node37.html 14.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<!--Converted with LaTeX2HTML 2002-2-1 (1.70)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others 
  Translation to greek : George Nassopoulos-->
<HTML>
<HEAD>
<TITLE>Άσκηση 1η</TITLE>
<META NAME="description" CONTENT="Exercice 1">
<META NAME="keywords" CONTENT="tutoriel">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">

<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">

<LINK REL="STYLESHEET" HREF="tutoriel.css">

<LINK REL="next" HREF="node38.html">
<LINK REL="previous" HREF="node36.html">
<LINK REL="up" HREF="node36.html">
<LINK REL="next" HREF="node38.html">
</HEAD>

<BODY >
<!--Navigation Panel-->
<A NAME="tex2html596"
  HREF="node38.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> 
<A NAME="tex2html590"
  HREF="node36.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> 
<A NAME="tex2html584"
  HREF="node36.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> 
<A NAME="tex2html592"
  HREF="node46.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> 
<A NAME="tex2html594"
  HREF="node47.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> 
<BR>
<B> επόμενο:</B> <A NAME="tex2html597"
  HREF="node38.html">Άσκηση 2η</A>
<B> εμφάνιση:</B> <A NAME="tex2html591"
  HREF="node36.html">Συνάρτηση και γραφική παράσταση</A>
<B> προηγούμενο:</B> <A NAME="tex2html585"
  HREF="node36.html">Συνάρτηση και γραφική παράσταση</A>
 &nbsp; <B>  <A NAME="tex2html593"
  HREF="node46.html">Πίνακας περιεχομένων</A></B> 
 &nbsp; <B>  <A NAME="tex2html595"
  HREF="node47.html">Ευρετήριο</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION00071100000000000000">
Άσκηση 1η</A>
</H3>
Έστω η (πραγματική) συνάρτηση  <I>f</I>  από το <IMG
 WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img13.png"
 ALT="$ \mathbb {R}$">-{3} στο <IMG
 WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img13.png"
 ALT="$ \mathbb {R}$"> 
που ορίζεται ως:
<!-- MATH
 \begin{displaymath}
f(x)=(x+1)\ln|x-3|
\end{displaymath}
 -->
<P></P>
<DIV ALIGN="CENTER">
<I>f</I> (<I>x</I>) = (<I>x</I> + 1)ln| <I>x</I> - 3|.
</DIV><P></P>

<OL>
<LI>Υπολογίστε την πρώτη παράγωγο  <I>f'</I>(<I>x</I>) και την δεύτερη 
παράγωγο 
<I>f''</I>(<I>x</I>) της  <I>f</I>(<I>x</I>).
</LI>
<BR>
<LI>Υπολογίστε τα όρια της  <I>f'</I>(<I>x</I>) στο - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$"> και στο 3 από αριστερά.
</LI>
<BR>
<LI>Αποδείξτε ότι η  <I>f'</I>(<I>x</I>) μηδενίζεται μία φορά, στο σημείο 
 <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$"> του ανοικτού διαστήματος <!-- MATH
 $]-\infty;3[$
 -->
] - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">, 3[.
Υπολογίστε το διάστημα πλάτους 0.1 που περιέχει το <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$">.
</LI>
<BR>
<LI>Μελετήστε το πρόσημο της  <I>f'</I>(<I>x</I>) στο <IMG
 WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img13.png"
 ALT="$ \mathbb {R}$">-{3} και συμπεράνετε τις μεταβολές της  <I>f</I>(<I>x</I>).
</LI>
<BR>
<LI>Σχεδιάστε την γραφική παράσταση <I>C</I> της <I>f</I>(<I>x</I>) 
σε ορθοκανονικό σύστημα αξόνων (μονάδος 1<I>cm</I>).
</LI>
<BR>
<LI>Υπολογίστε, σε <I>cm</I><SUP>2</SUP>,  το εμβαδόν της περιοχής 
με σύνορα την καμπύλη <I>C</I>, τον άξονα  των <I>x</I>
 και τις ευθείες με εξισώσεις <I>x</I> = - 1 και <I>x</I> = 2.
</LI>
</OL>

<P>
<B>Απαντήσεις</B>

<OL>
<LI>Για να ορίσουμε την συνάρτηση  <I>f</I>(<I>x</I>) πληκτρολογούμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> f(x):=(x+1)*ln(abs(x-3))</code>
</DIV>
<BR>
Για την συνάρτηση   <I>f'</I>(<I>x</I>) πρώτα πληκτρολογούμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> f1:=function_diff(f):;</code>
</DIV>
<BR>
και στην συνέχεια,
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> f1(x)</code>
</DIV>
<BR>
για να πάρουμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> ln(abs(x-3))+(x+1)/(x-3)</code>

