powmod(const polynome &p,int n,const gen & modulo);
polynome gcd(const polynome & p,const polynome & q);
void gcd(const polynome & p,const polynome & q,polynome & d);
void lcmdeno(const polynome & p, gen & res);
gen lcoeffn(const polynome & p);
gen lcoeff1(const polynome & p);
polynome ichinrem(const polynome &p,const polynome & q,const gen & pmod,const gen & qmod);
// set i to i+(j-i)*B mod A, inplace operation
void ichrem_smod_inplace(mpz_t * Az,mpz_t * Bz,mpz_t * iz,mpz_t * tmpz,gen & i,const gen & j);
polynome resultant(const polynome & p,const polynome & q);
bool resultant_sylvester(const polynome &p,const polynome &q,matrice & S,polynome & res);
bool resultant_sylvester(const polynome &p,const polynome &q,vecteur &pv,vecteur &qv,matrice & S,gen & determinant);
polynome lgcd(const polynome & p);
gen ppz(polynome & p,bool divide=true);
void lgcdmod(const polynome & p,const gen & modulo,polynome & pgcd);
polynome gcdmod(const polynome &p,const polynome & q,const gen & modulo);
polynome content1mod(const polynome & p,const gen & modulo,bool setdim=true);
void contentgcdmod(const polynome &p, const polynome & q, const gen & modulo, polynome & cont,polynome & prim);
polynome pp1mod(const polynome & p,const gen & modulo);
// modular gcd via PSR, used when not enough eval points available
// a and b must be primitive and will be scratched
void psrgcdmod(polynome & a,polynome & b,const gen & modulo,polynome & prim);
// Find non zeros coeffs of p, res contains the positions of non-0 coeffs
int find_nonzero(const polynome & p,index_t & res);
polynome pzadic(const polynome &p,const gen & n);
bool gcd_modular_algo(polynome &p,polynome &q, polynome &d,bool compute_cof);
bool listmax(const polynome &p,gen & n );
bool gcdheu(const polynome &p,const polynome &q, polynome & p_simp, gen & np_simp, polynome & q_simp, gen & nq_simp, polynome & d, gen & d_content ,bool skip_test=false,bool compute_cofactors=true);
polynome gcdpsr(const polynome &p,const polynome &q,int gcddeg=0);
void simplify(polynome & p,polynome & q,polynome & p_gcd);
polynome simplify(polynome &p,polynome &q);
void egcdlgcd(const polynome &p1, const polynome & p2, polynome & u,polynome & v,polynome & d);
void egcdpsr(const polynome &p1, const polynome & p2, polynome & u,polynome & v,polynome & d);
void egcd(const polynome &p1, const polynome & p2, polynome & u,polynome & v,polynome & d);
// Input a,b,c,u,v,d such that a*u+b*v=d,
// Output u,v,C such that a*u+b*v=c*C
void egcdtoabcuv(const tensor<gen> & a,const tensor<gen> &b, const tensor<gen> &c, tensor<gen> &u,tensor<gen> &v, tensor<gen> & d, tensor<gen> & C);
bool findabcdelta(const polynome & p,polynome & a,polynome &b,polynome & c,polynome & delta);
bool findde(const polynome & p,polynome & d,polynome &e);
factorization sqff(const polynome &p );
// factorize a square-free univariate polynomial
bool sqfffactor(const polynome &p, vectpoly & v,bool with_sqrt,bool test_composite,bool complexmode);
bool sqff_evident(const polynome & p,factorization & f,bool withsqrt,bool complexmode);
// factorization over Z[i]
bool cfactor(const polynome & p, gen & an,factorization & f,bool withsqrt,gen & extra_div);
// add a dimension in front of pcur for algebraic extension variable
bool algext_convert(const polynome & pcur,const gen & e,polynome & p_y);
