rtc.c
7.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
* Copyright (C) 2015 Lari Lehtomäki
* Copyright (C) 2016 Laksh Bhatia
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32l1
* @{
* @file
* @brief Low-level RTC driver implementation
* @author Lari Lehtomäki <lari@lehtomaki.fi>
* @author Laksh Bhatia <bhatialaksh3@gmail.com>
* @}
*/
#include <time.h>
#include "cpu.h"
#include "periph/rtc.h"
#include "periph_conf.h"
/* guard file in case no RTC device was specified */
#if RTC_NUMOF
#define RTC_WRITE_PROTECTION_KEY1 (0xCA)
#define RTC_WRITE_PROTECTION_KEY2 (0x53)
#define RTC_SYNC_PRESCALER (0xff) /**< prescaler for 32.768 kHz oscillator */
#define RTC_ASYNC_PRESCALER (0x7f) /**< prescaler for 32.768 kHz oscillator */
#define MCU_YEAR_OFFSET (100) /**< struct tm counts years since 1900
but RTC has only two-digit year
hence the offset of 100 years. */
typedef struct {
rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */
void *arg; /**< argument passed to the callback */
} rtc_state_t;
static rtc_state_t rtc_callback;
static uint8_t byte2bcd(uint8_t value);
/**
* @brief Initializes the RTC to use LSE (external 32.768 kHz oscillator) as a
* clock source. Verify that your board has this oscillator. If other clock
* source is used, then also the prescaler constants should be changed.
*/
void rtc_init(void)
{
rtc_poweron();
/* Unlock RTC write protection */
RTC->WPR = RTC_WRITE_PROTECTION_KEY1;
RTC->WPR = RTC_WRITE_PROTECTION_KEY2;
/* Enter RTC Init mode */
RTC->ISR = 0;
RTC->ISR |= RTC_ISR_INIT;
while ( (RTC->ISR & RTC_ISR_INITF) == 0 );
/* Set 24-h clock */
RTC->CR |= RTC_CR_FMT;
/* Timestamps enabled */
RTC->CR |= RTC_CR_TSE;
/* Configure the RTC PRER */
RTC->PRER = RTC_SYNC_PRESCALER;
RTC->PRER |= (RTC_ASYNC_PRESCALER << 16);
/* Exit RTC init mode */
RTC->ISR &= (uint32_t)~RTC_ISR_INIT;
/* Enable RTC write protection */
RTC->WPR = 0xff;
}
int rtc_set_time(struct tm *time)
{
/* Enable write access to RTC registers */
periph_clk_en(APB1, RCC_APB1ENR_PWREN);
PWR->CR |= PWR_CR_DBP;
/* Unlock RTC write protection */
RTC->WPR = RTC_WRITE_PROTECTION_KEY1;
RTC->WPR = RTC_WRITE_PROTECTION_KEY2;
/* Enter RTC Init mode */
RTC->ISR |= RTC_ISR_INIT;
while ( (RTC->ISR & RTC_ISR_INITF) == 0 );
RTC->DR = ( (((uint32_t)byte2bcd(time->tm_year - MCU_YEAR_OFFSET) << 16) & (RTC_DR_YT | RTC_DR_YU) ) |
(((uint32_t)byte2bcd(time->tm_mon+1)<< 8) & (RTC_DR_MT | RTC_DR_MU) ) |
(((uint32_t)byte2bcd(time->tm_mday) << 0) & (RTC_DR_DT | RTC_DR_DU) ) );
RTC->TR = ( (((uint32_t)byte2bcd(time->tm_hour) << 16) & (RTC_TR_HT | RTC_TR_HU) ) |
(((uint32_t)byte2bcd(time->tm_min) << 8) & (RTC_TR_MNT| RTC_TR_MNU)) |
(((uint32_t)byte2bcd(time->tm_sec) << 0) & (RTC_TR_ST | RTC_TR_SU) ) );
/* Exit RTC init mode */
RTC->ISR &= (uint32_t)~RTC_ISR_INIT;
/* Enable RTC write protection */
RTC->WPR = RTC_WPR_KEY;
return 0;
}
int rtc_get_time(struct tm *time)
{
time->tm_year = MCU_YEAR_OFFSET;
time->tm_year +=(((RTC->DR & RTC_DR_YT) >> 20) * 10) + ((RTC->DR & RTC_DR_YU) >> 16);
time->tm_mon = (((RTC->DR & RTC_DR_MT) >> 12) * 10) + ((RTC->DR & RTC_DR_MU) >> 8) - 1;
time->tm_mday = (((RTC->DR & RTC_DR_DT) >> 4) * 10) + ((RTC->DR & RTC_DR_DU) >> 0);
time->tm_hour = (((RTC->TR & RTC_TR_HT) >> 20) * 10) + ((RTC->TR & RTC_TR_HU) >> 16);
if ( RTC->TR & RTC_TR_PM )
time->tm_hour += 12;
time->tm_min = (((RTC->TR & RTC_TR_MNT) >> 12) * 10) + ((RTC->TR & RTC_TR_MNU) >> 8);
time->tm_sec = (((RTC->TR & RTC_TR_ST) >> 4) * 10) + ((RTC->TR & RTC_TR_SU) >> 0);
return 0;
}
