x86_memory.c 14.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
/*
 * Copyright (C) 2014  René Kijewski  <rene.kijewski@fu-berlin.de>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

/**
 * @ingroup     x86
 * @{
 *
 * @file
 * @brief       Virtual memory management.
 *
 * @author      René Kijewski <rene.kijewski@fu-berlin.de>
 *
 * @}
 */

#include "x86_kernel_memory.h"
#include "x86_interrupts.h"
#include "x86_memory.h"
#include "x86_registers.h"
#include "cpu.h"
#include "irq.h"
#include "tlsf-malloc.h"

#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

/* Compare Figure 44 (p. 99) of "Intel® Quark SoC X1000 Core Developer’s Manual" */
#define PT_CR3_BITS  (0)
#define PT_PDPT_BITS (PT_P)
#define PT_PD_BITS  (PT_P | PT_RW | PT_US)

#ifndef DEBUG_READ_BEFORE_WRITE
#   define PT_HEAP_BITS (PT_P | PT_RW | PT_US | pt_xd)
#else
#   define PT_HEAP_BITS (PT_HEAP_BIT | PT_RW | PT_US | pt_xd)
#endif

static uint64_t pt_xd = PT_XD;

typedef union page {
    char content[4096];
    uint64_t next_page;
    uint64_t indices[512];
} __attribute__((aligned(0x1000))) page_t;

static volatile page_t TEMP_PAGE;
#define TEMP_PAGE_PT (((uintptr_t) &TEMP_PAGE / 0x1000) / 512)
#define TEMP_PAGE_PTE  (((uintptr_t) &TEMP_PAGE / 0x1000) % 512)

void x86_init_gdt(void)
{
    static const struct gdt_entry gdt_entries[3] = {
        [0x0000 / 8] = {
            .limit_0_15            = 0,
            .base_0_15             = 0,
            .base_16_23            = 0,
            .access_byte           = 0,
            .limit_16_19_and_flags = 0,
            .base_24_31            = 0,
        },
        [0x0008 / 8] = {
            .limit_0_15            = 0xFFFF,
            .base_0_15             = 0,
            .base_16_23            = 0,
            .access_byte           = GDT_AB_EX | GDT_AB_S | GDT_AB_RING_0 | GDT_AB_PR,
            .limit_16_19_and_flags = 0xF | GDT_FLAG_SZ | GDT_FLAG_GR,
            .base_24_31            = 0,
        },
        [0x0010 / 8] = {
            .limit_0_15            = 0xFFFF,
            .base_0_15             = 0,
            .base_16_23            = 0,
            .access_byte           = GDT_AB_RW | GDT_AB_S | GDT_AB_RING_0 | GDT_AB_PR,
            .limit_16_19_and_flags = 0xF | GDT_FLAG_SZ | GDT_FLAG_GR,
            .base_24_31            = 0,
        },
    };
    static const struct gdtr_t gdt = {
        .size_minus_one = sizeof gdt_entries - 1,
        .offset = (unsigned long) &gdt_entries[0],
    };

    __asm__ volatile ("" :: "a"(0x0010));

    __asm__ volatile ("lgdt %0" :: "m"(gdt));
    __asm__ volatile ("ljmp $0x0008, $1f\n"
                  "1:");

    __asm__ volatile ("mov %ax, %ds");
    __asm__ volatile ("mov %ax, %es");
    __asm__ volatile ("mov %ax, %fs");
    __asm__ volatile ("mov %ax, %gs");
    __asm__ volatile ("mov %ax, %ss");
}

/* Addresses in PDPT, PD, and PT are linear addresses. */
/* TEMP_PAGE is used to to access these pages. */
static pae_page_table_t static_pts[X86_NUM_STATIC_PT];
static pae_page_directory_t static_pds[X86_NUM_STATIC_PD];
static pae_page_directory_pointer_table_t pdpt;

static void init_elf_static_section(uint64_t bits, void *start_, void *end_)
{
    unsigned long start = ((unsigned long) start_) / 0x1000;
    unsigned long end = (((unsigned long) end_) + 0x1000 - 1) / 0x1000;
    for (unsigned i = start; i < end; ++i) {
        unsigned pt_num = i / 512;
        unsigned pte_num = i % 512;
        static_pts[pt_num][pte_num] = (i * 0x1000) | PT_P | PT_G | bits;
    }
}