// convert minimal polynomial of algebraic extension
void algext_vmin2pmin(const vecteur & v_mini,polynome & p_mini);
// factorization over an algebraic extension
// the main variable of G is the algebraic extension variable
// the minimal polynomial of this variable is p_mini
// G is assumed to be square-free
// See algorithm 3.6.4 in Henri Cohen book starting at step 3
bool algfactor(const polynome & G,const polynome & p_mini,int & k,factorization & f,bool complexmode,gen & extra_div,polynome & Gtry);
// sqff factorization over a finite field
factorization squarefree_fp(const polynome & p,unsigned n,unsigned exposant);
// univariate factorization over a finite field, once sqff
bool sqff_ffield_factor(const factorization & sqff_f,int n,environment * env,factorization & f);
// p is primitive wrt the main var
bool mod_factor(const polynome & p_orig,polynome & p_content,int n,factorization & f);
// factorization over Z[e] where e is an algebraic extension
bool ext_factor(const polynome &p,const gen & e,gen & an,polynome & p_content,factorization & f,bool complexmode,gen &extra_div);
// factorization over Z[coeff_of_p]
bool factor(const polynome &p,polynome & p_content,factorization & f,bool isprimitive,bool withsqrt,bool complexmode,const gen & divide_by_an,gen & extra_div);
void unitarize(const polynome &pcur, polynome &unitaryp, polynome & an);
polynome ununitarize(const polynome & unitaryp, const polynome & an);
void partfrac(const polynome & num, const polynome & den, const std::vector< facteur< polynome > > & v , std::vector < pf <gen> > & pfde_VECT, polynome & ipnum, polynome & ipden, bool rational=true );
pf<gen> intreduce_pf(const pf<gen> & p_cst, std::vector< pf<gen> > & intde_VECT ,bool residue=false);
// Sturm sequences
vecteur vector_of_polynome2vecteur(const vectpoly & v);
vecteur sturm_seq(const polynome & p,polynome & cont);
// prototype of factorization of univariate sqff unitary polynomial
// provided e.g. by smodular
bool factorunivsqff(const polynome & q,environment * env,vectpoly & v,int & ithprime,int debug,int modfactor_primes);
// find linear factor only
int linearfind(const polynome & q,environment * env,polynome & qrem,vectpoly & v,int & ithprime);
// prototype of modular 1-d gcd algorithm
bool gcd_modular_algo1(polynome &p,polynome &q,polynome &d,bool compute_cof);
polynome smod(const polynome & th, const gen & modulo);
void smod(const polynome & th, const gen & modulo,polynome & res);
bool gcdmod_dim1(const polynome &p,const polynome & q,const gen & modulo,polynome & d,polynome & pcof,polynome & qcof,bool compute_cof,bool & real);
// evaluate p at v by replacing the last variables of p with values of v
gen peval(const polynome & p,const vecteur & v,const gen &m,bool simplify_at_end=false,std::vector<int_unsigned> * pptr=0);
int total_degree(const polynome & p);
// build a multivariate poly
// with normal coeff from a multivariate poly with multivariate poly coeffs
polynome unsplitmultivarpoly(const polynome & p,int inner_dim);
polynome splitmultivarpoly(const polynome & p,int inner_dim);
polynome split(const polynome & p,int inner_dim);
template <class U>
bool convert_myint(const polynome & p,const index_t & deg,std::vector< T_unsigned<my_mpz,U> > & v){
typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
v.clear();
v.reserve(itend-it);
U u;
my_mpz tmp;
index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
T_unsigned<my_mpz,U> gu;
for (;it!=itend;++it){
u=0;
itit=it->index.begin();
for (dit=ditbeg;dit!=ditend;++itit,++dit)
u=u*unsigned(*dit)+unsigned(*itit);
gu.u=u;
if (it->value.type==_ZINT)
mpz_set(gu.g.ptr,*it->value._ZINTptr);
else {
if (it->value.type!=_INT_)
return false;
mpz_set_si(gu.g.ptr,it->value.val);
}
v.push_back(gu);
}
return true;
}
#ifdef HAVE_GMPXX_H
template <class U>
bool convert_myint(const polynome & p,const index_t & deg,std::vector< T_unsigned<mpz_class,U> > & v){
typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
v.clear();
v.reserve(itend-it);
U u;
index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
for (;it!=itend;++it){
u=0;
itit=it->index.begin();
for (dit=ditbeg;dit!=ditend;++itit,++dit)
u=u*unsigned(*dit)+unsigned(*itit);
T_unsigned<mpz_class,U> gu;
gu.u=u;
if (it->value.type==_ZINT){
mpz_set(gu.g.get_mpz_t(),*it->value._ZINTptr);
}
else {
if (it->value.type!=_INT_)
return false;
gu.g=it->value.val;
}
v.push_back(gu);
}
return true;
}
#endif
template<class U> int coeff_type(const std::vector< T_unsigned<gen,U> > & p,unsigned & maxint){
maxint=0;
typename std::vector< T_unsigned<gen,U> >::const_iterator it=p.begin(),itend=p.end();
if (it==itend)
return -1;
int t=it->g.type,tt;
register int tmp;
for (++it;it!=itend;++it){
tt=it->g.type;
if (tt!=t)
return -1;
if (!tt){
if (it->g.val>0)
tmp=it->g.val;
else
tmp=-it->g.val;
if (maxint<tmp)
maxint=tmp;
}
}
return t;
}
bool is_integer_poly(const polynome & p,bool intonly);
template <class U>
bool convert_double(const polynome & p,const index_t & deg,std::vector< T_unsigned<double,U> > & v){
typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
v.clear();
v.reserve(itend-it);
T_unsigned<double,U> gu;
U u;
index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
for (;it!=itend;++it){
u=0;
itit=it->index.begin();
for (dit=ditbeg;dit!=ditend;++itit,++dit)
u=u*unsigned(*dit)+unsigned(*itit);
gu.u=u;
if (it->value.type!=_DOUBLE_)
return false;
gu.g=it->value._DOUBLE_val;
v.push_back(gu);
}
return true;
}
template <class U>
bool convert_int32(const polynome & p,const index_t & deg,std::vector< T_unsigned<int,U> > & v,int modulo=0){
typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
v.clear();
v.reserve(itend-it);
U u;
index_t::const_iterator itit,oldit,ititend,ditbeg=deg.begin(),ditend=deg.end(),dit;
for (;it!=itend;++it){
u=0;
oldit=itit=it->index.begin();
for (dit=ditbeg;dit!=ditend;++itit,++dit)
u=u*unsigned(*dit)+unsigned(*itit);
if (it->value.type==_INT_){
if (modulo)
v.push_back(T_unsigned<int,U>(it->value.val % modulo,u));
else
v.push_back(T_unsigned<int,U>(it->value.val,u));
}
else {
if (modulo && it->value.type==_ZINT)
v.push_back(T_unsigned<int,U>(smod(it->value,modulo).val,u));
else
return false;
}
int nterms=*(itit-1);
if (nterms<=1 || nterms>=itend-it)
continue;
itit = (it+nterms)->index.begin();
ititend = itit + p.dim-1;
if (*(ititend))
continue;
for (;itit!=ititend;++oldit,++itit){
if (*itit!=*oldit)
break;
}
if (itit!=ititend)
continue;
// for dense poly, make all terms with the same x1..xn-1 powers
for (;nterms;--nterms){
++it;
--u;
if (it->value.type==_INT_){
