i2c.c 27.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
/*
 * i2c.c - implementation of the I2C interface for the LPC2387 chip.
 * Copyright (C) 2013 Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
 *
 * This file is subject to the terms and conditions of the GNU Lesser
 * General Public License v2.1. See the file LICENSE in the top level
 * directory for more details.
 */

/**
 * @file
 * @internal
 * @brief       The I2C interface drivers for the LPC2387 chip.
 *              The driver is full abstracted supporting all the i2c-interfaces
 *              of the LPC2387 chip. The user need only to give the requested
 *              i2c-interface and the transmission baudrate.
 *              The user can optionally give a master interrupt handler. If the
 *              user does not declare a handler, an appropriate interrupt is
 *              automatically registered for the specific i2c interface.
 *
 * @author      Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
 * @author      Marco Ziegert <ziegert@inf.fu-berlin.de>
 * @author      Benjamin Aschenbrenner
 * @version     $Revision: 3858 $
 *
 * @note        $Id: i2c.c 3858 2013-09-02 18:11:17 kasmi $
 */

#include "lpc23xx.h"
#include "lpc2387.h"
#include "i2c.h"
#include "VIC.h"
#include "irq.h"
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>

volatile uint32_t i2c_master_state = I2C_IDLE;
volatile uint32_t i2c_slave_state = I2C_IDLE;
volatile uint32_t i2c_cmd;
volatile uint32_t i2c_mode;
volatile uint8_t  i2c_master_buffer[I2C_BUFSIZE];
volatile uint32_t i2c_read_length;
volatile uint32_t i2c_write_length;
volatile uint32_t rd_index = 0;
volatile uint32_t wr_index = 0;

static void i2c_interface0_master_handler(void) __attribute__((interrupt(
            "IRQ")));
static void i2c_interface1_master_handler(void) __attribute__((interrupt(
            "IRQ")));
static void i2c_interface2_master_handler(void) __attribute__((interrupt(
            "IRQ")));

bool i2c_initialize(uint8_t i2c_interface, uint32_t i2c_mode,
                    uint8_t slave_addr, uint32_t baud_rate, void *handler)
{
    //puts("i2c_initialize begin...\n");
    printf("i2cInterface = %d\n", i2c_interface);
    i2c_clear_buffer((uint8_t *) i2c_master_buffer,
                     I2C_BUFSIZE * sizeof(uint8_t));

    //activate power for I2C2
    i2c_active_power(i2c_interface);

    //select I2C2 functionality for pins x.xx (SDAx) and x.xx (SCLx)
    i2c_pin_select(i2c_interface);

    // clear I2CCON register flags
    i2c_clear_control_register(i2c_interface);

    //set baud rate
    i2c_set_baud_rate(i2c_interface, baud_rate);

    //set slave mode
    if (i2c_mode == I2CSLAVE) {
        i2c_set_slave_mode(i2c_interface, slave_addr);
    }

    /* Install interrupt handler */
    if (!i2c_irq_handler_register(i2c_interface, handler)) {
        return false;
    }

    i2c_initial_master_transmitter_mode(i2c_interface);

    //puts("...i2c_initialize ended\n");
    return (true);
}

bool i2c_transaction(uint8_t i2c_interface)
{
    //puts("i2cTransaction begin...\n");
    i2c_master_state = I2C_IDLE;
    rd_index = 0;
    wr_index = 0;

    if (i2c_start(i2c_interface) != true) {
        i2c_stop(i2c_interface);
        puts("i2cTransaction return false...\n");
        return (false);
    }

    // puts("entering engine main loop\n");
    while (1) {
        if (i2c_master_state == DATA_NACK) {
            i2c_stop(i2c_interface);
            break;
        }
    }

    // puts("...i2cTransaction ended\n");
    return (true);
}

bool i2c_start(uint8_t i2c_interface)
{
    //  puts("i2c_start begin...\n");
    uint32_t timeout = 0;
    bool retVal = false;