int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg)
{
/* Enable write access to RTC registers */
periph_clk_en(APB1, RCC_APB1ENR_PWREN);
PWR->CR |= PWR_CR_DBP;
/* Unlock RTC write protection */
RTC->WPR = RTC_WRITE_PROTECTION_KEY1;
RTC->WPR = RTC_WRITE_PROTECTION_KEY2;
/* Enter RTC Init mode */
RTC->ISR |= RTC_ISR_INIT;
while ( (RTC->ISR & RTC_ISR_INITF) == 0 );
RTC->CR &= ~(RTC_CR_ALRAE);
while ( (RTC->ISR & RTC_ISR_ALRAWF) == 0 );
RTC->ALRMAR &= ~(RTC_ALRMAR_MSK1 | RTC_ALRMAR_MSK2 | RTC_ALRMAR_MSK3 | RTC_ALRMAR_MSK4);
RTC->ALRMAR = ( (((uint32_t)byte2bcd(time->tm_mday) << 24) & (RTC_ALRMAR_DT | RTC_ALRMAR_DU) ) |
(((uint32_t)byte2bcd(time->tm_hour) << 16) & (RTC_ALRMAR_HT | RTC_ALRMAR_HU) ) |
(((uint32_t)byte2bcd(time->tm_min) << 8) & (RTC_ALRMAR_MNT| RTC_ALRMAR_MNU)) |
(((uint32_t)byte2bcd(time->tm_sec) << 0) & (RTC_ALRMAR_ST | RTC_ALRMAR_SU) ) );
/* Enable Alarm A */
RTC->CR |= RTC_CR_ALRAE;
RTC->CR |= RTC_CR_ALRAIE;
RTC->ISR &= ~(RTC_ISR_ALRAF);
/* Exit RTC init mode */
RTC->ISR &= (uint32_t)~RTC_ISR_INIT;
/* Enable RTC write protection */
RTC->WPR = 0xFF;
EXTI->IMR |= EXTI_IMR_MR17;
EXTI->RTSR |= EXTI_RTSR_TR17;
NVIC_SetPriority(RTC_Alarm_IRQn, 5);
NVIC_EnableIRQ(RTC_Alarm_IRQn);
rtc_callback.cb = cb;
rtc_callback.arg = arg;
return 0;
}
int rtc_get_alarm(struct tm *time)
{
time->tm_year = MCU_YEAR_OFFSET;
time->tm_year +=(((RTC->DR & RTC_DR_YT) >> 20) * 10) + ((RTC->DR & RTC_DR_YU) >> 16);
time->tm_mon = (((RTC->DR & RTC_DR_MT) >> 12) * 10) + ((RTC->DR & RTC_DR_MU) >> 8) - 1;
time->tm_mday = (((RTC->ALRMAR & RTC_ALRMAR_DT) >> 28) * 10) + ((RTC->ALRMAR & RTC_ALRMAR_DU) >> 24);
time->tm_hour = (((RTC->ALRMAR & RTC_ALRMAR_HT) >> 20) * 10) + ((RTC->ALRMAR & RTC_ALRMAR_HU) >> 16);
if ( (RTC->ALRMAR & RTC_ALRMAR_PM) && (RTC->CR & RTC_CR_FMT) )
time->tm_hour += 12;
time->tm_min = (((RTC->ALRMAR & RTC_ALRMAR_MNT) >> 12) * 10) + ((RTC->ALRMAR & RTC_ALRMAR_MNU) >> 8);
time->tm_sec = (((RTC->ALRMAR & RTC_ALRMAR_ST) >> 4) * 10) + ((RTC->ALRMAR & RTC_ALRMAR_SU) >> 0);
return 0;
}
void rtc_clear_alarm(void)
{
/* Disable Alarm A */
RTC->CR &= RTC_CR_ALRAE;
RTC->CR &= RTC_CR_ALRAIE;
rtc_callback.cb = NULL;
rtc_callback.arg = NULL;
}
void rtc_poweron(void)
{
/* Enable write access to RTC registers */
periph_clk_en(APB1, RCC_APB1ENR_PWREN);
PWR->CR |= PWR_CR_DBP;
/* Reset RTC domain */
RCC->CSR |= RCC_CSR_RTCRST;
RCC->CSR &= ~(RCC_CSR_RTCRST);
/* Enable the LSE clock (external 32.768 kHz oscillator) */
RCC->CSR &= ~(RCC_CSR_LSEON);
RCC->CSR &= ~(RCC_CSR_LSEBYP);
RCC->CSR |= RCC_CSR_LSEON;
while ( (RCC->CSR & RCC_CSR_LSERDY) == 0 );
/* Switch RTC to LSE clock source */
RCC->CSR &= ~(RCC_CSR_RTCSEL);
RCC->CSR |= RCC_CSR_RTCSEL_LSE;
/* Enable the RTC */
RCC->CSR |= RCC_CSR_RTCEN;
}
void rtc_poweroff(void)
{
/* Enable write access to RTC registers */
periph_clk_en(APB1, RCC_APB1ENR_PWREN);
PWR->CR |= PWR_CR_DBP;
/* Reset RTC domain */
RCC->CSR |= RCC_CSR_RTCRST;
RCC->CSR &= ~(RCC_CSR_RTCRST);
/* Disable the RTC */
RCC->CSR &= ~RCC_CSR_RTCEN;
/* Disable LSE clock */
RCC->CSR &= ~(RCC_CSR_LSEON);
}
void isr_rtc_alarm(void)
{
if ((RTC->ISR & RTC_ISR_ALRAF) && (rtc_callback.cb != NULL)) {
rtc_callback.cb(rtc_callback.arg);
RTC->ISR &= ~RTC_ISR_ALRAF;
}
cortexm_isr_end();
}
/**
* Convert a number from unsigned to BCD
*
* @param[in] value to be converted
* @return BCD representation of the value
*/
static uint8_t byte2bcd(uint8_t value)
{
uint8_t bcdhigh = 0;
while (value >= 10)
{
bcdhigh++;
value -= 10;
}
return ((uint8_t)(bcdhigh << 4) | value);
}
#endif /* RTC_NUMOF */