uip.c 58 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
#define DEBUG_PRINTF(...) /*printf(__VA_ARGS__)*/

/**
 * \addtogroup uip
 * @{
 */

/**
 * \file
 * The uIP TCP/IP stack code.
 * \author Adam Dunkels <adam@dunkels.com>
 */

/*
 * Copyright (c) 2001-2003, Adam Dunkels.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * This file is part of the uIP TCP/IP stack.
 *
 * $Id: uip.c,v 1.15 2008/10/15 08:08:32 adamdunkels Exp $
 *
 */

/*
 * uIP is a small implementation of the IP, UDP and TCP protocols (as
 * well as some basic ICMP stuff). The implementation couples the IP,
 * UDP, TCP and the application layers very tightly. To keep the size
 * of the compiled code down, this code frequently uses the goto
 * statement. While it would be possible to break the uip_process()
 * function into many smaller functions, this would increase the code
 * size because of the overhead of parameter passing and the fact that
 * the optimizer would not be as efficient.
 *
 * The principle is that we have a small buffer, called the uip_buf,
 * in which the device driver puts an incoming packet. The TCP/IP
 * stack parses the headers in the packet, and calls the
 * application. If the remote host has sent data to the application,
 * this data is present in the uip_buf and the application read the
 * data from there. It is up to the application to put this data into
 * a byte stream if needed. The application will not be fed with data
 * that is out of sequence.
 *
 * If the application whishes to send data to the peer, it should put
 * its data into the uip_buf. The uip_appdata pointer points to the
 * first available byte. The TCP/IP stack will calculate the
 * checksums, and fill in the necessary header fields and finally send
 * the packet back to the peer.
*/

#include "uip.h"
#include "uipopt.h"
#include "uip_arp.h"

#if !UIP_CONF_IPV6 /* If UIP_CONF_IPV6 is defined, we compile the
		      uip6.c file instead of this one. Therefore
		      this #ifndef removes the entire compilation
		      output of the uip.c file */


#if UIP_CONF_IPV6
#include "net/uip-neighbor.h"
#endif /* UIP_CONF_IPV6 */

#include <string.h>

/*---------------------------------------------------------------------------*/
/* Variable definitions. */


/* The IP address of this host. If it is defined to be fixed (by
   setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set
   here. Otherwise, the address */
#if UIP_FIXEDADDR > 0
const uip_ipaddr_t uip_hostaddr =
  { UIP_IPADDR0, UIP_IPADDR1, UIP_IPADDR2, UIP_IPADDR3 };
const uip_ipaddr_t uip_draddr =
  { UIP_DRIPADDR0, UIP_DRIPADDR1, UIP_DRIPADDR2, UIP_DRIPADDR3 };
const uip_ipaddr_t uip_netmask =
  { UIP_NETMASK0, UIP_NETMASK1, UIP_NETMASK2, UIP_NETMASK3 };
#else
uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask;
#endif /* UIP_FIXEDADDR */

const uip_ipaddr_t uip_broadcast_addr =
#if UIP_CONF_IPV6
  { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
#else /* UIP_CONF_IPV6 */
  { { 0xff, 0xff, 0xff, 0xff } };
#endif /* UIP_CONF_IPV6 */
const uip_ipaddr_t uip_all_zeroes_addr = { { 0x0, /* rest is 0 */ } };

#if UIP_FIXEDETHADDR
const struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0,
					  UIP_ETHADDR1,
					  UIP_ETHADDR2,
					  UIP_ETHADDR3,
					  UIP_ETHADDR4,
					  UIP_ETHADDR5}};
#else
struct uip_eth_addr uip_ethaddr = {{0,0,0,0,0,0}};
#endif

#ifndef UIP_CONF_EXTERNAL_BUFFER
u8_t uip_buf[UIP_BUFSIZE + 2];   /* The packet buffer that contains
				    incoming packets. */
#endif /* UIP_CONF_EXTERNAL_BUFFER */

void *uip_appdata;               /* The uip_appdata pointer points to
				    application data. */
void *uip_sappdata;              /* The uip_appdata pointer points to
				    the application data which is to
				    be sent. */
#if UIP_URGDATA > 0
void *uip_urgdata;               /* The uip_urgdata pointer points to
   				    urgent data (out-of-band data), if
   				    present. */
u16_t uip_urglen, uip_surglen;
#endif /* UIP_URGDATA > 0 */

u16_t uip_len, uip_slen;
                             /* The uip_len is either 8 or 16 bits,
				depending on the maximum packet
				size. */

u8_t uip_flags;     /* The uip_flags variable is used for
				communication between the TCP/IP stack
				and the application program. */
struct uip_conn *uip_conn;   /* uip_conn always points to the current
				connection. */

struct uip_conn uip_conns[UIP_CONNS];
                             /* The uip_conns array holds all TCP
				connections. */
u16_t uip_listenports[UIP_LISTENPORTS];
                             /* The uip_listenports list all currently
				listening ports. */
#if UIP_UDP
struct uip_udp_conn *uip_udp_conn;
struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
#endif /* UIP_UDP */

static u16_t ipid;           /* Ths ipid variable is an increasing
				number that is used for the IP ID
				field. */

void uip_setipid(u16_t id) { ipid = id; }

static u8_t iss[4];          /* The iss variable is used for the TCP
				initial sequence number. */

#if UIP_ACTIVE_OPEN
static u16_t lastport;       /* Keeps track of the last port used for
				a new connection. */
#endif /* UIP_ACTIVE_OPEN */

/* Temporary variables. */
u8_t uip_acc32[4];
static u8_t c, opt;
static u16_t tmp16;

/* Structures and definitions. */
#define TCP_FIN 0x01
#define TCP_SYN 0x02
#define TCP_RST 0x04
#define TCP_PSH 0x08
#define TCP_ACK 0x10
#define TCP_URG 0x20
#define TCP_CTL 0x3f

#define TCP_OPT_END     0   /* End of TCP options list */
#define TCP_OPT_NOOP    1   /* "No-operation" TCP option */
#define TCP_OPT_MSS     2   /* Maximum segment size TCP option */

#define TCP_OPT_MSS_LEN 4   /* Length of TCP MSS option. */

#define ICMP_ECHO_REPLY 0
#define ICMP_ECHO       8

#define ICMP_DEST_UNREACHABLE        3
#define ICMP_PORT_UNREACHABLE        3

#define ICMP6_ECHO_REPLY             129
#define ICMP6_ECHO                   128
#define ICMP6_NEIGHBOR_SOLICITATION  135
#define ICMP6_NEIGHBOR_ADVERTISEMENT 136

#define ICMP6_FLAG_S (1 << 6)

#define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1
#define ICMP6_OPTION_TARGET_LINK_ADDRESS 2


/* Macros. */
#define BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN])
#define FBUF ((struct uip_tcpip_hdr *)&uip_reassbuf[0])
#define ICMPBUF ((struct uip_icmpip_hdr *)&uip_buf[UIP_LLH_LEN])
#define UDPBUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN])


#if UIP_STATISTICS == 1
struct uip_stats uip_stat;
#define UIP_STAT(s) s
#else
#define UIP_STAT(s)
#endif /* UIP_STATISTICS == 1 */

#if UIP_LOGGING == 1
#include <stdio.h>
void uip_log(char *msg);
#define UIP_LOG(m) uip_log(m)
#else
#define UIP_LOG(m)
#endif /* UIP_LOGGING == 1 */

#if ! UIP_ARCH_ADD32
void
uip_add32(u8_t *op32, u16_t op16)
{
  uip_acc32[3] = op32[3] + (op16 & 0xff);
  uip_acc32[2] = op32[2] + (op16 >> 8);
  uip_acc32[1] = op32[1];
  uip_acc32[0] = op32[0];

  if(uip_acc32[2] < (op16 >> 8)) {
    ++uip_acc32[1];
    if(uip_acc32[1] == 0) {
      ++uip_acc32[0];
    }
  }


  if(uip_acc32[3] < (op16 & 0xff)) {
    ++uip_acc32[2];
    if(uip_acc32[2] == 0) {
      ++uip_acc32[1];
      if(uip_acc32[1] == 0) {
	++uip_acc32[0];
      }
    }
  }
}