    /*--- Issue a start condition ---*/
    switch (i2c_interface) {
        case I2C0:
            I20CONSET = I2CONSET_STA; /* Set Start flag */
            break;

        case I2C1_0:
        case I2C1_1:
            I21CONSET = I2CONSET_STA; /* Set Start flag */
            break;

        case I2C2:
            I22CONSET = I2CONSET_STA; /* Set Start flag */
    }

    /*--- Wait until START transmitted ---*/
    while (1) {
        if (i2c_master_state == I2C_STARTED) {
            retVal = true;
            break;
        }

        if (timeout >= MAX_TIMEOUT) {
            puts("timeout");
            retVal = false;
            break;
        }

        timeout++;
    }

    //puts("...i2c_start ended\n");
    return (retVal);
}

bool i2c_stop(uint8_t i2c_interface)
{
    //puts("i2c_stop begin...\n");
    switch (i2c_interface) {
        case I2C0:
            I20CONSET = I2CONSET_STO; /* Set Stop flag */
            I20CONCLR = I2CONCLR_SIC; /* Clear SI flag */

            /*--- Wait for STOP detected ---*/
            while (I20CONSET & I2CONSET_STO) {}

            break;

        case I2C1_0:
        case I2C1_1:
            I21CONSET = I2CONSET_STO; /* Set Stop flag */
            I21CONCLR = I2CONCLR_SIC; /* Clear SI flag */

            /*--- Wait for STOP detected ---*/
            while (I21CONSET & I2CONSET_STO) {}

            break;

        case I2C2:
            I22CONSET = I2CONSET_STO; /* Set Stop flag */
            I22CONCLR = I2CONCLR_SIC; /* Clear SI flag */

            /*--- Wait for STOP detected ---*/
            while (I22CONSET & I2CONSET_STO) {}
    }

    //  puts("...i2c_stop ended\n");
    return true;
}

void i2c_active_power(uint8_t i2c_interface)
{
    switch (i2c_interface) {
        case I2C0:
            PCONP |= BIT7;
            break;

        case I2C1_0:
        case I2C1_1:
            PCONP |= BIT19;
            break;

        case I2C2:
            PCONP |= BIT26;
    }
}

//select I2C2 functionality for pins x.xx (SDAx) and x.xx (SCLx)
void i2c_pin_select(uint8_t i2cInterface)
{
    switch (i2cInterface) {
        case I2C0: // P0.27 SDA0, P0.28 SCL0
            PINSEL1 |= BIT22 | BIT24;
            PINSEL1 &= ~(BIT23 | BIT25);
            break;

        case I2C1_0: // P0.0  SDA1, P0.1  SCL1
            PINSEL0 |= BIT0 | BIT1 | BIT2 | BIT3;
            break;

        case I2C1_1: // P0.19 SDA1, P0.20 SCL1
            PINSEL1 |= BIT6 | BIT7 | BIT8 | BIT9;
            break;

        case I2C2: // P0.10 SDA2, P0.11 SCL2
            PINSEL0 |= BIT21 | BIT23;
            PINSEL0 &= ~(BIT20 | BIT22);
    }
}

/*--- clearing of bits in the I2CON register ---*/
void i2c_clear_control_register(uint8_t i2c_interface)
{
    switch (i2c_interface) {
        case I2C0:
            I20CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
                        I2CONCLR_I2ENC;
            break;

        case I2C1_0:
        case I2C1_1:
            I21CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
                        I2CONCLR_I2ENC;
            break;

        case I2C2:
            I22CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
                        I2CONCLR_I2ENC;
    }
}

void i2c_set_baud_rate(uint8_t i2c_interface, uint32_t baud_rate)
{
    uint32_t pclksel = 0;
    uint32_t prescale = 0;
    lpc2387_pclk_scale(CLOCK_CORECLOCK, baud_rate, &pclksel, &prescale);

    switch (i2c_interface) {
        case I2C0:
            PCLKSEL0 &= ~(BIT14 | BIT15); //clear Bits
            PCLKSEL0 |= pclksel << 14; //set bits

            I20SCLL = prescale / 2;
            I20SCLH = prescale / 2;
            break;

        case I2C1_0:
        case I2C1_1:
            PCLKSEL1 &= ~(BIT6 | BIT7);
            PCLKSEL1 |= pclksel << 6;

