BootloaderDFU.c 25.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
/*
             LUFA Library
     Copyright (C) Dean Camera, 2019.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2019  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADER_C
#include "BootloaderDFU.h"

/** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
 *  other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
 *  once a memory erase has completed in a bootloader session.
 */
static bool IsSecure = SECURE_MODE;

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
 */
static bool RunBootloader = true;

/** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
 *  jump to the application address it specifies, it sends two sequential commands which must be properly
 *  acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
 *  causing the bootloader to wait for the final exit command before shutting down.
 */
static bool WaitForExit = false;

/** Current DFU state machine state, one of the values in the DFU_State_t enum. */
static uint8_t DFU_State = dfuIDLE;

/** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
 *  each operation, and returned to the host when a Get Status DFU request is issued.
 */
static uint8_t DFU_Status = OK;

/** Data containing the DFU command sent from the host. */
static DFU_Command_t SentCommand;

/** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
 *  requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
 *  is issued by the host.
 */
static uint8_t ResponseByte;

/** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
 *  may specify an alternate address when issuing the application soft-start command.
 */
static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;

/** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
 *  64KB of flash memory.
 */
static uint8_t Flash64KBPage = 0;

/** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
 *  depending on the issued command from the host).
 */
static uint16_t StartAddr = 0x0000;

/** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
 *  of EEPROM depending on the issued command from the host).
 */
static uint16_t EndAddr = 0x0000;

/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
uint16_t MagicBootKey ATTR_NO_INIT;


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
	bool JumpToApplication = false;

	#if (BOARD == BOARD_LEONARDO)
		/* Enable pull-up on the IO13 pin so we can use it to select the mode */
		PORTC |= (1 << 7);
		Delay_MS(10);

		/* If IO13 is not jumpered to ground, start the user application instead */
		JumpToApplication = ((PINC & (1 << 7)) != 0);

		/* Disable pull-up after the check has completed */
		PORTC &= ~(1 << 7);
	#elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
		/* Disable JTAG debugging */
		JTAG_DISABLE();

		/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
		PORTF |= (1 << 4);
		Delay_MS(10);

		/* If the TCK pin is not jumpered to ground, start the user application instead */
		JumpToApplication = ((PINF & (1 << 4)) != 0);

		/* Re-enable JTAG debugging */
		JTAG_ENABLE();
	#else
		/* Check if the device's BOOTRST fuse is set */
		if (!(BootloaderAPI_ReadFuse(GET_HIGH_FUSE_BITS) & ~FUSE_BOOTRST))
		{
			/* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
			if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
			  JumpToApplication = true;

			/* Clear reset source */
			MCUSR &= ~(1 << EXTRF);
		}
		else
		{
			/* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
			 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
			if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
				JumpToApplication = true;

			/* Clear reset source */
			MCUSR &= ~(1 << WDRF);
		}
	#endif

	/* Don't run the user application if the reset vector is blank (no app loaded) */
	bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);

	/* If a request has been made to jump to the user application, honor it */
	if (JumpToApplication && ApplicationValid)
	{
		/* Turn off the watchdog */
		MCUSR &= ~(1 << WDRF);
		wdt_disable();

		/* Clear the boot key and jump to the user application */
		MagicBootKey = 0;

		// cppcheck-suppress constStatement
		((void (*)(void))0x0000)();
	}
}

/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Configure hardware required by the bootloader */
	SetupHardware();

	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

	/* Enable global interrupts so that the USB stack can function */
	GlobalInterruptEnable();

	/* Run the USB management task while the bootloader is supposed to be running */
	while (RunBootloader || WaitForExit)
	  USB_USBTask();

	/* Wait a short time to end all USB transactions and then disconnect */
	_delay_us(1000);

	/* Reset configured hardware back to their original states for the user application */
	ResetHardware();

	/* Start the user application */
	AppStartPtr();
}

/** Configures all hardware required for the bootloader. */
static void SetupHardware(void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);

	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

	/* Initialize the USB and other board hardware drivers */
	USB_Init();
	LEDs_Init();

	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
	TCCR1B = ((1 << CS11) | (1 << CS10));
}