#endif /* UIP_ARCH_ADD32 */

#if ! UIP_ARCH_CHKSUM
/*---------------------------------------------------------------------------*/
static u16_t
chksum(u16_t sum, const u8_t *data, u16_t len)
{
  u16_t t;
  const u8_t *dataptr;
  const u8_t *last_byte;

  dataptr = data;
  last_byte = data + len - 1;

  while(dataptr < last_byte) {	/* At least two more bytes */
    t = (dataptr[0] << 8) + dataptr[1];
    sum += t;
    if(sum < t) {
      sum++;		/* carry */
    }
    dataptr += 2;
  }

  if(dataptr == last_byte) {
    t = (dataptr[0] << 8) + 0;
    sum += t;
    if(sum < t) {
      sum++;		/* carry */
    }
  }

  /* Return sum in host byte order. */
  return sum;
}
/*---------------------------------------------------------------------------*/
u16_t
uip_chksum(u16_t *data, u16_t len)
{
  return htons(chksum(0, (u8_t *)data, len));
}
/*---------------------------------------------------------------------------*/
#ifndef UIP_ARCH_IPCHKSUM
u16_t
uip_ipchksum(void)
{
  u16_t sum;

  sum = chksum(0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN);
  DEBUG_PRINTF("uip_ipchksum: sum 0x%04x\n", sum);
  return (sum == 0) ? 0xffff : htons(sum);
}
#endif
/*---------------------------------------------------------------------------*/
static u16_t
upper_layer_chksum(u8_t proto)
{
  u16_t upper_layer_len;
  u16_t sum;

#if UIP_CONF_IPV6
  upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]);
#else /* UIP_CONF_IPV6 */
  upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN;
#endif /* UIP_CONF_IPV6 */

  /* First sum pseudo-header. */

  /* IP protocol and length fields. This addition cannot carry. */
  sum = upper_layer_len + proto;
  /* Sum IP source and destination addresses. */
  sum = chksum(sum, (u8_t *)&BUF->srcipaddr, 2 * sizeof(uip_ipaddr_t));

  /* Sum TCP header and data. */
  sum = chksum(sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN],
	       upper_layer_len);

  return (sum == 0) ? 0xffff : htons(sum);
}
/*---------------------------------------------------------------------------*/
#if UIP_CONF_IPV6
u16_t
uip_icmp6chksum(void)
{
  return upper_layer_chksum(UIP_PROTO_ICMP6);

}
#endif /* UIP_CONF_IPV6 */
/*---------------------------------------------------------------------------*/
u16_t
uip_tcpchksum(void)
{
  return upper_layer_chksum(UIP_PROTO_TCP);
}
/*---------------------------------------------------------------------------*/
#if UIP_UDP_CHECKSUMS
u16_t
uip_udpchksum(void)
{
  return upper_layer_chksum(UIP_PROTO_UDP);
}
#endif /* UIP_UDP_CHECKSUMS */
#endif /* UIP_ARCH_CHKSUM */
/*---------------------------------------------------------------------------*/
void
uip_init(void)
{
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
    uip_listenports[c] = 0;
  }
  for(c = 0; c < UIP_CONNS; ++c) {
    uip_conns[c].tcpstateflags = UIP_CLOSED;
  }
#if UIP_ACTIVE_OPEN
  lastport = 1024;
#endif /* UIP_ACTIVE_OPEN */

#if UIP_UDP
  for(c = 0; c < UIP_UDP_CONNS; ++c) {
    uip_udp_conns[c].lport = 0;
  }
#endif /* UIP_UDP */


  /* IPv4 initialization. */
#if UIP_FIXEDADDR == 0
  /*  uip_hostaddr[0] = uip_hostaddr[1] = 0;*/
#endif /* UIP_FIXEDADDR */

}
/*---------------------------------------------------------------------------*/
#if UIP_ACTIVE_OPEN
struct uip_conn *
uip_connect(uip_ipaddr_t *ripaddr, u16_t rport)
{
  register struct uip_conn *conn, *cconn;

  /* Find an unused local port. */
 again:
  ++lastport;

  if(lastport >= 32000) {
    lastport = 4096;
  }

  /* Check if this port is already in use, and if so try to find
     another one. */
  for(c = 0; c < UIP_CONNS; ++c) {
    conn = &uip_conns[c];
    if(conn->tcpstateflags != UIP_CLOSED &&
       conn->lport == htons(lastport)) {
      goto again;
    }
  }

  conn = 0;
  for(c = 0; c < UIP_CONNS; ++c) {
    cconn = &uip_conns[c];
    if(cconn->tcpstateflags == UIP_CLOSED) {
      conn = cconn;
      break;
    }
    if(cconn->tcpstateflags == UIP_TIME_WAIT) {
      if(conn == 0 ||
	 cconn->timer > conn->timer) {
	conn = cconn;
      }
    }
  }

  if(conn == 0) {
    return 0;
  }

  conn->tcpstateflags = UIP_SYN_SENT;

  conn->snd_nxt[0] = iss[0];
  conn->snd_nxt[1] = iss[1];
  conn->snd_nxt[2] = iss[2];
  conn->snd_nxt[3] = iss[3];

  conn->initialmss = conn->mss = UIP_TCP_MSS;

  conn->len = 1;   /* TCP length of the SYN is one. */
  conn->nrtx = 0;
  conn->timer = 1; /* Send the SYN next time around. */
  conn->rto = UIP_RTO;
  conn->sa = 0;
  conn->sv = 16;   /* Initial value of the RTT variance. */
  conn->lport = htons(lastport);
  conn->rport = rport;
  uip_ipaddr_copy(&conn->ripaddr, ripaddr);

  return conn;
}
#endif /* UIP_ACTIVE_OPEN */
/*---------------------------------------------------------------------------*/
#if UIP_UDP
struct uip_udp_conn *
uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport)
{
  register struct uip_udp_conn *conn;

  /* Find an unused local port. */
 again:
  ++lastport;

  if(lastport >= 32000) {
    lastport = 4096;
  }

  for(c = 0; c < UIP_UDP_CONNS; ++c) {
    if(uip_udp_conns[c].lport == htons(lastport)) {
      goto again;
    }
  }


  conn = 0;
  for(c = 0; c < UIP_UDP_CONNS; ++c) {
    if(uip_udp_conns[c].lport == 0) {
      conn = &uip_udp_conns[c];
      break;
    }
  }

  if(conn == 0) {
    return 0;
  }

  conn->lport = HTONS(lastport);
  conn->rport = rport;
  if(ripaddr == NULL) {
    memset(&conn->ripaddr, 0, sizeof(uip_ipaddr_t));
  } else {
    uip_ipaddr_copy(&conn->ripaddr, ripaddr);
  }
  conn->ttl = UIP_TTL;

  return conn;
}
#endif /* UIP_UDP */
/*---------------------------------------------------------------------------*/
void
uip_unlisten(u16_t port)
{
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
    if(uip_listenports[c] == port) {
      uip_listenports[c] = 0;
      return;
    }
  }
}
/*---------------------------------------------------------------------------*/
void
uip_listen(u16_t port)
{
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
    if(uip_listenports[c] == 0) {
      uip_listenports[c] = port;
      return;
    }
  }
}
/*---------------------------------------------------------------------------*/
/* XXX: IP fragment reassembly: not well-tested. */

#if UIP_REASSEMBLY && !UIP_CONF_IPV6
#define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN)
static u8_t uip_reassbuf[UIP_REASS_BUFSIZE];
static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)];
static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f,
				    0x0f, 0x07, 0x03, 0x01};
static u16_t uip_reasslen;
static u8_t uip_reassflags;
#define UIP_REASS_FLAG_LASTFRAG 0x01
static u8_t uip_reasstmr;

#define IP_MF   0x20

static u8_t
uip_reass(void)
{
  u16_t offset, len;
  u16_t i;

  /* If ip_reasstmr is zero, no packet is present in the buffer, so we
     write the IP header of the fragment into the reassembly
     buffer. The timer is updated with the maximum age. */
  if(uip_reasstmr == 0) {
    memcpy(uip_reassbuf, &BUF->vhl, UIP_IPH_LEN);
    uip_reasstmr = UIP_REASS_MAXAGE;
    uip_reassflags = 0;
    /* Clear the bitmap. */
    memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap));
  }

