sha256.c 14.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/*-
 * Copyright 2005 Colin Percival
 * Copyright 2013 Christian Mehlis & René Kijewski
 * Copyright 2016 Martin Landsmann <martin.landsmann@haw-hamburg.de>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD: src/lib/libmd/sha256c.c,v 1.2 2006/01/17 15:35:56 phk Exp $
 */

/**
 * @ingroup     sys_hashes
 * @{
 *
 * @file
 * @brief       SHA256 hash function implementation
 *
 * @author      Colin Percival
 * @author      Christian Mehlis
 * @author      Rene Kijewski
 * @author      Martin Landsmann
 *
 * @}
 */

#include <string.h>
#include <assert.h>

#include "hashes/sha256.h"
#include "board.h"

#ifdef __BIG_ENDIAN__
/* Copy a vector of big-endian uint32_t into a vector of bytes */
#define be32enc_vect memcpy

/* Copy a vector of bytes into a vector of big-endian uint32_t */
#define be32dec_vect memcpy

#else /* !__BIG_ENDIAN__ */

/*
 * Encode a length len/4 vector of (uint32_t) into a length len vector of
 * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
 */
static void be32enc_vect(void *dst_, const void *src_, size_t len)
{
    if ((uintptr_t)dst_ % sizeof(uint32_t) == 0 &&
        (uintptr_t)src_ % sizeof(uint32_t) == 0) {
        uint32_t *dst = dst_;
        const uint32_t *src = src_;
        for (size_t i = 0; i < len / 4; i++) {
            dst[i] = __builtin_bswap32(src[i]);
        }
    }
    else {
        uint8_t *dst = dst_;
        const uint8_t *src = src_;
        for (size_t i = 0; i < len; i += 4) {
            dst[i] = src[i + 3];
            dst[i + 1] = src[i + 2];
            dst[i + 2] = src[i + 1];
            dst[i + 3] = src[i];
        }
    }
}

/*
 * Decode a big-endian length len vector of (unsigned char) into a length
 * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
 */
#define be32dec_vect be32enc_vect

#endif /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */

/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z)    ((x & (y | z)) | (y & z))
#define SHR(x, n)   (x >> n)
#define ROTR(x, n)  ((x >> n) | (x << (32 - n)))
#define S0(x)       (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x)       (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x)       (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x)       (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))

static const uint32_t K[64] = {
    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};

/*
 * SHA256 block compression function.  The 256-bit state is transformed via
 * the 512-bit input block to produce a new state.
 */
static void sha256_transform(uint32_t *state, const unsigned char block[64])
{
    uint32_t W[64];
    uint32_t S[8];

    /* 1. Prepare message schedule W. */
    be32dec_vect(W, block, 64);
    for (int i = 16; i < 64; i++) {
        W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
    }

    /* 2. Initialize working variables. */
    memcpy(S, state, 32);

    /* 3. Mix. */
    for (int i = 0; i < 64; ++i) {
        uint32_t e = S[(68 - i) % 8], f = S[(69 - i) % 8];
        uint32_t g = S[(70 - i) % 8], h = S[(71 - i) % 8];
        uint32_t t0 = h + S1(e) + Ch(e, f, g) + W[i] + K[i];

        uint32_t a = S[(64 - i) % 8], b = S[(65 - i) % 8];
        uint32_t c = S[(66 - i) % 8], d = S[(67 - i) % 8];
        uint32_t t1 = S0(a) + Maj(a, b, c);

        S[(67 - i) % 8] = d + t0;
        S[(71 - i) % 8] = t0 + t1;
    }

    /* 4. Mix local working variables into global state */
    for (int i = 0; i < 8; i++) {
        state[i] += S[i];
    }
}

static unsigned char PAD[64] = {
    0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};

/* Add padding and terminating bit-count. */
static void sha256_pad(sha256_context_t *ctx)
{
    /*
     * Convert length to a vector of bytes -- we do this now rather
     * than later because the length will change after we pad.
     */
    unsigned char len[8];

    be32enc_vect(len, ctx->count, 8);

    /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
    uint32_t r = (ctx->count[1] >> 3) & 0x3f;
    uint32_t plen = (r < 56) ? (56 - r) : (120 - r);
    sha256_update(ctx, PAD, (size_t) plen);