static void check_requirements(void)
{
    uint64_t cpuid = cpuid_caps();
    if ((cpuid & CPUID_PAE) == 0) {
        puts("Your CPU does not support PAE! Halting.");
        x86_hlt();
    }
    if ((cpuid & CPUID_PGE) == 0)  {
        puts("Your CPU does not support PGE! Halting.");
        x86_hlt();
    }
    if ((cpuid & CPUID_MSR) == 0) {
        puts("Warning: Your CPU does not support MSR!\n"
             "         Setting PT_XD = 0.");
        pt_xd = 0;
    }
    else {
        /* enable NX bit (if possible) */
        uint64_t efer = msr_read(MSR_EFER);
        efer |= EFER_NXE;
        msr_set(MSR_EFER, efer);
        if (!(msr_read(MSR_EFER) & EFER_NXE)) {
            puts("Warning: Your hardware does not support the NX bit!\n"
                 "         Setting PT_XD = 0.");
            pt_xd = 0;
        }
    }
}

static void init_pagetable(void)
{
    /* identity map tables */
    for (unsigned i = 0; i < X86_NUM_STATIC_PD; ++i) {
        pdpt[i] = ((uintptr_t) &static_pds[i]) | PT_PDPT_BITS;
    }
    for (unsigned i = 0; i < X86_NUM_STATIC_PT; ++i) {
        unsigned pd_num = i / 512;
        unsigned pt_num = i % 512;
        static_pds[pd_num][pt_num] = ((uintptr_t) &static_pts[i]) | PT_PD_BITS;
    }
    init_elf_static_section(PT_RW | pt_xd, (void *) 0, (void *) 0x100000);
    init_elf_static_section(PT_US, &_section_text_start, &_section_text_end);
    init_elf_static_section(PT_US | pt_xd, &_section_rodata_start, &_section_rodata_end);
    init_elf_static_section(PT_US | PT_RW | pt_xd, &_section_data_start, &_section_bss_end);

    /* activate PAE */
    /* FIXME: add x86_init_cr4() */
    uint32_t cr4 = cr4_read();
    cr4 |= CR4_PAE | CR4_MCE | CR4_PGE | CR4_PCE | CR4_OSXMMEXCPT;
    cr4 &= ~(CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_PSE | CR4_OSFXSR | CR4_SMEP);
    cr4_write(cr4);

    /* load page table */
    cr3_write((uint32_t) &pdpt | PT_CR3_BITS);

    /* activate paging */
    uint32_t cr0 = cr0_read();
    cr0 |= CR0_PE | CR0_NE | CR0_WP | CR0_PG;
    cr0 &= ~(CR0_MP | CR0_EM | CR0_TS | CR0_AM | CR0_NW | CR0_CD);
    cr0_write(cr0);
}

static void set_temp_page(uint64_t addr)
{
    static_pts[TEMP_PAGE_PT][TEMP_PAGE_PTE] = addr != -1ull ? addr | PT_P | PT_RW | pt_xd : 0;
    __asm__ volatile ("invlpg (%0)" :: "r"(&TEMP_PAGE));
}

static inline uint64_t min64(uint64_t a, uint64_t b)
{
    return a <= b ? a : b;
}

static inline uint64_t max64(uint64_t a, uint64_t b)
{
    return a >= b ? a : b;
}

static uint32_t init_free_pages_heap_position = (uintptr_t) &_heap_start;

static uint64_t init_free_pages_sub(uint64_t table, uint64_t bits, unsigned index, uint64_t *start, uint64_t *pos)
{
    set_temp_page(table);
    if (TEMP_PAGE.indices[index] & PT_P) {
        return TEMP_PAGE.indices[index] & PT_ADDR_MASK;
    }

    TEMP_PAGE.indices[index] = *start | bits;

    uint64_t result = *start;
    *start += 0x1000;
    *pos = max64(*start, *pos);
    init_free_pages_heap_position += 0x1000;
    return result;
}

static bool add_pages_to_pool(uint64_t start, uint64_t end)
{
    start += 0xFFF;
    start &= ~0xFFF;
    end &= ~0xFFF;

    start = max64(start, (uintptr_t) &_kernel_memory_end);
    uint64_t pos = start;

    uint32_t addr = init_free_pages_heap_position >> 12;
    unsigned pte_i = addr % 512;
    addr >>= 9;
    unsigned pt_i = addr % 512;
    addr >>= 9;
    unsigned pd_i = addr;