  /* Check if the incoming fragment matches the one currently present
     in the reasembly buffer. If so, we proceed with copying the
     fragment into the buffer. */
  if(BUF->srcipaddr[0] == FBUF->srcipaddr[0] &&
     BUF->srcipaddr[1] == FBUF->srcipaddr[1] &&
     BUF->destipaddr[0] == FBUF->destipaddr[0] &&
     BUF->destipaddr[1] == FBUF->destipaddr[1] &&
     BUF->ipid[0] == FBUF->ipid[0] &&
     BUF->ipid[1] == FBUF->ipid[1]) {

    len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4;
    offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8;

    /* If the offset or the offset + fragment length overflows the
       reassembly buffer, we discard the entire packet. */
    if(offset > UIP_REASS_BUFSIZE ||
       offset + len > UIP_REASS_BUFSIZE) {
      uip_reasstmr = 0;
      goto nullreturn;
    }

    /* Copy the fragment into the reassembly buffer, at the right
       offset. */
    memcpy(&uip_reassbuf[UIP_IPH_LEN + offset],
	   (char *)BUF + (int)((BUF->vhl & 0x0f) * 4),
	   len);

    /* Update the bitmap. */
    if(offset / (8 * 8) == (offset + len) / (8 * 8)) {
      /* If the two endpoints are in the same byte, we only update
	 that byte. */

      uip_reassbitmap[offset / (8 * 8)] |=
	     bitmap_bits[(offset / 8 ) & 7] &
	     ~bitmap_bits[((offset + len) / 8 ) & 7];
    } else {
      /* If the two endpoints are in different bytes, we update the
	 bytes in the endpoints and fill the stuff in-between with
	 0xff. */
      uip_reassbitmap[offset / (8 * 8)] |=
	bitmap_bits[(offset / 8 ) & 7];
      for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) {
	uip_reassbitmap[i] = 0xff;
      }
      uip_reassbitmap[(offset + len) / (8 * 8)] |=
	~bitmap_bits[((offset + len) / 8 ) & 7];
    }

    /* If this fragment has the More Fragments flag set to zero, we
       know that this is the last fragment, so we can calculate the
       size of the entire packet. We also set the
       IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
       the final fragment. */

    if((BUF->ipoffset[0] & IP_MF) == 0) {
      uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
      uip_reasslen = offset + len;
    }

    /* Finally, we check if we have a full packet in the buffer. We do
       this by checking if we have the last fragment and if all bits
       in the bitmap are set. */
    if(uip_reassflags & UIP_REASS_FLAG_LASTFRAG) {
      /* Check all bytes up to and including all but the last byte in
	 the bitmap. */
      for(i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) {
	if(uip_reassbitmap[i] != 0xff) {
	  goto nullreturn;
	}
      }
      /* Check the last byte in the bitmap. It should contain just the
	 right amount of bits. */
      if(uip_reassbitmap[uip_reasslen / (8 * 8)] !=
	 (u8_t)~bitmap_bits[uip_reasslen / 8 & 7]) {
	goto nullreturn;
      }

      /* If we have come this far, we have a full packet in the
	 buffer, so we allocate a pbuf and copy the packet into it. We
	 also reset the timer. */
      uip_reasstmr = 0;
      memcpy(BUF, FBUF, uip_reasslen);

      /* Pretend to be a "normal" (i.e., not fragmented) IP packet
	 from now on. */
      BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
      BUF->len[0] = uip_reasslen >> 8;
      BUF->len[1] = uip_reasslen & 0xff;
      BUF->ipchksum = 0;
      BUF->ipchksum = ~(uip_ipchksum());

      return uip_reasslen;
    }
  }

 nullreturn:
  return 0;
}
#endif /* UIP_REASSEMBLY */
/*---------------------------------------------------------------------------*/
static void
uip_add_rcv_nxt(u16_t n)
{
  uip_add32(uip_conn->rcv_nxt, n);
  uip_conn->rcv_nxt[0] = uip_acc32[0];
  uip_conn->rcv_nxt[1] = uip_acc32[1];
  uip_conn->rcv_nxt[2] = uip_acc32[2];
  uip_conn->rcv_nxt[3] = uip_acc32[3];
}
/*---------------------------------------------------------------------------*/
void
uip_process(u8_t flag)
{
  register struct uip_conn *uip_connr = uip_conn;

#if UIP_UDP
  if(flag == UIP_UDP_SEND_CONN) {
    goto udp_send;
  }
#endif /* UIP_UDP */

  uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN];

  /* Check if we were invoked because of a poll request for a
     particular connection. */
  if(flag == UIP_POLL_REQUEST) {
    if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED &&
       !uip_outstanding(uip_connr)) {
	uip_len = uip_slen = 0;
	uip_flags = UIP_POLL;
	UIP_APPCALL();
	goto appsend;
    }
    goto drop;

    /* Check if we were invoked because of the periodic timer firing. */
  } else if(flag == UIP_TIMER) {
#if UIP_REASSEMBLY
    if(uip_reasstmr != 0) {
      --uip_reasstmr;
    }
#endif /* UIP_REASSEMBLY */
    /* Increase the initial sequence number. */
    if(++iss[3] == 0) {
      if(++iss[2] == 0) {
	if(++iss[1] == 0) {
	  ++iss[0];
	}
      }
    }

    /* Reset the length variables. */
    uip_len = 0;
    uip_slen = 0;

    /* Check if the connection is in a state in which we simply wait
       for the connection to time out. If so, we increase the
       connection's timer and remove the connection if it times
       out. */
    if(uip_connr->tcpstateflags == UIP_TIME_WAIT ||
       uip_connr->tcpstateflags == UIP_FIN_WAIT_2) {
      ++(uip_connr->timer);
      if(uip_connr->timer == UIP_TIME_WAIT_TIMEOUT) {
	uip_connr->tcpstateflags = UIP_CLOSED;
      }
    } else if(uip_connr->tcpstateflags != UIP_CLOSED) {
      /* If the connection has outstanding data, we increase the
	 connection's timer and see if it has reached the RTO value
	 in which case we retransmit. */
      if(uip_outstanding(uip_connr)) {
	if(uip_connr->timer-- == 0) {
	  if(uip_connr->nrtx == UIP_MAXRTX ||
	     ((uip_connr->tcpstateflags == UIP_SYN_SENT ||
	       uip_connr->tcpstateflags == UIP_SYN_RCVD) &&
	      uip_connr->nrtx == UIP_MAXSYNRTX)) {
	    uip_connr->tcpstateflags = UIP_CLOSED;

	    /* We call UIP_APPCALL() with uip_flags set to
	       UIP_TIMEDOUT to inform the application that the
	       connection has timed out. */
	    uip_flags = UIP_TIMEDOUT;
	    UIP_APPCALL();

	    /* We also send a reset packet to the remote host. */
	    BUF->flags = TCP_RST | TCP_ACK;
	    goto tcp_send_nodata;
	  }

	  /* Exponential back-off. */
	  uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4?
					 4:
					 uip_connr->nrtx);
	  ++(uip_connr->nrtx);

	  /* Ok, so we need to retransmit. We do this differently
	     depending on which state we are in. In ESTABLISHED, we
	     call upon the application so that it may prepare the
	     data for the retransmit. In SYN_RCVD, we resend the
	     SYNACK that we sent earlier and in LAST_ACK we have to
	     retransmit our FINACK. */
	  UIP_STAT(++uip_stat.tcp.rexmit);
	  switch(uip_connr->tcpstateflags & UIP_TS_MASK) {
	  case UIP_SYN_RCVD:
	    /* In the SYN_RCVD state, we should retransmit our
               SYNACK. */
	    goto tcp_send_synack;

#if UIP_ACTIVE_OPEN
	  case UIP_SYN_SENT:
	    /* In the SYN_SENT state, we retransmit out SYN. */
	    BUF->flags = 0;
	    goto tcp_send_syn;
#endif /* UIP_ACTIVE_OPEN */

	  case UIP_ESTABLISHED:
	    /* In the ESTABLISHED state, we call upon the application
               to do the actual retransmit after which we jump into
               the code for sending out the packet (the apprexmit
               label). */
	    uip_flags = UIP_REXMIT;
	    UIP_APPCALL();
	    goto apprexmit;

	  case UIP_FIN_WAIT_1:
	  case UIP_CLOSING:
	  case UIP_LAST_ACK:
	    /* In all these states we should retransmit a FINACK. */
	    goto tcp_send_finack;