            I21SCLL = prescale / 2;
            I21SCLH = prescale / 2;
            break;

        case I2C2:
            PCLKSEL1 &= ~(BIT20 | BIT21);
            PCLKSEL1 |= pclksel << 20;

            I22SCLL = prescale / 2;
            I22SCLH = prescale / 2;
    }
}

bool i2c_irq_handler_register(uint8_t i2c_interface, void *handler)
{
    bool successful = false;

    switch (i2c_interface) {
        case I2C0:
            if (handler == NULL) {
                successful = install_irq(I2C0_INT,
                                         (void *) i2c_interface0_master_handler,
                                         HIGHEST_PRIORITY);
            }
            else {
                successful = install_irq(I2C0_INT, (void *) handler,
                                         HIGHEST_PRIORITY);
            }

            break;

        case I2C1_0:
        case I2C1_1:
            if (handler == NULL) {
                successful = install_irq(I2C1_INT,
                                         (void *) i2c_interface1_master_handler,
                                         HIGHEST_PRIORITY);
            }
            else {
                successful = install_irq(I2C1_INT, (void *) handler,
                                         HIGHEST_PRIORITY);
            }

            break;

        case I2C2:
            if (handler == NULL) {
                successful = install_irq(I2C2_INT,
                                         (void *) i2c_interface2_master_handler,
                                         HIGHEST_PRIORITY);
            }
            else {
                successful = install_irq(I2C2_INT, (void *) handler,
                                         HIGHEST_PRIORITY);
            }
    }

    return successful;
}

void i2c_initial_master_transmitter_mode(uint8_t i2c_interface)
{
    switch (i2c_interface) {
        case I2C0:
            I20CONSET = I2CONSET_I2EN;
            break;

        case I2C1_0:
        case I2C1_1:
            I21CONSET = I2CONSET_I2EN;
            break;

        case I2C2:
            I22CONSET = I2CONSET_I2EN;
    }
}

bool i2c_read(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
              uint8_t *rx_buff, uint8_t rx_buff_length)
{
    i2c_clear_buffer((uint8_t *) i2c_master_buffer,
                     I2C_BUFSIZE * sizeof(uint8_t));
    i2c_write_length = 1;
    i2c_read_length = rx_buff_length;
    bool successful;
    uint8_t readIndex = 3;
    i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
    i2c_master_buffer[1] = reg_addr;
    i2c_master_buffer[2] = ((slave_addr << 1) & WRITE_ENABLE_BIT_MASK)
                           | READ_ENABLE_BIT_MASK;
    successful = i2c_transaction(i2c_interface);

    if (successful && (rx_buff != NULL) &&
        (rx_buff_length < (I2C_BUFSIZE - readIndex))) {
        memcpy(rx_buff, (const uint8_t *)(i2c_master_buffer + readIndex),
               sizeof(uint8_t) * rx_buff_length);
        return true;
    }
    else {
        return false;
    }
}

void i2c_clear_buffer(void *ptr, uint32_t size)
{
    memset(ptr, 0, size);
}

bool i2c_write(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
               uint8_t *tx_buff, uint8_t tx_buff_length)
{
    //puts("[i2c.c/i2cWrite]: entered\n");
    i2c_clear_buffer((uint8_t *) i2c_master_buffer,
                     I2C_BUFSIZE * sizeof(uint8_t));
    i2c_write_length = tx_buff_length + 1;
    i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
    i2c_master_buffer[1] = reg_addr;

    if ((tx_buff != NULL) && tx_buff_length < (I2C_BUFSIZE - 2)) {
        int32_t j = 0;
        for (int32_t i = 2; i < tx_buff_length + 2; i++) {
            i2c_master_buffer[i] = tx_buff[j];
            j++;
            //printf("I2CMasterBuffer[%d] = %d\n", i, I2CMasterBuffer[i]);
        }

        return i2c_transaction(i2c_interface);
    }
    else {
        puts("[i2c.c/i2cWrite]: Invalid buffer or invalid write buffer size\n");
        return false;
    }
}