    if (pd_i >= 4) {
        return false;
    }

    while (pos < end) {
        uint64_t table = (uintptr_t) &pdpt;

        table = init_free_pages_sub(table, PT_PDPT_BITS, pd_i, &start, &pos);
        if (pos >= end) {
            break;
        }

        table = init_free_pages_sub(table, PT_PD_BITS, pt_i, &start, &pos);
        if (pos >= end) {
            break;
        }

        set_temp_page(table);
        TEMP_PAGE.indices[pte_i] = pos | PT_HEAP_BITS;
        pos += 0x1000;

        if (++pte_i >= 512) {
            pte_i = 0;
            if (++pt_i >= 512) {
                pt_i = 0;
                if (++pd_i >= 4) {
                    break;
                }
            }
        }
    }

    if (start < end) {
        cr3_write((uint32_t) &pdpt | PT_CR3_BITS); /* flush tlb */
        tlsf_add_pool((void *) init_free_pages_heap_position, end - start);
        init_free_pages_heap_position += end - start;
    }

    return true;
}

static void init_free_pages(void)
{
    printf("Kernel memory: %p - %p\r\n",
           (void *)&_kernel_memory_start, (void *)&_kernel_memory_end);
    printf("  .text:   %p - %p\r\n", (void *)&_section_text_start, (void *)&_section_text_end);
    printf("  .rodata: %p - %p\r\n", (void *)&_section_rodata_start, (void *)&_section_rodata_end);
    printf("  .data:   %p - %p\r\n", (void *)&_section_data_start, (void *)&_section_data_end);
    printf("  .bss:    %p - %p\r\n", (void *)&_section_bss_start, (void *)&_section_bss_end);
    printf("Unmapped memory: %p - %p\r\n", (void *)&_kernel_memory_end, (void *)&_heap_start);
    printf("Heap start: %p\r\n", (void *)&_heap_start);

    unsigned long cnt = 0;
    uint64_t start, len;
    while (x86_get_memory_region(&start, &len, &cnt)) {
        uint64_t end = start + len;
        if (!add_pages_to_pool(start, end)) {
            break;
        }
    }

    unsigned long free_pages_count = (init_free_pages_heap_position - (uintptr_t) &_heap_start) / 4096;
    float mem_amount = free_pages_count * (4096 / 1024);
    const char *mem_unit = "kB";
    if (mem_amount >= 2 * 1024) {
        mem_amount /= 1024;
        mem_unit = "MB";
    }
    if (mem_amount >= 2 * 1024) {
        mem_amount /= 1024;
        mem_unit = "GB";
    }
    printf("There are %lu free pages (%.3f %s) available for the heap.\n", free_pages_count, mem_amount, mem_unit);
}

static unsigned handling_pf;
static void pagefault_handler(uint8_t intr_num, struct x86_pushad *orig_ctx, unsigned long error_code)
{
    (void) intr_num; /* intr_num == X86_INT_PF */

    ++handling_pf;

    switch (handling_pf) {
        case 1:
            break; /* first #PF */

        case 2: /* pagefault while handing a page fault. */
            puts("A page fault occured while handling a page fault!");
            x86_print_registers(orig_ctx, error_code);
            puts("Halting.");
            /* fall through */

        default: /* pagefault while printing #PF message, everything is lost */
            x86_hlt();
    }

#ifdef DEBUG_READ_BEFORE_WRITE
    uint32_t virtual_addr = cr2_read();
    uint64_t pte = x86_get_pte(virtual_addr);
#endif

    if (error_code & PF_EC_I) {
        puts("Page fault while fetching instruction.");
        x86_print_registers(orig_ctx, error_code);
        puts("Halting.");
        x86_hlt();
    }
#ifdef DEBUG_READ_BEFORE_WRITE
    else if ((pte != NO_PTE) && !(pte & PT_P) && (pte & PT_HEAP_BIT)) {
        /* mark as present */
        TEMP_PAGE.indices[(virtual_addr >> 12) % 512] |= PT_P;
        __asm__ volatile ("invlpg (%0)" :: "r"(virtual_addr));

        /* initialize for easier debugging */
        uint32_t *p = (uint32_t *) (virtual_addr & ~0xfff);
        for (unsigned i = 0; i < 0x1000 / 4; ++i) {
            const union {
                char str_value[4];
                uint32_t int_value;
            } debug_init = { .str_value = "RIOT" };
            *p++ = debug_init.int_value;
        }