	  }
	}
      } else if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) {
	/* If there was no need for a retransmission, we poll the
           application for new data. */
	uip_len = uip_slen = 0;
	uip_flags = UIP_POLL;
	UIP_APPCALL();
	goto appsend;
      }
    }
    goto drop;
  }
#if UIP_UDP
  if(flag == UIP_UDP_TIMER) {
    if(uip_udp_conn->lport != 0) {
      uip_conn = NULL;
      uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
      uip_len = uip_slen = 0;
      uip_flags = UIP_POLL;
      UIP_UDP_APPCALL();
      goto udp_send;
    } else {
      goto drop;
    }
  }
#endif

  /* This is where the input processing starts. */
  UIP_STAT(++uip_stat.ip.recv);

  /* Start of IP input header processing code. */

#if UIP_CONF_IPV6
  /* Check validity of the IP header. */
  if((BUF->vtc & 0xf0) != 0x60)  { /* IP version and header length. */
    UIP_STAT(++uip_stat.ip.drop);
    UIP_STAT(++uip_stat.ip.vhlerr);
    UIP_LOG("ipv6: invalid version.");
    goto drop;
  }
#else /* UIP_CONF_IPV6 */
  /* Check validity of the IP header. */
  if(BUF->vhl != 0x45)  { /* IP version and header length. */
    UIP_STAT(++uip_stat.ip.drop);
    UIP_STAT(++uip_stat.ip.vhlerr);
    UIP_LOG("ip: invalid version or header length.");
    goto drop;
  }
#endif /* UIP_CONF_IPV6 */

  /* Check the size of the packet. If the size reported to us in
     uip_len is smaller the size reported in the IP header, we assume
     that the packet has been corrupted in transit. If the size of
     uip_len is larger than the size reported in the IP packet header,
     the packet has been padded and we set uip_len to the correct
     value.. */

  if((BUF->len[0] << 8) + BUF->len[1] <= uip_len) {
    uip_len = (BUF->len[0] << 8) + BUF->len[1];
#if UIP_CONF_IPV6
    uip_len += 40; /* The length reported in the IPv6 header is the
		      length of the payload that follows the
		      header. However, uIP uses the uip_len variable
		      for holding the size of the entire packet,
		      including the IP header. For IPv4 this is not a
		      problem as the length field in the IPv4 header
		      contains the length of the entire packet. But
		      for IPv6 we need to add the size of the IPv6
		      header (40 bytes). */
#endif /* UIP_CONF_IPV6 */
  } else {
    UIP_LOG("ip: packet shorter than reported in IP header.");
    goto drop;
  }

#if !UIP_CONF_IPV6
  /* Check the fragment flag. */
  if((BUF->ipoffset[0] & 0x3f) != 0 ||
     BUF->ipoffset[1] != 0) {
#if UIP_REASSEMBLY
    uip_len = uip_reass();
    if(uip_len == 0) {
      goto drop;
    }
#else /* UIP_REASSEMBLY */
    UIP_STAT(++uip_stat.ip.drop);
    UIP_STAT(++uip_stat.ip.fragerr);
    UIP_LOG("ip: fragment dropped.");
    goto drop;
#endif /* UIP_REASSEMBLY */
  }
#endif /* UIP_CONF_IPV6 */

  if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
    /* If we are configured to use ping IP address configuration and
       hasn't been assigned an IP address yet, we accept all ICMP
       packets. */
#if UIP_PINGADDRCONF && !UIP_CONF_IPV6
    if(BUF->proto == UIP_PROTO_ICMP) {
      UIP_LOG("ip: possible ping config packet received.");
      goto icmp_input;
    } else {
      UIP_LOG("ip: packet dropped since no address assigned.");
      goto drop;
    }
#endif /* UIP_PINGADDRCONF */

  } else {
    /* If IP broadcast support is configured, we check for a broadcast
       UDP packet, which may be destined to us. */
#if UIP_BROADCAST
    DEBUG_PRINTF("UDP IP checksum 0x%04x\n", uip_ipchksum());
    if(BUF->proto == UIP_PROTO_UDP &&
       uip_ipaddr_cmp(&BUF->destipaddr, &uip_broadcast_addr))
	{
		if (uip_ipaddr_cmp(&BUF->srcipaddr, &uip_all_zeroes_addr))
		  uip_ipaddr_copy(&BUF->srcipaddr, &uip_broadcast_addr);

		goto udp_input;
    }
#endif /* UIP_BROADCAST */

    /* Check if the packet is destined for our IP address. */
#if !UIP_CONF_IPV6
    if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr)) {
      UIP_STAT(++uip_stat.ip.drop);
      goto drop;
    }
#else /* UIP_CONF_IPV6 */
    /* For IPv6, packet reception is a little trickier as we need to
       make sure that we listen to certain multicast addresses (all
       hosts multicast address, and the solicited-node multicast
       address) as well. However, we will cheat here and accept all
       multicast packets that are sent to the ff02::/16 addresses. */
    if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) &&
       BUF->destipaddr.u16[0] != HTONS(0xff02)) {
      UIP_STAT(++uip_stat.ip.drop);
      goto drop;
    }
#endif /* UIP_CONF_IPV6 */
  }

#if !UIP_CONF_IPV6
  if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header
				    checksum. */
    UIP_STAT(++uip_stat.ip.drop);
    UIP_STAT(++uip_stat.ip.chkerr);
    UIP_LOG("ip: bad checksum.");
    goto drop;
  }
#endif /* UIP_CONF_IPV6 */

  if(BUF->proto == UIP_PROTO_TCP) { /* Check for TCP packet. If so,
				       proceed with TCP input
				       processing. */
    goto tcp_input;
  }

#if UIP_UDP
  if(BUF->proto == UIP_PROTO_UDP) {
    goto udp_input;
  }
#endif /* UIP_UDP */

#if !UIP_CONF_IPV6
  /* ICMPv4 processing code follows. */
  if(BUF->proto != UIP_PROTO_ICMP) { /* We only allow ICMP packets from
					here. */
    UIP_STAT(++uip_stat.ip.drop);
    UIP_STAT(++uip_stat.ip.protoerr);
    UIP_LOG("ip: neither tcp nor icmp.");
    goto drop;
  }

#if UIP_PINGADDRCONF
 icmp_input:
#endif /* UIP_PINGADDRCONF */
  UIP_STAT(++uip_stat.icmp.recv);

  /* ICMP echo (i.e., ping) processing. This is simple, we only change
     the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP
     checksum before we return the packet. */
  if(ICMPBUF->type != ICMP_ECHO) {
    UIP_STAT(++uip_stat.icmp.drop);
    UIP_STAT(++uip_stat.icmp.typeerr);
    UIP_LOG("icmp: not icmp echo.");
    goto drop;
  }

  /* If we are configured to use ping IP address assignment, we use
     the destination IP address of this ping packet and assign it to
     yourself. */
#if UIP_PINGADDRCONF
  if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
    uip_hostaddr = BUF->destipaddr;
  }
#endif /* UIP_PINGADDRCONF */

  ICMPBUF->type = ICMP_ECHO_REPLY;

  if(ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8))) {
    ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1;
  } else {
    ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8);
  }

  /* Swap IP addresses. */
  uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
  uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);

  UIP_STAT(++uip_stat.icmp.sent);
  BUF->ttl = UIP_TTL;
  goto ip_send_nolen;

  /* End of IPv4 input header processing code. */
#else /* !UIP_CONF_IPV6 */

  /* This is IPv6 ICMPv6 processing code. */
  DEBUG_PRINTF("icmp6_input: length %d\n", uip_len);

  if(BUF->proto != UIP_PROTO_ICMP6) { /* We only allow ICMPv6 packets from
					 here. */
    UIP_STAT(++uip_stat.ip.drop);
    UIP_STAT(++uip_stat.ip.protoerr);
    UIP_LOG("ip: neither tcp nor icmp6.");
    goto drop;
  }