//burst mode, the first element in the array
bool i2c_trans_receive(uint8_t i2c_interface, uint8_t slave_addr,
                       uint8_t *tx_buff, uint8_t tx_buff_length,
                       uint8_t *rx_buff, uint8_t rx_buff_length)
{
    puts("[i2c.c/i2cTransReceive]: entered\n");
    i2c_clear_buffer((uint8_t *) i2c_master_buffer,
                     I2C_BUFSIZE * sizeof(uint8_t));
    i2c_write_length = tx_buff_length;
    i2c_read_length = rx_buff_length;

    if (tx_buff != NULL && (tx_buff_length > 0)) {
        int32_t read_index = 0;
        i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;

        for (int32_t i = 1; i < tx_buff_length + 1; i++) {
            if (i < I2C_BUFSIZE) {
                i2c_master_buffer[i] = tx_buff[i - 1];
            }
        }

        //enable I2C to read
        if ((rx_buff_length > 0) && (i < I2C_BUFSIZE)) {
            i2c_master_buffer[i] = ((slave_addr << 1) & WRITE_ENABLE_BIT_MASK)
                                   | READ_ENABLE_BIT_MASK;
            read_index = i + 1;
        }

        bool successful = i2c_transaction(i2c_interface);

        if (successful && (rx_buff != NULL) && (rx_buff_length > 0)) {
            memcpy(rx_buff, (const uint8_t *)(i2c_master_buffer + read_index),
                   sizeof(uint8_t) * rx_buff_length);
            return true;
        }
        else {
            return false;
        }
    }
    else {
        puts(
            "[i2c.c/i2cRead]: the txBuff is not valid or has not a valid \
            length value !\n");
        return false;
    }
}

/**
 * @brief       The interrupt handler for the I2C0 interface.
 *              It deals only with the master mode.
 *
 */
void i2c_interface0_master_handler(void) //__irq
{
    //puts("entering I2C handler function\n");
    uint8_t state_value;

    /* this handler deals with master read and master write only */
    state_value = I20STAT;

    //IENABLE;          /* handles nested interrupt */
    //irq_enable();
    switch (state_value) {
        case 0x08: /* A Start condition is issued. */
            //puts("A Start condition is issued\n");
            I20DAT = i2c_master_buffer[0];
            //printf("I22DAT = %lu\n", I22DAT);
            I20CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
            i2c_master_state = I2C_STARTED;
            break;

        case 0x10: /* A repeated started is issued */
            //puts("A repeated Start is issued\n");
            //  if ( I2CCmd == L3DG420_WHO_AM_I)
            //  {
            //    I22DAT = I2CMasterBuffer[2];
            //  }
            I20DAT = i2c_master_buffer[2];
            I20CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
            i2c_master_state = I2C_RESTARTED;
            break;

        case 0x18: /* Regardless, it's a ACK */

            //puts("got an Ack\n");
            if (i2c_master_state == I2C_STARTED) {
                I20DAT = i2c_master_buffer[1 + wr_index];
                wr_index++;
                i2c_master_state = DATA_ACK;

            }

            I20CONCLR = I2CONCLR_SIC;
            break;

        case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
        case 0x30:

            //puts("Data byte has been transmitted\n");
            if (wr_index != i2c_write_length) {

                // this should be the last one
                I20DAT = i2c_master_buffer[1 + wr_index];

                if (wr_index != i2c_write_length) {
                    i2c_master_state = DATA_ACK;
                }
                else {
                    i2c_master_state = DATA_NACK;
                    I20CONSET = I2CONSET_STO; /* Set Stop flag */

                    if (i2c_read_length != 0) {
                        I20CONSET = I2CONSET_STA; /* Set Repeated-start flag */
                        i2c_master_state = I2C_REPEATED_START;
                    }
                }

                wr_index++;
            }
            else {
                if (i2c_read_length != 0) {
                    I20CONSET = I2CONSET_STA; /* Set Repeated-start flag */
                    i2c_master_state = I2C_REPEATED_START;
                }
                else {
                    i2c_master_state = DATA_NACK;
                    I20CONSET = I2CONSET_STO; /* Set Stop flag */
                }
            }