</DIV>
<BR>

Άρα<!-- MATH
 $\displaystyle f'(x)=\ln(|x-3|)+\frac{x+1}{x-3}$
 -->
<I>f'</I>(<I>x</I>) = ln(| <I>x</I> - 3|) + <IMG
 WIDTH="39" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
 SRC="img19.png"
 ALT="$\displaystyle {\frac{{x+1}}{{x-3}}}$">.
<BR>

Τέλος, για την συνάρτηση  <I>f''</I>(<I>x</I>) πρώτα πληκτρολογούμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> f2:=function_diff(f1):;</code>

</DIV>
<BR>

και στην συνέχεια,
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> f2(x)</code>

</DIV>
για να πάρουμε :
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> 1/(x-3)+1/(x-3)+(x+1)*(-(1/((x-3)^2)))</code>

</DIV>
<BR>

Την τελευταία παράσταση μπορούμε να την  απλοποιήσουμε πληκτρολογώντας 
πρώτα:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> normal(f2(x))</code>

</DIV>
για να πάρουμε :
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> (x-7)/(x^2-6*x+9)</code>

</DIV>
<BR>

και στην συνέχεια την παραγοντοποιούμε, πληκτρολογώντας: 
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> factor(f2(x))</code>

</DIV>
για να πάρουμε :
<BR>
<BR>
<DIV ALIGN="CENTER">
<code>(x-7)/((x-3)^2)</code>

</DIV>
<BR>
Άρα<!-- MATH
 $\displaystyle f''(x)= \frac{x-7}{(x-3)^2}$
 -->
<I>f''</I>(<I>x</I>) = <IMG
 WIDTH="58" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
 SRC="img20.png"
 ALT="$\displaystyle {\frac{{x-7}}{{(x-3)^2}}}$">


<P>
</LI>
<LI>Για να βρούμε το όριο της  <I>f'</I>(<I>x</I>) στο - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$"> πληκτρολογούμε:
 <BR>
<BR>

<DIV ALIGN="CENTER">
<code> limit(f1(x),x,-infinity)</code>

</DIV>
<BR>

και βλέπουμε πως είναι το +άπειρο :
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> +infinity</code>

</DIV>
<BR>
Για να πάρουμε το όριο της <I>f'</I>(<I>x</I>) στο 3 από 
αριστερά πληκτρολογούμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> limit(f1(x),x,3,-1)</code>

</DIV>

<BR>
και βλέπουμε πως είναι το -άπειρο:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> -infinity</code>

</DIV>
<BR>
</LI>
<LI>
Προσέξτε πως 
η  <I>f''</I>(<I>x</I>) &lt; 0 στο διάστημα <!-- MATH
 $]-\infty;3[$
 -->
] - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">, 3[, με συνέπεια η
  <I>f'</I>(<I>x</I>) να είναι συνεχής και φθίνουσα στο διάστημα 
  αυτό. Επιπλέον είδαμε στην δεύτερη ερώτηση πως οι τιμές της 
<I>f'</I>(<I>x</I>) στα άκρα του διαστήματος <!-- MATH
 $]-\infty;3[$
 -->
] - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">, 3[ είναι αντίθετες.  
  Υπάρχει λοιπόν ένα μοναδικό <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$"> 
στο διάστημα <!-- MATH
 $]-\infty;3[$
 -->
] - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">, 3[ έτσι ώστε <!-- MATH
 $f'(\alpha)=0$
 -->
<I>f'</I>(<IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$">) = 0.
<BR>
Για να βρούμε την προσεγγιστική τιμή του<IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$"> πληκτρολογούμε:
<DIV ALIGN="CENTER">
<code> fsolve(f1(x),x)</code>

</DIV>
<BR>
και βλέπουμε πως το <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$"> είναι :

<BR>
<DIV ALIGN="CENTER">
<code> 0.776592890991</code>

</DIV>
<BR>

Για να βρούμε τώρα το διάστημα πλάτους 0.1 που περιέχει το 
<IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$"> πληκτρολογούμε:
<DIV ALIGN="CENTER">
<code> [f1(0.7), f1(0.8)]</code>

</DIV>
<BR>
και παίρνουμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> [0.0937786881525,-0.0297244578175] </code>

</DIV>
<BR>

Βλέπουμε λοιπόν πως <I>f'</I>(<I>0.7</I>) = <I>f</I>1(0.7) &gt; 0 και 
<I>f'</I>(<I>0.8</I>) = <I>f</I>1(0.8) &lt; 0, και άρα <!-- MATH
 $0.7<\alpha<0;8$
 -->
0.7 &lt; <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$"> &lt; 0;8.
</LI>
<BR>
<LI>Επειδή <I>f''</I>(7) = 0, βλέπουμε πως το ελάχιστο της 
<I>f'</I>(<I>x</I>) στο διάστημα <!-- MATH
 $]3;+\infty[$
 -->
]3, + <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">[  είναι <I>f'</I>(<I>7</I>). Πληκτρολογώντας:
 <BR>
 <BR>
<DIV ALIGN="CENTER">
<code> f1(7)</code>

</DIV>
 <BR>
παίρνουμε:
<BR>
 <BR>
<DIV ALIGN="CENTER">
<code> ln(4)+2</code>

</DIV>
<BR>
 
που σημαίνει πως το ελάχιστο της <I>f'</I>(<I>x</I>) στο<!-- MATH
 $]3;+\infty[$
 -->
]3, + <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">[ είναι  θετικό.