  UIP_STAT(++uip_stat.icmp.recv);

  /* If we get a neighbor solicitation for our address we should send
     a neighbor advertisement message back. */
  if(ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION) {
    if(uip_ipaddr_cmp(&ICMPBUF->icmp6data, &uip_hostaddr)) {

      if(ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS) {
	/* Save the sender's address in our neighbor list. */
	uip_neighbor_add(&ICMPBUF->srcipaddr, &(ICMPBUF->options[2]));
      }

      /* We should now send a neighbor advertisement back to where the
	 neighbor solicitation came from. */
      ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT;
      ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */

      ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0;

      uip_ipaddr_copy(&ICMPBUF->destipaddr, &ICMPBUF->srcipaddr);
      uip_ipaddr_copy(&ICMPBUF->srcipaddr, &uip_hostaddr);
      ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS;
      ICMPBUF->options[1] = 1;  /* Options length, 1 = 8 bytes. */
      memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr));
      ICMPBUF->icmpchksum = 0;
      ICMPBUF->icmpchksum = ~uip_icmp6chksum();

      goto send;

    }
    goto drop;
  } else if(ICMPBUF->type == ICMP6_ECHO) {
    /* ICMP echo (i.e., ping) processing. This is simple, we only
       change the ICMP type from ECHO to ECHO_REPLY and update the
       ICMP checksum before we return the packet. */

    ICMPBUF->type = ICMP6_ECHO_REPLY;

    uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
    uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
    ICMPBUF->icmpchksum = 0;
    ICMPBUF->icmpchksum = ~uip_icmp6chksum();

    UIP_STAT(++uip_stat.icmp.sent);
    goto send;
  } else {
    DEBUG_PRINTF("Unknown icmp6 message type %d\n", ICMPBUF->type);
    UIP_STAT(++uip_stat.icmp.drop);
    UIP_STAT(++uip_stat.icmp.typeerr);
    UIP_LOG("icmp: unknown ICMP message.");
    goto drop;
  }

  /* End of IPv6 ICMP processing. */

#endif /* !UIP_CONF_IPV6 */

#if UIP_UDP
  /* UDP input processing. */
 udp_input:
  /* UDP processing is really just a hack. We don't do anything to the
     UDP/IP headers, but let the UDP application do all the hard
     work. If the application sets uip_slen, it has a packet to
     send. */
#if UIP_UDP_CHECKSUMS
  uip_len = uip_len - UIP_IPUDPH_LEN;
  uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
  if(UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff) {
    UIP_STAT(++uip_stat.udp.drop);
    UIP_STAT(++uip_stat.udp.chkerr);
    UIP_LOG("udp: bad checksum.");
    goto drop;
  }
#else /* UIP_UDP_CHECKSUMS */
  uip_len = uip_len - UIP_IPUDPH_LEN;
#endif /* UIP_UDP_CHECKSUMS */

  /* Demultiplex this UDP packet between the UDP "connections". */
  for(uip_udp_conn = &uip_udp_conns[0];
      uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS];
      ++uip_udp_conn) {
    /* If the local UDP port is non-zero, the connection is considered
       to be used. If so, the local port number is checked against the
       destination port number in the received packet. If the two port
       numbers match, the remote port number is checked if the
       connection is bound to a remote port. Finally, if the
       connection is bound to a remote IP address, the source IP
       address of the packet is checked. */
    if(uip_udp_conn->lport != 0 &&
       UDPBUF->destport == uip_udp_conn->lport &&
       (uip_udp_conn->rport == 0 ||
        UDPBUF->srcport == uip_udp_conn->rport) &&
       (uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_all_zeroes_addr) ||
	uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_broadcast_addr) ||
	uip_ipaddr_cmp(&BUF->srcipaddr, &uip_udp_conn->ripaddr))) {
      goto udp_found;
    }
  }
  UIP_LOG("udp: no matching connection found");
#if UIP_CONF_ICMP_DEST_UNREACH && !UIP_CONF_IPV6
  /* Copy fields from packet header into payload of this ICMP packet. */
  memcpy(&(ICMPBUF->payload[0]), ICMPBUF, UIP_IPH_LEN + 8);

  /* Set the ICMP type and code. */
  ICMPBUF->type = ICMP_DEST_UNREACHABLE;
  ICMPBUF->icode = ICMP_PORT_UNREACHABLE;

  /* Calculate the ICMP checksum. */
  ICMPBUF->icmpchksum = 0;
  ICMPBUF->icmpchksum = ~uip_chksum((u16_t *)&(ICMPBUF->type), 36);

  /* Set the IP destination address to be the source address of the
     original packet. */
  uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);

  /* Set our IP address as the source address. */
  uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);

  /* The size of the ICMP destination unreachable packet is 36 + the
     size of the IP header (20) = 56. */
  uip_len = 36 + UIP_IPH_LEN;
  ICMPBUF->len[0] = 0;
  ICMPBUF->len[1] = (u8_t)uip_len;
  ICMPBUF->ttl = UIP_TTL;
  ICMPBUF->proto = UIP_PROTO_ICMP;

  goto ip_send_nolen;
#else /* UIP_CONF_ICMP_DEST_UNREACH */
  goto drop;
#endif /* UIP_CONF_ICMP_DEST_UNREACH */

 udp_found:
  uip_conn = NULL;
  uip_flags = UIP_NEWDATA;
  uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
  uip_slen = 0;
  UIP_UDP_APPCALL();

 udp_send:
  if(uip_slen == 0) {
    goto drop;
  }
  uip_len = uip_slen + UIP_IPUDPH_LEN;

#if UIP_CONF_IPV6
  /* For IPv6, the IP length field does not include the IPv6 IP header
     length. */
  BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8);
  BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff);
#else /* UIP_CONF_IPV6 */
  BUF->len[0] = (uip_len >> 8);
  BUF->len[1] = (uip_len & 0xff);
#endif /* UIP_CONF_IPV6 */

  BUF->ttl = uip_udp_conn->ttl;
  BUF->proto = UIP_PROTO_UDP;

  UDPBUF->udplen = HTONS(uip_slen + UIP_UDPH_LEN);
  UDPBUF->udpchksum = 0;

  BUF->srcport  = uip_udp_conn->lport;
  BUF->destport = uip_udp_conn->rport;

  uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
  uip_ipaddr_copy(&BUF->destipaddr, &uip_udp_conn->ripaddr);

  uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN];

#if UIP_UDP_CHECKSUMS
  /* Calculate UDP checksum. */
  UDPBUF->udpchksum = ~(uip_udpchksum());
  if(UDPBUF->udpchksum == 0) {
    UDPBUF->udpchksum = 0xffff;
  }
#endif /* UIP_UDP_CHECKSUMS */

  goto ip_send_nolen;
#endif /* UIP_UDP */

  /* TCP input processing. */
 tcp_input:
  UIP_STAT(++uip_stat.tcp.recv);

  /* Start of TCP input header processing code. */

  if(uip_tcpchksum() != 0xffff) {   /* Compute and check the TCP
				       checksum. */
    UIP_STAT(++uip_stat.tcp.drop);
    UIP_STAT(++uip_stat.tcp.chkerr);
    UIP_LOG("tcp: bad checksum.");
    goto drop;
  }

  /* Demultiplex this segment. */
  /* First check any active connections. */
  for(uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1];
      ++uip_connr) {
    if(uip_connr->tcpstateflags != UIP_CLOSED &&
       BUF->destport == uip_connr->lport &&
       BUF->srcport == uip_connr->rport &&
       uip_ipaddr_cmp(&BUF->srcipaddr, &uip_connr->ripaddr)) {
      goto found;
    }
  }

  /* If we didn't find and active connection that expected the packet,
     either this packet is an old duplicate, or this is a SYN packet
     destined for a connection in LISTEN. If the SYN flag isn't set,
     it is an old packet and we send a RST. */
  if((BUF->flags & TCP_CTL) != TCP_SYN) {
    goto reset;
  }

  tmp16 = BUF->destport;
  /* Next, check listening connections. */
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
    if(tmp16 == uip_listenports[c]) {
      goto found_listen;
    }
  }