        /* print a warning if the page was read before written */
        if (!(error_code & PF_EC_W)) {
            unsigned long *sp = (void *) orig_ctx->sp; /* ip, cs, flags */
            printf("DEBUG: Read before write on heap address 0x%08x (physical: 0x%016llx) at 0x%08lx.\n",
                   virtual_addr, pte & PT_ADDR_MASK, sp[0]);
        }
    }
#endif
    else if (error_code & PF_EC_P) {
        printf("Page fault: access violation while %s present page.\n", (error_code & PF_EC_W) ? "writing to" : "reading from");
        x86_print_registers(orig_ctx, error_code);
        puts("Halting.");
        x86_hlt();
    }
    else {
        printf("Page fault: access violation while %s non-present page.\n", (error_code & PF_EC_W) ? "writing to" : "reading from");
        x86_print_registers(orig_ctx, error_code);
        puts("Halting.");
        x86_hlt();
    }

    --handling_pf;
}

static void init_pagefault_handler(void)
{
    x86_interrupt_handler_set(X86_INT_PF, &pagefault_handler);
}

void x86_init_memory(void)
{
    check_requirements();

    init_pagetable();
    init_pagefault_handler();
    init_free_pages();

    puts("Virtual memory initialized");
}

uint64_t x86_get_pte(uint32_t addr)
{
    addr >>= 12;
    unsigned pte_i = addr % 512;
    addr >>= 9;
    unsigned pt_i = addr % 512;
    addr >>= 9;
    unsigned pd_i = addr;

    if (pdpt[pd_i] & PT_P) {
        set_temp_page(pdpt[pd_i] & PT_ADDR_MASK);
        if (TEMP_PAGE.indices[pt_i] & PT_P) {
            set_temp_page(TEMP_PAGE.indices[pt_i] & PT_ADDR_MASK);
            return TEMP_PAGE.indices[pte_i];
        }
    }
    return NO_PTE;
}

static void virtual_pages_set_bits(uint32_t virtual_addr, unsigned pages, uint64_t bits)
{
    while (pages-- > 0) {
        unsigned pte_i = (virtual_addr >> 12) % 512;

        uint64_t old_physical_addr = x86_get_pte(virtual_addr) & PT_ADDR_MASK;
        TEMP_PAGE.indices[pte_i] = old_physical_addr | bits;
        __asm__ volatile ("invlpg (%0)" :: "r"(virtual_addr));

        virtual_addr += 0x1000;
    }
}

void *x86_map_physical_pages(uint64_t physical_start, unsigned pages, uint64_t bits)
{
    if (bits & PT_XD) {
        bits &= ~PT_XD;
        bits |= pt_xd;
    }

    /* We use an already set up space, so we are sure that the upper level page tables are allocated. */
    /* We cut out a slice and re-add the physical pages. */
    char *result = memalign(0x1000, pages * 0x1000);
    if (!result) {
        return NULL;
    }

    for (unsigned page = 0; page < pages; ++page) {
        uint64_t physical_addr = physical_start + page * 0x1000;
        uint32_t virtual_addr = (uintptr_t) result + page * 0x1000;
        unsigned pte_i = (virtual_addr >> 12) % 512;

        uint64_t old_pte = x86_get_pte(virtual_addr);
        TEMP_PAGE.indices[pte_i] = physical_addr | bits;

        if (page == 0) {
            uint64_t old_physical_addr = old_pte & PT_ADDR_MASK;

            /* FIXME: does this work? Won't work if TLSF joins different buffers. */
            add_pages_to_pool(old_physical_addr, old_physical_addr + 0x1000 * pages);
        }
    }

    cr3_write((uint32_t) &pdpt | PT_CR3_BITS); /* flush tlb */
    return result;
}

void *x86_get_virtual_pages(unsigned pages, uint64_t bits)
{
    if (bits & PT_XD) {
        bits &= ~PT_XD;
        bits |= pt_xd;
    }

    char *result = memalign(0x1000, pages * 0x1000);
    if (!result) {
        return (void *) -1ul;
    }

    virtual_pages_set_bits((uintptr_t) result, pages, bits);
    return result;
}

void x86_release_virtual_pages(uint32_t virtual_start, unsigned pages)
{
    virtual_pages_set_bits(virtual_start, pages, PT_HEAP_BITS);
    free((void *) virtual_start);
}