if (modulo)
v.push_back(T_unsigned<int,U>(it->value.val % modulo,u));
else
v.push_back(T_unsigned<int,U>(it->value.val,u));
}
else {
if (modulo && it->value.type==_ZINT)
v.push_back(T_unsigned<int,U>(smod(it->value,modulo).val,u));
else
return false;
}
}
}
return true;
}
template <class U>
bool convert_int(const polynome & p,const index_t & deg,std::vector< T_unsigned<longlong,U> > & v,longlong & maxp){
typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
v.clear();
v.reserve(itend-it);
T_unsigned<longlong,U> gu;
U u;
maxp=0;
longlong tmp;
mpz_t tmpz;
mpz_init(tmpz);
index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
for (;it!=itend;++it){
u=0;
itit=it->index.begin();
for (dit=ditbeg;dit!=ditend;++itit,++dit)
u=u*unsigned(*dit)+unsigned(*itit);
gu.u=u;
if (it->value.type==_INT_)
gu.g=it->value.val;
else {
if (it->value.type!=_ZINT || mpz_sizeinbase(*it->value._ZINTptr,2)>62){
mpz_clear(tmpz);
return false;
}
mpz2longlong(it->value._ZINTptr,&tmpz,gu.g);
}
tmp=gu.g>0?gu.g:-gu.g;
if (tmp>maxp)
maxp=tmp;
v.push_back(gu);
}
mpz_clear(tmpz);
return true;
}
#ifdef INT128
template <class U>
bool convert_int(const polynome & p,const index_t & deg,std::vector< T_unsigned<int128_t,U> > & v,int128_t & maxp){
typename std::vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
v.clear();
v.reserve(itend-it);
T_unsigned<int128_t,U> gu;
U u;
maxp=0;
int128_t tmp;
mpz_t tmpz;
mpz_init(tmpz);
index_t::const_iterator itit,ditbeg=deg.begin(),ditend=deg.end(),dit;
for (;it!=itend;++it){
u=0;
itit=it->index.begin();
for (dit=ditbeg;dit!=ditend;++itit,++dit)
u=u*unsigned(*dit)+unsigned(*itit);
gu.u=u;
if (it->value.type==_INT_)
gu.g=it->value.val;
else {
if (it->value.type!=_ZINT || mpz_sizeinbase(*it->value._ZINTptr,2)>124){
mpz_clear(tmpz);
return false;
}
mpz2int128(it->value._ZINTptr,&tmpz,gu.g);
}
tmp=gu.g>0?gu.g:-gu.g;
if (tmp>maxp)
maxp=tmp;
v.push_back(gu);
}
mpz_clear(tmpz);
return true;
}
#endif
template<class U> void convert_longlong(const std::vector< T_unsigned<gen,U> > & p,std::vector< T_unsigned<longlong,U> > & pd){
typename std::vector< T_unsigned<gen,U> >::const_iterator it=p.begin(),itend=p.end();
pd.reserve(itend-it);
for (;it!=itend;++it)
pd.push_back(T_unsigned<longlong,U>(it->g.val,it->u));
}
template<class T,class U> void convert_from(const std::vector< T_unsigned<T,U> > & p,std::vector< T_unsigned<gen,U> > & pd){
typename std::vector< T_unsigned<T,U> >::const_iterator it=p.begin(),itend=p.end();
pd.reserve(itend-it);
for (;it!=itend;++it){
if (it->g)
pd.push_back(T_unsigned<gen,U>(gen(it->g),it->u));
}
}
// mode=0: fill both, =1 fill the gen part, =2 fill the index_m part
template<class T,class U>
void convert_from(typename std::vector< T_unsigned<T,U> >::const_iterator it,typename std::vector< T_unsigned<T,U> >::const_iterator itend,const index_t & deg,typename std::vector< monomial<gen> >::iterator jt,int mode=0){
if (mode==1){
for (;it!=itend;++jt,++it){
jt->value=gen(it->g);
}
return;
}
index_t::const_reverse_iterator ditbeg=deg.rbegin(),ditend=deg.rend(),dit;
int pdim=int(deg.size());
U u,prevu=0;
int k;
int count=0;
#if defined(GIAC_NO_OPTIMIZATIONS) || ((defined(VISUALC) || defined(__APPLE__)) && !defined(GIAC_VECTOR)) || defined __clang__ // || defined NSPIRE
if (0){ count=0; }
#else