/** Resets all configured hardware required for the bootloader back to their original states. */
static void ResetHardware(void)
{
	/* Shut down the USB and other board hardware drivers */
	USB_Disable();
	LEDs_Disable();

	/* Disable Bootloader active LED toggle timer */
	TIMSK1 = 0;
	TCCR1B = 0;

	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
}

/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
 */
void EVENT_USB_Device_ControlRequest(void)
{
	/* Ignore any requests that aren't directed to the DFU interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

	/* Get the size of the command and data from the wLength value */
	SentCommand.DataSize = USB_ControlRequest.wLength;

	switch (USB_ControlRequest.bRequest)
	{
		case DFU_REQ_DNLOAD:
			Endpoint_ClearSETUP();

			/* Check if bootloader is waiting to terminate */
			if (WaitForExit)
			{
				/* Bootloader is terminating - process last received command */
				ProcessBootloaderCommand();

				/* Indicate that the last command has now been processed - free to exit bootloader */
				WaitForExit = false;
			}

			/* If the request has a data stage, load it into the command struct */
			if (SentCommand.DataSize)
			{
				while (!(Endpoint_IsOUTReceived()))
				{
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}

				/* First byte of the data stage is the DNLOAD request's command */
				SentCommand.Command = Endpoint_Read_8();

				/* One byte of the data stage is the command, so subtract it from the total data bytes */
				SentCommand.DataSize--;

				/* Load in the rest of the data stage as command parameters */
				for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
				     Endpoint_BytesInEndpoint(); DataByte++)
				{
					SentCommand.Data[DataByte] = Endpoint_Read_8();
					SentCommand.DataSize--;
				}

				/* Process the command */
				ProcessBootloaderCommand();
			}

			/* Check if currently downloading firmware */
			if (DFU_State == dfuDNLOAD_IDLE)
			{
				if (!(SentCommand.DataSize))
				{
					DFU_State = dfuIDLE;
				}
				else
				{
					/* Throw away the filler bytes before the start of the firmware */
					DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);

					/* Throw away the packet alignment filler bytes before the start of the firmware */
					DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);

					/* Calculate the number of bytes remaining to be written */
					uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

					if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))        // Write flash
					{
						/* Calculate the number of words to be written from the number of bytes to be written */
						uint16_t WordsRemaining = (BytesRemaining >> 1);

						union
						{
							uint16_t Words[2];
							uint32_t Long;
						} CurrFlashAddress                 = {.Words = {StartAddr, Flash64KBPage}};

						uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
						uint8_t  WordsInFlashPage          = 0;

						while (WordsRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
								{
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Write the next word into the current flash page */
							BootloaderAPI_FillWord(CurrFlashAddress.Long, Endpoint_Read_16_LE());

							/* Adjust counters */
							WordsInFlashPage      += 1;
							CurrFlashAddress.Long += 2;

							/* See if an entire page has been written to the flash page buffer */
							if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
							{
								/* Commit the flash page to memory */
								BootloaderAPI_WritePage(CurrFlashPageStartAddress);

								/* Check if programming incomplete */
								if (WordsRemaining)
								{
									CurrFlashPageStartAddress = CurrFlashAddress.Long;
									WordsInFlashPage          = 0;

									/* Erase next page's temp buffer */
									BootloaderAPI_ErasePage(CurrFlashAddress.Long);
								}
							}
						}

						/* Once programming complete, start address equals the end address */
						StartAddr = EndAddr;
					}
					else                                                   // Write EEPROM
					{
						while (BytesRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
								{
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Read the byte from the USB interface and write to to the EEPROM */
							eeprom_update_byte((uint8_t*)StartAddr, Endpoint_Read_8());

							/* Adjust counters */
							StartAddr++;
						}
					}

					/* Throw away the currently unused DFU file suffix */
					DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
				}
			}

			Endpoint_ClearOUT();