            I20CONCLR = I2CONCLR_SIC;
            break;

        case 0x40: /* Master Receive, SLA_R has been sent */

            //puts("Master Receive, SLA_R has been sent!\n");
            if (i2c_read_length >= 2) {
                I20CONSET = I2CONSET_AA; /* assert ACK after data is received */
            }

            I20CONCLR = I2CONCLR_SIC;
            break;

            // Data byte has been received, regardless following ACK or NACK
        case 0x50:
        case 0x58:
            //puts("Data received\n");
            i2c_master_buffer[3 + rd_index] = I20DAT;
            rd_index++;

            if (rd_index < (i2c_read_length - 1)) {
                i2c_master_state = DATA_ACK;
                I20CONSET = I2CONSET_AA; /* assert ACK after data is received */
            }
            else {
                I20CONCLR = I2CONCLR_AAC; /* NACK after data is received */
            }

            if (rd_index == i2c_read_length) {
                rd_index = 0;
                i2c_master_state = DATA_NACK;
            }

            I20CONCLR = I2CONCLR_SIC;
            break;

        case 0x20: /* regardless, it's a NACK */
        case 0x48:
            I20CONCLR = I2CONCLR_SIC;
            i2c_master_state = DATA_NACK;
            break;

        case 0x38: /*
                    * Arbitration lost, in this example, we don't
                    *  deal with multiple master situation
                    **/

            //puts("Arbritration lost!\n");
        default:
            I20CONCLR = I2CONCLR_SIC;
            break;
    }

    //IDISABLE;
    //irq_disable();
    //puts("leave I2C handler function\n");
    VICVectAddr = 0; /* Acknowledge Interrupt */
}

/**
 * @brief       The interrupt handler for the I2C1 interface.
 *              It deals only with the master mode.
 *
 */
void i2c_interface1_master_handler(void) //__irq
{
    //puts("entering I2C handler function\n");
    uint8_t state_value;

    /* this handler deals with master read and master write only */
    state_value = I21STAT;

    //IENABLE;    /* handles nested interrupt */
    //irq_enable();
    switch (state_value) {
        case 0x08: /* A Start condition is issued. */
            //puts("A Start condition is issued\n");
            I21DAT = i2c_master_buffer[0];
            //printf("I22DAT = %lu\n", I22DAT);
            I21CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
            i2c_master_state = I2C_STARTED;
            break;

        case 0x10: /* A repeated started is issued */
            //puts("A repeated Start is issued\n");
            //  if ( I2CCmd == L3DG420_WHO_AM_I)
            //  {
            //    I22DAT = I2CMasterBuffer[2];
            //  }
            I21DAT = i2c_master_buffer[2];
            I21CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
            i2c_master_state = I2C_RESTARTED;
            break;

        case 0x18: /* Regardless, it's a ACK */

            //puts("got an Ack\n");
            if (i2c_master_state == I2C_STARTED) {
                I21DAT = i2c_master_buffer[1 + wr_index];
                wr_index++;
                i2c_master_state = DATA_ACK;

            }

            I21CONCLR = I2CONCLR_SIC;
            break;

        case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
        case 0x30:

            //puts("Data byte has been transmitted\n");
            if (wr_index != i2c_write_length) {
                // this should be the last one
                I21DAT = i2c_master_buffer[1 + wr_index];

                if (wr_index != i2c_write_length) {
                    i2c_master_state = DATA_ACK;
                }
                else {
                    i2c_master_state = DATA_NACK;
                    I21CONSET = I2CONSET_STO; /* Set Stop flag */

                    if (i2c_read_length != 0) {
                        I21CONSET = I2CONSET_STA; /* Set Repeated-start flag */
                        i2c_master_state = I2C_REPEATED_START;
                    }
                }

                wr_index++;
            }
            else {
                if (i2c_read_length != 0) {
                    I21CONSET = I2CONSET_STA; /* Set Repeated-start flag */
                    i2c_master_state = I2C_REPEATED_START;
                }
                else {
                    i2c_master_state = DATA_NACK;
                    I21CONSET = I2CONSET_STO; /* Set Stop flag */
                }
            }