  /* No matching connection found, so we send a RST packet. */
  UIP_STAT(++uip_stat.tcp.synrst);

 reset:
  /* We do not send resets in response to resets. */
  if(BUF->flags & TCP_RST) {
    goto drop;
  }

  UIP_STAT(++uip_stat.tcp.rst);

  BUF->flags = TCP_RST | TCP_ACK;
  uip_len = UIP_IPTCPH_LEN;
  BUF->tcpoffset = 5 << 4;

  /* Flip the seqno and ackno fields in the TCP header. */
  c = BUF->seqno[3];
  BUF->seqno[3] = BUF->ackno[3];
  BUF->ackno[3] = c;

  c = BUF->seqno[2];
  BUF->seqno[2] = BUF->ackno[2];
  BUF->ackno[2] = c;

  c = BUF->seqno[1];
  BUF->seqno[1] = BUF->ackno[1];
  BUF->ackno[1] = c;

  c = BUF->seqno[0];
  BUF->seqno[0] = BUF->ackno[0];
  BUF->ackno[0] = c;

  /* We also have to increase the sequence number we are
     acknowledging. If the least significant byte overflowed, we need
     to propagate the carry to the other bytes as well. */
  if(++BUF->ackno[3] == 0) {
    if(++BUF->ackno[2] == 0) {
      if(++BUF->ackno[1] == 0) {
	++BUF->ackno[0];
      }
    }
  }

  /* Swap port numbers. */
  tmp16 = BUF->srcport;
  BUF->srcport = BUF->destport;
  BUF->destport = tmp16;

  /* Swap IP addresses. */
  uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
  uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);

  /* And send out the RST packet! */
  goto tcp_send_noconn;

  /* This label will be jumped to if we matched the incoming packet
     with a connection in LISTEN. In that case, we should create a new
     connection and send a SYNACK in return. */
 found_listen:
  /* First we check if there are any connections available. Unused
     connections are kept in the same table as used connections, but
     unused ones have the tcpstate set to CLOSED. Also, connections in
     TIME_WAIT are kept track of and we'll use the oldest one if no
     CLOSED connections are found. Thanks to Eddie C. Dost for a very
     nice algorithm for the TIME_WAIT search. */
  uip_connr = 0;
  for(c = 0; c < UIP_CONNS; ++c) {
    if(uip_conns[c].tcpstateflags == UIP_CLOSED) {
      uip_connr = &uip_conns[c];
      break;
    }
    if(uip_conns[c].tcpstateflags == UIP_TIME_WAIT) {
      if(uip_connr == 0 ||
	 uip_conns[c].timer > uip_connr->timer) {
	uip_connr = &uip_conns[c];
      }
    }
  }

  if(uip_connr == 0) {
    /* All connections are used already, we drop packet and hope that
       the remote end will retransmit the packet at a time when we
       have more spare connections. */
    UIP_STAT(++uip_stat.tcp.syndrop);
    UIP_LOG("tcp: found no unused connections.");
    goto drop;
  }
  uip_conn = uip_connr;

  /* Fill in the necessary fields for the new connection. */
  uip_connr->rto = uip_connr->timer = UIP_RTO;
  uip_connr->sa = 0;
  uip_connr->sv = 4;
  uip_connr->nrtx = 0;
  uip_connr->lport = BUF->destport;
  uip_connr->rport = BUF->srcport;
  uip_ipaddr_copy(&uip_connr->ripaddr, &BUF->srcipaddr);
  uip_connr->tcpstateflags = UIP_SYN_RCVD;

  uip_connr->snd_nxt[0] = iss[0];
  uip_connr->snd_nxt[1] = iss[1];
  uip_connr->snd_nxt[2] = iss[2];
  uip_connr->snd_nxt[3] = iss[3];
  uip_connr->len = 1;

  /* rcv_nxt should be the seqno from the incoming packet + 1. */
  uip_connr->rcv_nxt[3] = BUF->seqno[3];
  uip_connr->rcv_nxt[2] = BUF->seqno[2];
  uip_connr->rcv_nxt[1] = BUF->seqno[1];
  uip_connr->rcv_nxt[0] = BUF->seqno[0];
  uip_add_rcv_nxt(1);

  /* Parse the TCP MSS option, if present. */
  if((BUF->tcpoffset & 0xf0) > 0x50) {
    for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
      opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c];
      if(opt == TCP_OPT_END) {
	/* End of options. */
	break;
      } else if(opt == TCP_OPT_NOOP) {
	++c;
	/* NOP option. */
      } else if(opt == TCP_OPT_MSS &&
		uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) {
	/* An MSS option with the right option length. */
	tmp16 = ((u16_t)uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
	  (u16_t)uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c];
	uip_connr->initialmss = uip_connr->mss =
	  tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;

	/* And we are done processing options. */
	break;
      } else {
	/* All other options have a length field, so that we easily
	   can skip past them. */
	if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
	  /* If the length field is zero, the options are malformed
	     and we don't process them further. */
	  break;
	}
	c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
      }
    }
  }

  /* Our response will be a SYNACK. */
#if UIP_ACTIVE_OPEN
 tcp_send_synack:
  BUF->flags = TCP_ACK;

 tcp_send_syn:
  BUF->flags |= TCP_SYN;
#else /* UIP_ACTIVE_OPEN */
 tcp_send_synack:
  BUF->flags = TCP_SYN | TCP_ACK;
#endif /* UIP_ACTIVE_OPEN */

  /* We send out the TCP Maximum Segment Size option with our
     SYNACK. */
  BUF->optdata[0] = TCP_OPT_MSS;
  BUF->optdata[1] = TCP_OPT_MSS_LEN;
  BUF->optdata[2] = (UIP_TCP_MSS) / 256;
  BUF->optdata[3] = (UIP_TCP_MSS) & 255;
  uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN;
  BUF->tcpoffset = ((UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4) << 4;
  goto tcp_send;

  /* This label will be jumped to if we found an active connection. */
 found:
  uip_conn = uip_connr;
  uip_flags = 0;
  /* We do a very naive form of TCP reset processing; we just accept
     any RST and kill our connection. We should in fact check if the
     sequence number of this reset is within our advertised window
     before we accept the reset. */
  if(BUF->flags & TCP_RST) {
    uip_connr->tcpstateflags = UIP_CLOSED;
    UIP_LOG("tcp: got reset, aborting connection.");
    uip_flags = UIP_ABORT;
    UIP_APPCALL();
    goto drop;
  }
  /* Calculate the length of the data, if the application has sent
     any data to us. */
  c = (BUF->tcpoffset >> 4) << 2;
  /* uip_len will contain the length of the actual TCP data. This is
     calculated by subtracing the length of the TCP header (in
     c) and the length of the IP header (20 bytes). */
  uip_len = uip_len - c - UIP_IPH_LEN;

  /* First, check if the sequence number of the incoming packet is
     what we're expecting next. If not, we send out an ACK with the
     correct numbers in. */
  if(!(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) &&
       ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)))) {
    if((uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) &&
       (BUF->seqno[0] != uip_connr->rcv_nxt[0] ||
	BUF->seqno[1] != uip_connr->rcv_nxt[1] ||
	BUF->seqno[2] != uip_connr->rcv_nxt[2] ||
	BUF->seqno[3] != uip_connr->rcv_nxt[3])) {
      goto tcp_send_ack;
    }
  }

  /* Next, check if the incoming segment acknowledges any outstanding
     data. If so, we update the sequence number, reset the length of
     the outstanding data, calculate RTT estimations, and reset the
     retransmission timer. */
  if((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr)) {
    uip_add32(uip_connr->snd_nxt, uip_connr->len);

    if(BUF->ackno[0] == uip_acc32[0] &&
       BUF->ackno[1] == uip_acc32[1] &&
       BUF->ackno[2] == uip_acc32[2] &&
       BUF->ackno[3] == uip_acc32[3]) {
      /* Update sequence number. */
      uip_connr->snd_nxt[0] = uip_acc32[0];
      uip_connr->snd_nxt[1] = uip_acc32[1];
      uip_connr->snd_nxt[2] = uip_acc32[2];
      uip_connr->snd_nxt[3] = uip_acc32[3];