Άρα <I>f'</I>(<I>x</I>) &gt; 0 εάν <!-- MATH
 $x \in\ ]-\infty;\alpha[\  \cup \ ]3;+\infty[\$
 -->
<I>x</I> <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img21.png"
 ALT="$ \in$"> &nbsp;] - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">, <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$">[&nbsp; <IMG
 WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img22.png"
 ALT="$ \cup$"> &nbsp;]3, + <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">[&nbsp; 
και <I>f'</I>(<I>x</I>) &lt; 0 εάν <!-- MATH
 $x \in\ ]\alpha;3[$
 -->
<I>x</I> <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img21.png"
 ALT="$ \in$"> &nbsp;]<IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$">, 3[ και συνεπώς
 η  <I>f</I>(<I>x</I>) είναι αύξουσα στο  <!-- MATH
 $\ ]-\infty;\alpha[\   \cup \ ]3;+\infty[\$
 -->
&nbsp;] - <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">, <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$">[&nbsp; <IMG
 WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img22.png"
 ALT="$ \cup$"> &nbsp;]3, + <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$ \infty$">[&nbsp; και 
είναι φθίνουσα στο<!-- MATH
 $\ ]\alpha;3[$
 -->
&nbsp;]<IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img18.png"
 ALT="$ \alpha$">, 3[.
</LI>
<LI>
Για να σχεδιάζουμε την γραφική παράσταση της <I>f</I>(<I>x</I>)
 και των δύο ευθειών <I>x</I> = - 1 και <I>x</I> = 2, πληκτρολογούμε:
 <BR>
 <BR>
<DIV ALIGN="CENTER">
<code> plotfunc(f(x),x=-14..14);line(x=-1);line(x=2)</code>

</DIV>
<BR>
</LI>
<LI>Για να βρούμε το εμβαδόν της καθορισμένης περιοχής σε <I>cm</I><SUP>2</SUP> 
πληκτρολογούμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> integrate(f(x),x,-1,2)</code>

</DIV>
<BR>
και παίρνουμε σαν αποτέλεσμα:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> 8*ln(4)-12+15/4</code>

</DIV>
<BR>
το οποίο στην συνέχεια φέρνουμε στην κανονική του μορφή πληκτρολογώντας:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> normal(8*ln(4)-12+15/4))</code>

</DIV>
<BR>
για να πάρουμε:
<BR>
<BR>
<DIV ALIGN="CENTER">
<code> 8*ln(4)-33/4</code>

</DIV>
<BR>
Άρα το ζητούμενο εμβαδόν είναι  <!-- MATH
 $(8*\ln(4)-33/4) cm^2$
 -->
(8*ln(4) - 33/4)<I>cm</I><SUP>2</SUP>;
</LI>
</OL>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html596"
  HREF="node38.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> 
<A NAME="tex2html590"
  HREF="node36.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> 
<A NAME="tex2html584"
  HREF="node36.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> 
<A NAME="tex2html592"
  HREF="node46.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> 
<A NAME="tex2html594"
  HREF="node47.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> 
<BR>
<B> επόμενο:</B> <A NAME="tex2html597"
  HREF="node38.html">Άσκηση 2η</A>
<B> εμφάνιση:</B> <A NAME="tex2html591"
  HREF="node36.html">Συνάρτηση και γραφική παράσταση</A>
<B> προηγούμενο:</B> <A NAME="tex2html585"
  HREF="node36.html">Συνάρτηση και γραφική παράσταση</A>
 &nbsp; <B>  <A NAME="tex2html593"
  HREF="node46.html">Πίνακας περιεχομένων</A></B> 
 &nbsp; <B>  <A NAME="tex2html595"
  HREF="node47.html">Ευρετήριο</A></B>  
  <BR>
  <BR>
<!--End of Navigation Panel-->
<ADDRESS>
Βιβλιογραφία του <A HREF="http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html">giac</A> από τους Renee De Graeve, Bernard Parisse και Bernard Ycart
</ADDRESS>
Μετάφραση στα Ελληνικά : Γιώργος Νασόπουλος. Διασκευή : Αλκιβιάδης Γ. Ακρίτας
</BODY>
</HTML>