tinymt32.h
6.25 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#ifndef TINYMT32_H
#define TINYMT32_H
/**
* @file tinymt32.h
*
* @brief Tiny Mersenne Twister only 127 bit internal state
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (University of Tokyo)
*
* Copyright (C) 2011 Mutsuo Saito, Makoto Matsumoto,
* Hiroshima University and The University of Tokyo.
* All rights reserved.
*
* The 3-clause BSD License is applied to this software, see
* LICENSE.txt
*/
#include <stdint.h>
#include <inttypes.h>
#define TINYMT32_MEXP 127
#define TINYMT32_SH0 1
#define TINYMT32_SH1 10
#define TINYMT32_SH8 8
#define TINYMT32_MASK UINT32_C(0x7fffffff)
#define TINYMT32_MUL (1.0f / 16777216.0f)
#ifdef __cplusplus
extern "C" {
#endif
/**
* tinymt32 internal state vector and parameters
*/
struct TINYMT32_T {
uint32_t status[4];
uint32_t mat1;
uint32_t mat2;
uint32_t tmat;
};
typedef struct TINYMT32_T tinymt32_t;
void tinymt32_init(tinymt32_t *random, uint32_t seed);
void tinymt32_init_by_array(tinymt32_t *random, uint32_t init_key[],
int key_length);
inline static int tinymt32_get_mexp(tinymt32_t *random)
{
(void) random;
return TINYMT32_MEXP;
}
/**
* This function changes internal state of tinymt32.
* Users should not call this function directly.
* @param random tinymt internal status
*/
inline static void tinymt32_next_state(tinymt32_t *random)
{
uint32_t x;
uint32_t y;
y = random->status[3];
x = (random->status[0] & TINYMT32_MASK)
^ random->status[1]
^ random->status[2];
x ^= (x << TINYMT32_SH0);
y ^= (y >> TINYMT32_SH0) ^ x;
random->status[0] = random->status[1];
random->status[1] = random->status[2];
random->status[2] = x ^ (y << TINYMT32_SH1);
random->status[3] = y;
random->status[1] ^= -((int32_t)(y & 1)) & random->mat1;
random->status[2] ^= -((int32_t)(y & 1)) & random->mat2;
}
/**
* This function outputs 32-bit unsigned integer from internal state.
* Users should not call this function directly.
* @param random tinymt internal status
* @return 32-bit unsigned pseudorandom number
*/
inline static uint32_t tinymt32_temper(tinymt32_t *random)
{
uint32_t t0, t1;
t0 = random->status[3];
t1 = random->status[0] + (random->status[2] >> TINYMT32_SH8);
t0 ^= t1;
t0 ^= -((int32_t)(t1 & 1)) & random->tmat;
return t0;
}
/**
* This function outputs floating point number from internal state.
* Users should not call this function directly.
* @param random tinymt internal status
* @return floating point number r (1.0 <= r < 2.0)
*/
inline static float tinymt32_temper_conv(tinymt32_t *random)
{
uint32_t t0, t1;
union {
uint32_t u;
float f;
} conv;
t0 = random->status[3];
t1 = random->status[0] + (random->status[2] >> TINYMT32_SH8);
t0 ^= t1;
conv.u = ((t0 ^ (-((int32_t)(t1 & 1)) & random->tmat)) >> 9)
| UINT32_C(0x3f800000);
return conv.f;
}
/**
* This function outputs floating point number from internal state.
* Users should not call this function directly.
* @param random tinymt internal status
* @return floating point number r (1.0 < r < 2.0)
*/
inline static float tinymt32_temper_conv_open(tinymt32_t *random)
{
uint32_t t0, t1;
union {
uint32_t u;
float f;
} conv;
t0 = random->status[3];
t1 = random->status[0] + (random->status[2] >> TINYMT32_SH8);
t0 ^= t1;
conv.u = ((t0 ^ (-((int32_t)(t1 & 1)) & random->tmat)) >> 9)
| UINT32_C(0x3f800001);
return conv.f;
}
/**
* This function outputs 32-bit unsigned integer from internal state.
* @param random tinymt internal status
* @return 32-bit unsigned integer r (0 <= r < 2^32)
*/
inline static uint32_t tinymt32_generate_uint32(tinymt32_t *random)
{
tinymt32_next_state(random);
return tinymt32_temper(random);
}
/**
* This function outputs floating point number from internal state.
* This function is implemented using multiplying by (1 / 2^24).
* floating point multiplication is faster than using union trick in
* my Intel CPU.
* @param random tinymt internal status
* @return floating point number r (0.0 <= r < 1.0)
*/
inline static float tinymt32_generate_float(tinymt32_t *random)
{
tinymt32_next_state(random);
return (tinymt32_temper(random) >> 8) * TINYMT32_MUL;
}
/**
* This function outputs floating point number from internal state.
* This function is implemented using union trick.
* @param random tinymt internal status
* @return floating point number r (1.0 <= r < 2.0)
*/
inline static float tinymt32_generate_float12(tinymt32_t *random)
{
tinymt32_next_state(random);
return tinymt32_temper_conv(random);
}
/**
* This function outputs floating point number from internal state.
* This function is implemented using union trick.
* @param random tinymt internal status
* @return floating point number r (0.0 <= r < 1.0)
*/
inline static float tinymt32_generate_float01(tinymt32_t *random)
{
tinymt32_next_state(random);
return tinymt32_temper_conv(random) - 1.0f;
}
/**
* This function outputs floating point number from internal state.
* This function may return 1.0 and never returns 0.0.
* @param random tinymt internal status
* @return floating point number r (0.0 < r <= 1.0)
*/
inline static float tinymt32_generate_floatOC(tinymt32_t *random)
{
tinymt32_next_state(random);
return 1.0f - tinymt32_generate_float(random);
}
/**
* This function outputs floating point number from internal state.
* This function returns neither 0.0 nor 1.0.
* @param random tinymt internal status
* @return floating point number r (0.0 < r < 1.0)
*/
inline static float tinymt32_generate_floatOO(tinymt32_t *random)
{
tinymt32_next_state(random);
return tinymt32_temper_conv_open(random) - 1.0f;
}
/**
* This function outputs double precision floating point number from
* internal state. The returned value has 32-bit precision.
* In other words, this function makes one double precision floating point
* number from one 32-bit unsigned integer.
* @param random tinymt internal status
* @return floating point number r (0.0 < r <= 1.0)
*/
inline static double tinymt32_generate_32double(tinymt32_t *random)
{
tinymt32_next_state(random);
return tinymt32_temper(random) * (1.0 / 4294967296.0);
}
#ifdef __cplusplus
}
#endif
#endif