      /* Do RTT estimation, unless we have done retransmissions. */
      if(uip_connr->nrtx == 0) {
	signed char m;
	m = uip_connr->rto - uip_connr->timer;
	/* This is taken directly from VJs original code in his paper */
	m = m - (uip_connr->sa >> 3);
	uip_connr->sa += m;
	if(m < 0) {
	  m = -m;
	}
	m = m - (uip_connr->sv >> 2);
	uip_connr->sv += m;
	uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv;

      }
      /* Set the acknowledged flag. */
      uip_flags = UIP_ACKDATA;
      /* Reset the retransmission timer. */
      uip_connr->timer = uip_connr->rto;

      /* Reset length of outstanding data. */
      uip_connr->len = 0;
    }

  }

  /* Do different things depending on in what state the connection is. */
  switch(uip_connr->tcpstateflags & UIP_TS_MASK) {
    /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not
	implemented, since we force the application to close when the
	peer sends a FIN (hence the application goes directly from
	ESTABLISHED to LAST_ACK). */
  case UIP_SYN_RCVD:
    /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and
       we are waiting for an ACK that acknowledges the data we sent
       out the last time. Therefore, we want to have the UIP_ACKDATA
       flag set. If so, we enter the ESTABLISHED state. */
    if(uip_flags & UIP_ACKDATA) {
      uip_connr->tcpstateflags = UIP_ESTABLISHED;
      uip_flags = UIP_CONNECTED;
      uip_connr->len = 0;
      if(uip_len > 0) {
        uip_flags |= UIP_NEWDATA;
        uip_add_rcv_nxt(uip_len);
      }
      uip_slen = 0;
      UIP_APPCALL();
      goto appsend;
    }
    goto drop;
#if UIP_ACTIVE_OPEN
  case UIP_SYN_SENT:
    /* In SYN_SENT, we wait for a SYNACK that is sent in response to
       our SYN. The rcv_nxt is set to sequence number in the SYNACK
       plus one, and we send an ACK. We move into the ESTABLISHED
       state. */
    if((uip_flags & UIP_ACKDATA) &&
       (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)) {

      /* Parse the TCP MSS option, if present. */
      if((BUF->tcpoffset & 0xf0) > 0x50) {
	for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
	  opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c];
	  if(opt == TCP_OPT_END) {
	    /* End of options. */
	    break;
	  } else if(opt == TCP_OPT_NOOP) {
	    ++c;
	    /* NOP option. */
	  } else if(opt == TCP_OPT_MSS &&
		    uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) {
	    /* An MSS option with the right option length. */
	    tmp16 = (uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
	      uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c];
	    uip_connr->initialmss =
	      uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;

	    /* And we are done processing options. */
	    break;
	  } else {
	    /* All other options have a length field, so that we easily
	       can skip past them. */
	    if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
	      /* If the length field is zero, the options are malformed
		 and we don't process them further. */
	      break;
	    }
	    c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
	  }
	}
      }
      uip_connr->tcpstateflags = UIP_ESTABLISHED;
      uip_connr->rcv_nxt[0] = BUF->seqno[0];
      uip_connr->rcv_nxt[1] = BUF->seqno[1];
      uip_connr->rcv_nxt[2] = BUF->seqno[2];
      uip_connr->rcv_nxt[3] = BUF->seqno[3];
      uip_add_rcv_nxt(1);
      uip_flags = UIP_CONNECTED | UIP_NEWDATA;
      uip_connr->len = 0;
      uip_len = 0;
      uip_slen = 0;
      UIP_APPCALL();
      goto appsend;
    }
    /* Inform the application that the connection failed */
    uip_flags = UIP_ABORT;
    UIP_APPCALL();
    /* The connection is closed after we send the RST */
    uip_conn->tcpstateflags = UIP_CLOSED;
    goto reset;
#endif /* UIP_ACTIVE_OPEN */

  case UIP_ESTABLISHED:
    /* In the ESTABLISHED state, we call upon the application to feed
    data into the uip_buf. If the UIP_ACKDATA flag is set, the
    application should put new data into the buffer, otherwise we are
    retransmitting an old segment, and the application should put that
    data into the buffer.

    If the incoming packet is a FIN, we should close the connection on
    this side as well, and we send out a FIN and enter the LAST_ACK
    state. We require that there is no outstanding data; otherwise the
    sequence numbers will be screwed up. */

    if(BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED)) {
      if(uip_outstanding(uip_connr)) {
	goto drop;
      }
      uip_add_rcv_nxt(1 + uip_len);
      uip_flags |= UIP_CLOSE;
      if(uip_len > 0) {
	uip_flags |= UIP_NEWDATA;
      }
      UIP_APPCALL();
      uip_connr->len = 1;
      uip_connr->tcpstateflags = UIP_LAST_ACK;
      uip_connr->nrtx = 0;
    tcp_send_finack:
      BUF->flags = TCP_FIN | TCP_ACK;
      goto tcp_send_nodata;
    }

    /* Check the URG flag. If this is set, the segment carries urgent
       data that we must pass to the application. */
    if((BUF->flags & TCP_URG) != 0) {
#if UIP_URGDATA > 0
      uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1];
      if(uip_urglen > uip_len) {
	/* There is more urgent data in the next segment to come. */
	uip_urglen = uip_len;
      }
      uip_add_rcv_nxt(uip_urglen);
      uip_len -= uip_urglen;
      uip_urgdata = uip_appdata;
      uip_appdata += uip_urglen;
    } else {
      uip_urglen = 0;
#else /* UIP_URGDATA > 0 */
      uip_appdata = ((char *)uip_appdata) + ((BUF->urgp[0] << 8) | BUF->urgp[1]);
      uip_len -= (BUF->urgp[0] << 8) | BUF->urgp[1];
#endif /* UIP_URGDATA > 0 */
    }

    /* If uip_len > 0 we have TCP data in the packet, and we flag this
       by setting the UIP_NEWDATA flag and update the sequence number
       we acknowledge. If the application has stopped the dataflow
       using uip_stop(), we must not accept any data packets from the
       remote host. */
    if(uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED)) {
      uip_flags |= UIP_NEWDATA;
      uip_add_rcv_nxt(uip_len);
    }

    /* Check if the available buffer space advertised by the other end
       is smaller than the initial MSS for this connection. If so, we
       set the current MSS to the window size to ensure that the
       application does not send more data than the other end can
       handle.

       If the remote host advertises a zero window, we set the MSS to
       the initial MSS so that the application will send an entire MSS
       of data. This data will not be acknowledged by the receiver,
       and the application will retransmit it. This is called the
       "persistent timer" and uses the retransmission mechanism.
    */
    tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1];
    if(tmp16 > uip_connr->initialmss ||
       tmp16 == 0) {
      tmp16 = uip_connr->initialmss;
    }
    uip_connr->mss = tmp16;

    /* If this packet constitutes an ACK for outstanding data (flagged
       by the UIP_ACKDATA flag, we should call the application since it
       might want to send more data. If the incoming packet had data
       from the peer (as flagged by the UIP_NEWDATA flag), the
       application must also be notified.

       When the application is called, the global variable uip_len
       contains the length of the incoming data. The application can
       access the incoming data through the global pointer
       uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN
       bytes into the uip_buf array.