    /* Add the terminating bit-count */
    sha256_update(ctx, len, 8);
}

/* SHA-256 initialization.  Begins a SHA-256 operation. */
void sha256_init(sha256_context_t *ctx)
{
    /* Zero bits processed so far */
    ctx->count[0] = ctx->count[1] = 0;

    /* Magic initialization constants */
    ctx->state[0] = 0x6A09E667;
    ctx->state[1] = 0xBB67AE85;
    ctx->state[2] = 0x3C6EF372;
    ctx->state[3] = 0xA54FF53A;
    ctx->state[4] = 0x510E527F;
    ctx->state[5] = 0x9B05688C;
    ctx->state[6] = 0x1F83D9AB;
    ctx->state[7] = 0x5BE0CD19;
}

/* Add bytes into the hash */
void sha256_update(sha256_context_t *ctx, const void *data, size_t len)
{
    /* Number of bytes left in the buffer from previous updates */
    uint32_t r = (ctx->count[1] >> 3) & 0x3f;

    /* Convert the length into a number of bits */
    uint32_t bitlen1 = ((uint32_t) len) << 3;
    uint32_t bitlen0 = ((uint32_t) len) >> 29;

    /* Update number of bits */
    if ((ctx->count[1] += bitlen1) < bitlen1) {
        ctx->count[0]++;
    }

    ctx->count[0] += bitlen0;

    /* Handle the case where we don't need to perform any transforms */
    if (len < 64 - r) {
        memcpy(&ctx->buf[r], data, len);
        return;
    }

    /* Finish the current block */
    const unsigned char *src = data;

    memcpy(&ctx->buf[r], src, 64 - r);
    sha256_transform(ctx->state, ctx->buf);
    src += 64 - r;
    len -= 64 - r;

    /* Perform complete blocks */
    while (len >= 64) {
        sha256_transform(ctx->state, src);
        src += 64;
        len -= 64;
    }

    /* Copy left over data into buffer */
    memcpy(ctx->buf, src, len);
}

/*
 * SHA-256 finalization.  Pads the input data, exports the hash value,
 * and clears the context state.
 */
void sha256_final(sha256_context_t *ctx, void *dst)
{
    /* Add padding */
    sha256_pad(ctx);

    /* Write the hash */
    be32enc_vect(dst, ctx->state, 32);

    /* Clear the context state */
    memset((void *) ctx, 0, sizeof(*ctx));
}

void *sha256(const void *data, size_t len, void *digest)
{
    sha256_context_t c;
    static unsigned char m[SHA256_DIGEST_LENGTH];

    if (digest == NULL) {
        digest = m;
    }

    sha256_init(&c);
    sha256_update(&c, data, len);
    sha256_final(&c, digest);

    return digest;
}

const void *hmac_sha256(const void *key, size_t key_length,
                        const void *data, size_t len, void *digest)
{
    unsigned char k[SHA256_INTERNAL_BLOCK_SIZE];

    memset((void *)k, 0x00, SHA256_INTERNAL_BLOCK_SIZE);

    if (key_length > SHA256_INTERNAL_BLOCK_SIZE) {
        sha256(key, key_length, k);
    }
    else {
        memcpy((void *)k, key, key_length);
    }

    /*
     * create the inner and outer keypads
     * rising hamming distance enforcing i_* and o_* are distinct
     * in at least one bit
     */
    unsigned char o_key_pad[SHA256_INTERNAL_BLOCK_SIZE];
    unsigned char i_key_pad[SHA256_INTERNAL_BLOCK_SIZE];

    for (size_t i = 0; i < SHA256_INTERNAL_BLOCK_SIZE; ++i) {
        o_key_pad[i] = 0x5c ^ k[i];
        i_key_pad[i] = 0x36 ^ k[i];
    }

    /*
     * Create the inner hash
     * tmp = hash(i_key_pad CONCAT message)
     */
    sha256_context_t c;
    unsigned char tmp[SHA256_DIGEST_LENGTH];

    sha256_init(&c);
    sha256_update(&c, i_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
    sha256_update(&c, data, len);
    sha256_final(&c, tmp);

    static unsigned char m[SHA256_DIGEST_LENGTH];

    if (digest == NULL) {
        digest = m;
    }

    /*
     * Create the outer hash
     * result = hash(o_key_pad CONCAT tmp)
     */
    sha256_init(&c);
    sha256_update(&c, o_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
    sha256_update(&c, tmp, SHA256_DIGEST_LENGTH);
    sha256_final(&c, digest);