            I21CONCLR = I2CONCLR_SIC;
            break;

        case 0x40: /* Master Receive, SLA_R has been sent */

            //puts("Master Receive, SLA_R has been sent!\n");
            if (i2c_read_length >= 2) {
                I21CONSET = I2CONSET_AA; /* assert ACK after data is received */
            }

            I21CONCLR = I2CONCLR_SIC;
            break;

        case 0x50: /*
                    * Data byte has been received, regardless following ACK or
                    * NACK
                    **/
        case 0x58:
            //puts("Data received\n");
            i2c_master_buffer[3 + rd_index] = I21DAT;
            rd_index++;

            if (rd_index < (i2c_read_length - 1)) {
                i2c_master_state = DATA_ACK;
                I21CONSET = I2CONSET_AA; /* assert ACK after data is received */
            }
            else {
                I21CONCLR = I2CONCLR_AAC; /* NACK after data is received */
            }

            if (rd_index == i2c_read_length) {
                rd_index = 0;
                i2c_master_state = DATA_NACK;
            }

            I21CONCLR = I2CONCLR_SIC;
            break;

        case 0x20: /* regardless, it's a NACK */
        case 0x48:
            I21CONCLR = I2CONCLR_SIC;
            i2c_master_state = DATA_NACK;
            break;

        case 0x38: /*
                    * Arbitration lost, in this example, we don't
                    * deal with multiple master situation
                    **/

            //puts("Arbritration lost!\n");
        default:
            I21CONCLR = I2CONCLR_SIC;
            break;
    }

    //IDISABLE;
    //irq_disable();
    //puts("leave I2C handler function\n");
    VICVectAddr = 0; /* Acknowledge Interrupt */
}

/**
 * @brief    The interrupt handler for the I2C2 interface.
 *           It deals only with the master mode.
 *
 */
void i2c_interface2_master_handler(void) //__irq
{
    //puts("entering I2C handler function\n");
    uint8_t state_value;

    /* this handler deals with master read and master write only */
    state_value = I22STAT;

    //IENABLE;  /* handles nested interrupt */
    //irq_enable();
    switch (state_value) {
        case 0x08: /* A Start condition is issued. */
            //puts("A Start condition is issued\n");
            I22DAT = i2c_master_buffer[0];
            //printf("I22DAT = %lu\n", I22DAT);
            I22CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
            i2c_master_state = I2C_STARTED;
            break;

        case 0x10: /* A repeated started is issued */
            //puts("A repeated Start is issued\n");
            //  if ( I2CCmd == L3DG420_WHO_AM_I)
            //  {
            //    I22DAT = I2CMasterBuffer[2];
            //  }
            I22DAT = i2c_master_buffer[2];
            I22CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
            i2c_master_state = I2C_RESTARTED;
            break;

        case 0x18: /* Regardless, it's a ACK */

            //puts("got an Ack\n");
            if (i2c_master_state == I2C_STARTED) {
                I22DAT = i2c_master_buffer[1 + wr_index];
                wr_index++;
                i2c_master_state = DATA_ACK;

            }

            I22CONCLR = I2CONCLR_SIC;
            break;

        case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
        case 0x30:

            //puts("Data byte has been transmitted\n");
            if (wr_index != i2c_write_length) {
                // this should be the last one
                I22DAT = i2c_master_buffer[1 + wr_index];

                if (wr_index != i2c_write_length) {
                    i2c_master_state = DATA_ACK;
                }
                else {
                    i2c_master_state = DATA_NACK;
                    I22CONSET = I2CONSET_STO; /* Set Stop flag */

                    if (i2c_read_length != 0) {
                        I22CONSET = I2CONSET_STA; /* Set Repeated-start flag */
                        i2c_master_state = I2C_REPEATED_START;
                    }
                }

                wr_index++;
            }
            else {
                if (i2c_read_length != 0) {
                    I22CONSET = I2CONSET_STA; /* Set Repeated-start flag */
                    i2c_master_state = I2C_REPEATED_START;
                }
                else {
                    i2c_master_state = DATA_NACK;
                    I22CONSET = I2CONSET_STO; /* Set Stop flag */
                }
            }