       If the application wishes to send any data, this data should be
       put into the uip_appdata and the length of the data should be
       put into uip_len. If the application don't have any data to
       send, uip_len must be set to 0. */
    if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) {
      uip_slen = 0;
      UIP_APPCALL();

    appsend:

      if(uip_flags & UIP_ABORT) {
	uip_slen = 0;
	uip_connr->tcpstateflags = UIP_CLOSED;
	BUF->flags = TCP_RST | TCP_ACK;
	goto tcp_send_nodata;
      }

      if(uip_flags & UIP_CLOSE) {
	uip_slen = 0;
	uip_connr->len = 1;
	uip_connr->tcpstateflags = UIP_FIN_WAIT_1;
	uip_connr->nrtx = 0;
	BUF->flags = TCP_FIN | TCP_ACK;
	goto tcp_send_nodata;
      }

      /* If uip_slen > 0, the application has data to be sent. */
      if(uip_slen > 0) {

	/* If the connection has acknowledged data, the contents of
	   the ->len variable should be discarded. */
	if((uip_flags & UIP_ACKDATA) != 0) {
	  uip_connr->len = 0;
	}

	/* If the ->len variable is non-zero the connection has
	   already data in transit and cannot send anymore right
	   now. */
	if(uip_connr->len == 0) {

	  /* The application cannot send more than what is allowed by
	     the mss (the minumum of the MSS and the available
	     window). */
	  if(uip_slen > uip_connr->mss) {
	    uip_slen = uip_connr->mss;
	  }

	  /* Remember how much data we send out now so that we know
	     when everything has been acknowledged. */
	  uip_connr->len = uip_slen;
	} else {

	  /* If the application already had unacknowledged data, we
	     make sure that the application does not send (i.e.,
	     retransmit) out more than it previously sent out. */
	  uip_slen = uip_connr->len;
	}
      }
      uip_connr->nrtx = 0;
    apprexmit:
      uip_appdata = uip_sappdata;

      /* If the application has data to be sent, or if the incoming
         packet had new data in it, we must send out a packet. */
      if(uip_slen > 0 && uip_connr->len > 0) {
	/* Add the length of the IP and TCP headers. */
	uip_len = uip_connr->len + UIP_TCPIP_HLEN;
	/* We always set the ACK flag in response packets. */
	BUF->flags = TCP_ACK | TCP_PSH;
	/* Send the packet. */
	goto tcp_send_noopts;
      }
      /* If there is no data to send, just send out a pure ACK if
	 there is newdata. */
      if(uip_flags & UIP_NEWDATA) {
	uip_len = UIP_TCPIP_HLEN;
	BUF->flags = TCP_ACK;
	goto tcp_send_noopts;
      }
    }
    goto drop;
  case UIP_LAST_ACK:
    /* We can close this connection if the peer has acknowledged our
       FIN. This is indicated by the UIP_ACKDATA flag. */
    if(uip_flags & UIP_ACKDATA) {
      uip_connr->tcpstateflags = UIP_CLOSED;
      uip_flags = UIP_CLOSE;
      UIP_APPCALL();
    }
    break;

  case UIP_FIN_WAIT_1:
    /* The application has closed the connection, but the remote host
       hasn't closed its end yet. Thus we do nothing but wait for a
       FIN from the other side. */
    if(uip_len > 0) {
      uip_add_rcv_nxt(uip_len);
    }
    if(BUF->flags & TCP_FIN) {
      if(uip_flags & UIP_ACKDATA) {
	uip_connr->tcpstateflags = UIP_TIME_WAIT;
	uip_connr->timer = 0;
	uip_connr->len = 0;
      } else {
	uip_connr->tcpstateflags = UIP_CLOSING;
      }
      uip_add_rcv_nxt(1);
      uip_flags = UIP_CLOSE;
      UIP_APPCALL();
      goto tcp_send_ack;
    } else if(uip_flags & UIP_ACKDATA) {
      uip_connr->tcpstateflags = UIP_FIN_WAIT_2;
      uip_connr->len = 0;
      goto drop;
    }
    if(uip_len > 0) {
      goto tcp_send_ack;
    }
    goto drop;

  case UIP_FIN_WAIT_2:
    if(uip_len > 0) {
      uip_add_rcv_nxt(uip_len);
    }
    if(BUF->flags & TCP_FIN) {
      uip_connr->tcpstateflags = UIP_TIME_WAIT;
      uip_connr->timer = 0;
      uip_add_rcv_nxt(1);
      uip_flags = UIP_CLOSE;
      UIP_APPCALL();
      goto tcp_send_ack;
    }
    if(uip_len > 0) {
      goto tcp_send_ack;
    }
    goto drop;

  case UIP_TIME_WAIT:
    goto tcp_send_ack;

  case UIP_CLOSING:
    if(uip_flags & UIP_ACKDATA) {
      uip_connr->tcpstateflags = UIP_TIME_WAIT;
      uip_connr->timer = 0;
    }
  }
  goto drop;

  /* We jump here when we are ready to send the packet, and just want
     to set the appropriate TCP sequence numbers in the TCP header. */
 tcp_send_ack:
  BUF->flags = TCP_ACK;

 tcp_send_nodata:
  uip_len = UIP_IPTCPH_LEN;

 tcp_send_noopts:
  BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4;

  /* We're done with the input processing. We are now ready to send a
     reply. Our job is to fill in all the fields of the TCP and IP
     headers before calculating the checksum and finally send the
     packet. */
 tcp_send:
  BUF->ackno[0] = uip_connr->rcv_nxt[0];
  BUF->ackno[1] = uip_connr->rcv_nxt[1];
  BUF->ackno[2] = uip_connr->rcv_nxt[2];
  BUF->ackno[3] = uip_connr->rcv_nxt[3];

  BUF->seqno[0] = uip_connr->snd_nxt[0];
  BUF->seqno[1] = uip_connr->snd_nxt[1];
  BUF->seqno[2] = uip_connr->snd_nxt[2];
  BUF->seqno[3] = uip_connr->snd_nxt[3];

  BUF->proto = UIP_PROTO_TCP;

  BUF->srcport  = uip_connr->lport;
  BUF->destport = uip_connr->rport;

  uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
  uip_ipaddr_copy(&BUF->destipaddr, &uip_connr->ripaddr);

  if(uip_connr->tcpstateflags & UIP_STOPPED) {
    /* If the connection has issued uip_stop(), we advertise a zero
       window so that the remote host will stop sending data. */
    BUF->wnd[0] = BUF->wnd[1] = 0;
  } else {
    BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8);
    BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff);
  }

 tcp_send_noconn:
  BUF->ttl = UIP_TTL;
#if UIP_CONF_IPV6
  /* For IPv6, the IP length field does not include the IPv6 IP header
     length. */
  BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8);
  BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff);
#else /* UIP_CONF_IPV6 */
  BUF->len[0] = (uip_len >> 8);
  BUF->len[1] = (uip_len & 0xff);
#endif /* UIP_CONF_IPV6 */

  BUF->urgp[0] = BUF->urgp[1] = 0;

  /* Calculate TCP checksum. */
  BUF->tcpchksum = 0;
  BUF->tcpchksum = ~(uip_tcpchksum());

 ip_send_nolen:
#if UIP_CONF_IPV6
  BUF->vtc = 0x60;
  BUF->tcflow = 0x00;
  BUF->flow = 0x00;
#else /* UIP_CONF_IPV6 */
  BUF->vhl = 0x45;
  BUF->tos = 0;
  BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
  ++ipid;
  BUF->ipid[0] = ipid >> 8;
  BUF->ipid[1] = ipid & 0xff;
  /* Calculate IP checksum. */
  BUF->ipchksum = 0;
  BUF->ipchksum = ~(uip_ipchksum());
  DEBUG_PRINTF("uip ip_send_nolen: checksum 0x%04x\n", uip_ipchksum());
#endif /* UIP_CONF_IPV6 */
  UIP_STAT(++uip_stat.tcp.sent);
#if UIP_CONF_IPV6
 send:
#endif /* UIP_CONF_IPV6 */
  DEBUG_PRINTF("Sending packet with length %d (%d)\n", uip_len,
	       (BUF->len[0] << 8) | BUF->len[1]);

  UIP_STAT(++uip_stat.ip.sent);
  /* Return and let the caller do the actual transmission. */
  uip_flags = 0;
  return;

 drop:
  uip_len = 0;
  uip_flags = 0;
  return;
}
/*---------------------------------------------------------------------------*/
u16_t
htons(u16_t val)
{
  return HTONS(val);
}

u32_t
htonl(u32_t val)
{
  return HTONL(val);
}
/*---------------------------------------------------------------------------*/
void
uip_send(const void *data, int len)
{
  int copylen;
#define MIN(a,b) ((a) < (b)? (a): (b))
  copylen = MIN(len, UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN -
		(int)((char *)uip_sappdata - (char *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]));
  if(copylen > 0) {
    uip_slen = copylen;
    if(data != uip_sappdata) {
      memcpy(uip_sappdata, (data), uip_slen);
    }
  }
}
/*---------------------------------------------------------------------------*/
/** @} */
#endif /* UIP_CONF_IPV6 */