if (pdim<=POLY_VARS){
deg_t i[POLY_VARS+1];
i[0]=2*pdim+1;
deg_t * iitbeg=i+1,*iit,*iitback=i+pdim,*iitbackm1=iitback-1;
for (iit=iitbeg;iit!=iitback;++iit)
*iit=0;
*iitback=0;
for (--prevu;it!=itend;++it,++jt){
u=it->u;
if (prevu<=u+*iitback){
*iitback -= deg_t(prevu-u);
prevu=u;
}
else {
if (pdim>1 && (*iitbackm1)>0 && prevu<=u+*ditbeg+*iitback){
--(*iitbackm1);
*iitback += deg_t((u+(*ditbeg))-prevu);
prevu=u;
}
else
{
prevu=u;
for (k=pdim,dit=ditbeg;dit!=ditend;++dit,--k){
// qr=div(u,*dit);
i[k]=u % (*dit); // qr.rem;
u= u / (*dit); // qr.quot;
count += pdim;
}
}
}
jt->index=i;
if (mode)
continue;
jt->value=gen(it->g);
// p.coord.push_back(monomial<gen>(gen(it->g),i));
}
}
#endif
else {
index_t i(pdim);
index_t::iterator iitbeg=i.begin(),iitback=i.end()-1,iitbackm1=iitback-1;
for (--prevu;it!=itend;++it,++jt){
u=it->u;
if (prevu<=u+*iitback){
*iitback -= short(prevu-u);
prevu=u;
}
else {
if (pdim>1 && (*iitbackm1)>0 && prevu<=u+*ditbeg+*iitback){
--(*iitbackm1);
*iitback += short((u+(*ditbeg))-prevu);
prevu=u;
// cerr << "/" << u << ":" << i << endl;
}
else
{
prevu=u;
for (k=pdim-1,dit=ditbeg;dit!=ditend;++dit,--k){
// qr=div(u,*dit);
i[k]=u % (*dit); // qr.rem;
u= u / (*dit); // qr.quot;
count += pdim;
// i[k]=u % unsigned(*dit);
// u = u/unsigned(*dit);
}
}
}
jt->index=i;
if (mode)
continue;
jt->value=gen(it->g);
// p.coord.push_back(monomial<gen>(gen(it->g),i));
}
}
if (debug_infolevel>5)
CERR << "Divisions: " << count << std::endl;
}
template<class T,class U>
struct convert_t {
typename std::vector< T_unsigned<T,U> >::const_iterator it,itend;
const index_t * degptr;
typename std::vector< monomial<gen> >::iterator jt;
int mode;
};
template<class T,class U>
void * do_convert_from(void * ptr){
convert_t<T,U> * argptr = (convert_t<T,U> *) ptr;
convert_from<T,U>(argptr->it,argptr->itend,*argptr->degptr,argptr->jt,argptr->mode);
return 0;
}
extern int threads;
template<class T,class U>
void convert_from(const std::vector< T_unsigned<T,U> > & v,const index_t & deg,polynome & p,bool threaded=false){
typename std::vector< T_unsigned<T,U> >::const_iterator it=v.begin(),itend=v.end();
p.dim=int(deg.size());
// p.coord.clear(); p.coord.reserve(itend-it);
p.coord=std::vector< monomial<gen> >(itend-it);
std::vector< monomial<gen> >::iterator jt=p.coord.begin();
int nthreads=threads;
if (nthreads==1 || !threaded || p.dim>POLY_VARS){
convert_from<T,U>(it,itend,deg,jt,0);
return;
}
#if defined(HAVE_PTHREAD_H) && !defined(EMCC) // && !defined(__clang__)
unsigned taille=itend-it;
if (nthreads>1
&& int(taille)>nthreads*1000
){
pthread_t tab[nthreads];
std::vector< convert_t<T,U> > arg(nthreads);
for (int i=0;i<nthreads;i++){
convert_t<T,U> tmp={it+i*(taille/nthreads),it+(i+1)*taille/nthreads,°,jt+i*(taille/nthreads),0};
if (i==nthreads-1){
tmp.itend=itend;
convert_from<T,U>(tmp.it,tmp.itend,deg,tmp.jt,tmp.mode);
}
else {
arg[i]=tmp;
int res=pthread_create(&tab[i],(pthread_attr_t *) NULL,do_convert_from<T,U>,(void *) &arg[i]);
if (res)
convert_from<T,U>(tmp.it,tmp.itend,deg,tmp.jt,tmp.mode);
}
}
for (int i=0;i<nthreads-1;++i){
void * ptr;
pthread_join(tab[i],&ptr);
}
return;
} // end if (nthreads>1)
#endif
convert_from<T,U>(it,itend,deg,jt,0);
}
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC
#endif // _GIAC_GAUSSPOL_H_
|