            I22CONCLR = I2CONCLR_SIC;
            break;

        case 0x40: /* Master Receive, SLA_R has been sent */

            //puts("Master Receive, SLA_R has been sent!\n");
            if (i2c_read_length >= 2) {
                I22CONSET = I2CONSET_AA; /* assert ACK after data is received */
            }

            I22CONCLR = I2CONCLR_SIC;
            break;

        case 0x50: /*
                    * Data byte has been received, regardless following ACK or
                    * NACK
                    **/
        case 0x58:
            //puts("Data received\n");
            i2c_master_buffer[3 + rd_index] = I22DAT;
            rd_index++;

            if (rd_index < (i2c_read_length - 1)) {
                i2c_master_state = DATA_ACK;
                I22CONSET = I2CONSET_AA; /* assert ACK after data is received */
            }
            else {
                I22CONCLR = I2CONCLR_AAC; /* NACK after data is received */
            }

            if (rd_index == i2c_read_length) {
                rd_index = 0;
                i2c_master_state = DATA_NACK;
            }

            I22CONCLR = I2CONCLR_SIC;
            break;

        case 0x20: /* regardless, it's a NACK */
        case 0x48:
            I22CONCLR = I2CONCLR_SIC;
            i2c_master_state = DATA_NACK;
            break;

        case 0x38: /*
                    * Arbitration lost, in this example, we don't
                    * deal with multiple master situation
                    **/

            //puts("Arbritration lost!\n");
        default:
            I22CONCLR = I2CONCLR_SIC;
            break;
    }

    //IDISABLE;
    //irq_disable();
    //puts("leave I2C handler function\n");
    VICVectAddr = 0; /* Acknowledge Interrupt */
}

void i2c_set_slave_mode(uint8_t i2c_interface, uint8_t slave_addr)
{
    switch (i2c_interface) {
        case I2C0:
            I20ADR = slave_addr;
            break;

        case I2C1_0:
        case I2C1_1:
            I21ADR = slave_addr;
            break;

        case I2C2:
            I22ADR = slave_addr;
    }
}

void i2c_enable_pull_up_resistor(uint8_t i2c_interface)
{

    switch (i2c_interface) {

        case I2C1_0: // P0.0  SDA1, P0.1  SCL1
            puts("The on-chip pull-up resistor is enabled for the I2C1_0");
            PINMODE0 &= ~(BIT0 | BIT1 | BIT2 | BIT3);
            break;

        case I2C1_1: // P0.19 SDA1, P0.20 SCL1
            puts("The on-chip pull-up resistor is enabled for the I2C1_1");
            PINMODE1 &= ~(BIT6 | BIT7 | BIT8 | BIT9);
            break;

        case I2C2: // P0.10 SDA2, P0.11 SCL2
            puts("The on-chip pull-up resistor is enabled for the I2C2");
            PINMODE0 &= ~(BIT20 | BIT21 | BIT22 | BIT23);
            //PINMODE0 &= ~(BIT20 | BIT22);
    }
}

void i2c_disable_pull_up_resistor(uint8_t i2c_interface)
{
    switch (i2c_interface) {
        case I2C1_0: // P0.0  SDA1, P0.1  SCL1
            puts("The on-chip pull-up resistor is disbled for the I2C1_0");
            PINMODE0 &= ~(BIT0 | BIT2);
            PINMODE0 |= (BIT1 | BIT3);
            break;

        case I2C1_1: // P0.19 SDA1, P0.20 SCL1
            puts("The on-chip pull-up resistor is disabled for the I2C1_1");
            PINMODE1 &= ~(BIT6 | BIT8);
            PINMODE1 |= (BIT7 | BIT9);
            break;

        case I2C2: // P0.10 SDA2, P0.11 SCL2
            puts("The on-chip pull-up resistor is disbled for the I2C2");
            PINMODE0 &= ~(BIT20 | BIT22);
            PINMODE1 |= (BIT21 | BIT23);

    }
}