			Endpoint_ClearStatusStage();

			break;
		case DFU_REQ_UPLOAD:
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

			if (DFU_State != dfuUPLOAD_IDLE)
			{
				if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))       // Blank Check
				{
					/* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
					   that the memory isn't blank, and the host is requesting the first non-blank address */
					Endpoint_Write_16_LE(StartAddr);
				}
				else
				{
					/* Idle state upload - send response to last issued command */
					Endpoint_Write_8(ResponseByte);
				}
			}
			else
			{
				/* Determine the number of bytes remaining in the current block */
				uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

				if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))            // Read FLASH
				{
					/* Calculate the number of words to be written from the number of bytes to be written */
					uint16_t WordsRemaining = (BytesRemaining >> 1);

					union
					{
						uint16_t Words[2];
						uint32_t Long;
					} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};

					while (WordsRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();

							while (!(Endpoint_IsINReady()))
							{
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the flash word and send it via USB to the host */
						#if (FLASHEND > 0xFFFF)
							Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
						#else
							Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
						#endif

						/* Adjust counters */
						CurrFlashAddress.Long += 2;
					}

					/* Once reading is complete, start address equals the end address */
					StartAddr = EndAddr;
				}
				else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))       // Read EEPROM
				{
					while (BytesRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();

							while (!(Endpoint_IsINReady()))
							{
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the EEPROM byte and send it via USB to the host */
						Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));

						/* Adjust counters */
						StartAddr++;
					}
				}

				/* Return to idle state */
				DFU_State = dfuIDLE;
			}

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_GETSTATUS:
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

			/* Write 8-bit status value */
			Endpoint_Write_8(DFU_Status);

			/* Write 24-bit poll timeout value */
			Endpoint_Write_8(0);
			Endpoint_Write_16_LE(0);

			/* Write 8-bit state value */
			Endpoint_Write_8(DFU_State);

			/* Write 8-bit state string ID number */
			Endpoint_Write_8(0);

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_CLRSTATUS:
			Endpoint_ClearSETUP();

			/* Reset the status value variable to the default OK status */
			DFU_Status = OK;

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_GETSTATE:
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

			/* Write the current device state to the endpoint */
			Endpoint_Write_8(DFU_State);

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
		case DFU_REQ_ABORT:
			Endpoint_ClearSETUP();

			/* Reset the current state variable to the default idle state */
			DFU_State = dfuIDLE;

			Endpoint_ClearStatusStage();
			break;
	}
}

/** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
 *  discard unused bytes in the stream from the host, including the memory program block suffix.
 *
 *  \param[in] NumberOfBytes  Number of bytes to discard from the host from the control endpoint
 */
static void DiscardFillerBytes(uint8_t NumberOfBytes)
{
	while (NumberOfBytes--)
	{
		if (!(Endpoint_BytesInEndpoint()))
		{
			Endpoint_ClearOUT();

			/* Wait until next data packet received */
			while (!(Endpoint_IsOUTReceived()))
			{
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
		}
		else
		{
			Endpoint_Discard_8();
		}
	}
}

/** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
 *  that the command is allowed based on the current secure mode flag value, and passes the command off to the
 *  appropriate handler function.
 */
static void ProcessBootloaderCommand(void)
{
	/* Check if device is in secure mode */
	if (IsSecure)
	{
		/* Don't process command unless it is a READ or chip erase command */
		if (!(((SentCommand.Command == COMMAND_WRITE)             &&
		        IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
			   (SentCommand.Command == COMMAND_READ)))
		{
			/* Set the state and status variables to indicate the error */
			DFU_State  = dfuERROR;
			DFU_Status = errWRITE;

			/* Stall command */
			Endpoint_StallTransaction();

			/* Don't process the command */
			return;
		}
	}

	/* Dispatch the required command processing routine based on the command type */
	switch (SentCommand.Command)
	{
		case COMMAND_PROG_START:
			ProcessMemProgCommand();
			break;
		case COMMAND_DISP_DATA:
			ProcessMemReadCommand();
			break;
		case COMMAND_WRITE:
			ProcessWriteCommand();
			break;
		case COMMAND_READ:
			ProcessReadCommand();
			break;
		case COMMAND_CHANGE_BASE_ADDR:
			if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00))              // Set 64KB flash page command
			  Flash64KBPage = SentCommand.Data[2];

			break;
	}
}

/** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
 *  in the StartAddr and EndAddr global variables.
 */
static void LoadStartEndAddresses(void)
{
	union
	{
		uint8_t  Bytes[2];
		uint16_t Word;
	} Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
	                {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};

	/* Load in the start and ending read addresses from the sent data packet */
	StartAddr = Address[0].Word;
	EndAddr   = Address[1].Word;
}

/** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
 *  to write subsequent data from the host into the specified memory.
 */
static void ProcessMemProgCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Write FLASH command
	    IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                            // Write EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* If FLASH is being written to, we need to pre-erase the first page to write to */
		if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
		{
			union
			{
				uint16_t Words[2];
				uint32_t Long;
			} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};

			/* Erase the current page's temp buffer */
			BootloaderAPI_ErasePage(CurrFlashAddress.Long);
		}

		/* Set the state so that the next DNLOAD requests reads in the firmware */
		DFU_State = dfuDNLOAD_IDLE;
	}
}

/** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
 *  to read subsequent data from the specified memory out to the host, as well as implementing the memory
 *  blank check command.
 */
static void ProcessMemReadCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Read FLASH command
        IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))                            // Read EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* Set the state so that the next UPLOAD requests read out the firmware */
		DFU_State = dfuUPLOAD_IDLE;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                       // Blank check FLASH command
	{
		uint32_t CurrFlashAddress = 0;

		while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
		{
			/* Check if the current byte is not blank */
			#if (FLASHEND > 0xFFFF)
			if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
			#else
			if (pgm_read_byte(CurrFlashAddress) != 0xFF)
			#endif
			{
				/* Save the location of the first non-blank byte for response back to the host */
				Flash64KBPage = (CurrFlashAddress >> 16);
				StartAddr     = CurrFlashAddress;

				/* Set state and status variables to the appropriate error values */
				DFU_State  = dfuERROR;
				DFU_Status = errCHECK_ERASED;

				break;
			}

			CurrFlashAddress++;
		}
	}
}

/** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
 *  bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
 */
static void ProcessWriteCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03))                            // Start application
	{
		/* Indicate that the bootloader is terminating */
		WaitForExit = true;

		/* Check if data supplied for the Start Program command - no data executes the program */
		if (SentCommand.DataSize)
		{
			if (SentCommand.Data[1] == 0x01)                                   // Start via jump
			{
				union
				{
					uint8_t  Bytes[2];
					AppPtr_t FuncPtr;
				} Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};

				/* Load in the jump address into the application start address pointer */
				AppStartPtr = Address.FuncPtr;
			}
		}
		else
		{
			if (SentCommand.Data[1] == 0x00)                                   // Start via watchdog
			{
				/* Unlock the forced application start mode of the bootloader if it is restarted */
				MagicBootKey = MAGIC_BOOT_KEY;

				/* Start the watchdog to reset the AVR once the communications are finalized */
				wdt_enable(WDTO_250MS);
			}
			else                                                               // Start via jump
			{
				/* Set the flag to terminate the bootloader at next opportunity if a valid application has been loaded */
				if (pgm_read_word_near(0) == 0xFFFF)
				  RunBootloader = false;
			}
		}
	}
	else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF))                 // Erase flash
	{
		/* Clear the application section of flash */
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
			BootloaderAPI_ErasePage(CurrFlashAddress);

		/* Memory has been erased, reset the security bit so that programming/reading is allowed */
		IsSecure = false;
	}
}

/** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
 *  commands such as device signature and bootloader version retrieval.
 */
static void ProcessReadCommand(void)
{
	const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
	const uint8_t SignatureInfo[4]  = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};

	uint8_t DataIndexToRead    = SentCommand.Data[1];
	bool    ReadAddressInvalid = false;

	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))                        // Read bootloader info
	{
		if (DataIndexToRead < 3)
		  ResponseByte = BootloaderInfo[DataIndexToRead];
		else
		  ReadAddressInvalid = true;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                    // Read signature byte
	{
		switch (DataIndexToRead)
		{
			case 0x30:
				ResponseByte = SignatureInfo[0];
				break;
			case 0x31:
				ResponseByte = SignatureInfo[1];
				break;
			case 0x60:
				ResponseByte = SignatureInfo[2];
				break;
			case 0x61:
				ResponseByte = SignatureInfo[3];
				break;
			default:
				ReadAddressInvalid = true;
				break;
		}
	}

	if (ReadAddressInvalid)
	{
		/* Set the state and status variables to indicate the error */
		DFU_State  = dfuERROR;
		DFU_Status = errADDRESS;
	}
}