    return digest;
}

/**
 * @brief helper to compute sha256 inplace for the given buffer
 *
 * @param[in, out] element the buffer to compute a sha256 and store it back to it
 *
 */
static inline void sha256_inplace(unsigned char element[SHA256_DIGEST_LENGTH])
{
    sha256_context_t ctx;

    sha256_init(&ctx);
    sha256_update(&ctx, element, SHA256_DIGEST_LENGTH);
    sha256_final(&ctx, element);
}

void *sha256_chain(const void *seed, size_t seed_length,
                   size_t elements, void *tail_element)
{
    unsigned char tmp_element[SHA256_DIGEST_LENGTH];

    /* assert if no sha256-chain can be created */
    assert(elements >= 2);

    /* 1st iteration */
    sha256(seed, seed_length, tmp_element);

    /* perform consecutive iterations minus the first one */
    for (size_t i = 0; i < (elements - 1); ++i) {
        sha256_inplace(tmp_element);
    }

    /* store the result */
    memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);

    return tail_element;
}

void *sha256_chain_with_waypoints(const void *seed,
                                  size_t seed_length,
                                  size_t elements,
                                  void *tail_element,
                                  sha256_chain_idx_elm_t *waypoints,
                                  size_t *waypoints_length)
{
    /* assert if no sha256-chain can be created */
    assert(elements >= 2);

    /* assert to prevent division by 0 */
    assert(*waypoints_length > 0);

    /* assert if no waypoints can be created */
    assert(*waypoints_length > 1);

    /* if we have enough space we store the whole chain */
    if (*waypoints_length >= elements) {
        /* 1st iteration */
        sha256(seed, seed_length, waypoints[0].element);
        waypoints[0].index = 0;

        /* perform consecutive iterations starting at index 1*/
        for (size_t i = 1; i < elements; ++i) {
            sha256_context_t ctx;
            sha256_init(&ctx);
            sha256_update(&ctx, waypoints[(i - 1)].element, SHA256_DIGEST_LENGTH);
            sha256_final(&ctx, waypoints[i].element);
            waypoints[i].index = i;
        }

        /* store the result */
        memcpy(tail_element, waypoints[(elements - 1)].element, SHA256_DIGEST_LENGTH);
        *waypoints_length = (elements - 1);

        return tail_element;
    }
    else {
        unsigned char tmp_element[SHA256_DIGEST_LENGTH];
        size_t waypoint_streak = (elements / *waypoints_length);

        /* 1st waypoint iteration */
        sha256(seed, seed_length, tmp_element);
        for (size_t i = 1; i < waypoint_streak; ++i) {
            sha256_inplace(tmp_element);
        }
        memcpy(waypoints[0].element, tmp_element, SHA256_DIGEST_LENGTH);
        waypoints[0].index = (waypoint_streak - 1);

        /* index of the current computed element in the chain */
        size_t index = (waypoint_streak - 1);

        /* consecutive waypoint iterations */
        size_t j = 1;
        for (; j < *waypoints_length; ++j) {
            for (size_t i = 0; i < waypoint_streak; ++i) {
                sha256_inplace(tmp_element);
                index++;
            }
            memcpy(waypoints[j].element, tmp_element, SHA256_DIGEST_LENGTH);
            waypoints[j].index = index;
        }

        /* store/pass the last used index in the waypoint array */
        *waypoints_length = (j - 1);

        /* remaining iterations down to elements */
        for (size_t i = index; i < (elements - 1); ++i) {
            sha256_inplace(tmp_element);
        }

        /* store the result */
        memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);

        return tail_element;
    }
}

int sha256_chain_verify_element(void *element,
                                size_t element_index,
                                void *tail_element,
                                size_t chain_length)
{
    unsigned char tmp_element[SHA256_DIGEST_LENGTH];

    int delta_count = (chain_length - element_index);

    /* assert if we have an index mismatch */
    assert(delta_count >= 1);

    memcpy((void *)tmp_element, element, SHA256_DIGEST_LENGTH);

    /* perform all consecutive iterations down to tail_element */
    for (int i = 0; i < (delta_count - 1); ++i) {
        sha256_inplace(tmp_element);
    }

    /* return if the computed element equals the tail_element */
    return (memcmp(tmp_element, tail_element, SHA256_DIGEST_LENGTH) != 0);
}