kw2xrf.c
36.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
/*
* Copyright (C) 2015 PHYTEC Messtechnik GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup kw2xrf
* @{
* @file
* @brief Basic functionality of kw2xrf driver
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Jonas Remmert <j.remmert@phytec.de>
* @author Oliver Hahm <oliver.hahm@inria.fr>
* @}
*/
#include "panic.h"
#include "kw2xrf.h"
#include "kw2xrf_spi.h"
#include "kw2xrf_reg.h"
#include "mutex.h"
#include "msg.h"
#include "periph/gpio.h"
#include "periph/cpuid.h"
#include "net/gnrc.h"
#include "net/ieee802154.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Internal driver event type in case of an unexpected interrupt
*/
#define ISR_EVENT_UNKNOWN (0x0020)
/* Modem_PA_PWR Register (PA Power Control) has a valid range from 3-31 */
#define MKW2XDRF_PA_RANGE_MAX 31 /**< Maximum value of PA Power Control Register */
#define MKW2XDRF_PA_RANGE_MIN 3 /**< Minimum value of PA Power Control Register */
#define _MAX_MHR_OVERHEAD (25)
/* PLL integer lookup table */
static const uint8_t pll_int_lt[16] = {
11, 11, 11, 11,
11, 11, 12, 12,
12, 12, 12, 12,
13, 13, 13, 13
};
/* PLL frequency fractional lookup table */
static const uint16_t pll_frac_lt[16] = {
10240, 20480, 30720, 40960,
51200, 61440, 6144, 16384,
26624, 36864, 47104, 57344,
2048, 12288, 22528, 32768
};
static const uint8_t pow_lt[44] = {
3, 4, 4, 5,
6, 6, 7, 7,
8, 9, 9, 10,
11, 11, 12, 13,
13, 14, 14, 15,
16, 16, 17, 18,
18, 19, 20, 20,
21, 21, 22, 23,
23, 24, 25, 25,
26, 27, 27, 28,
28, 29, 30, 31
};
/* TODO: Implement this
static const int level_lt[29] = {
-35, -34, -32, -31,
-29, -28, -26, -25,
-23, -22, -20, -19,
-17, -16, -14, -13,
-11, -10, -8, -7,
-5, -4, -2, -1,
1, 2, 4, 5,
7
};
*/
static gpio_t kw2xrf_gpio_int;
void kw2xrf_set_option(kw2xrf_t *dev, uint16_t option, bool state);
int kw2xrf_set_tx_power(kw2xrf_t *dev, int8_t *val, size_t len)
{
uint8_t level = pow_lt[val[0] - MKW2XDRF_OUTPUT_POWER_MIN];
kw2xrf_write_dreg(MKW2XDM_PA_PWR, MKW2XDM_PA_PWR(level));
return 2;
}
int kw2xrf_get_channel(kw2xrf_t *dev, uint8_t *val, size_t max)
{
if (max < 2) {
return -EOVERFLOW;
}
uint8_t pll_int = kw2xrf_read_dreg(MKW2XDM_PLL_INT0);
uint16_t pll_frac = kw2xrf_read_dreg(MKW2XDM_PLL_FRAC0_LSB);
pll_frac |= ((uint16_t)kw2xrf_read_dreg(MKW2XDM_PLL_FRAC0_MSB) << 8);
for (int i = 0; i < 16; i++) {
if ((pll_frac_lt[i] == pll_frac) && (pll_int_lt[i] == pll_int)) {
val[0] = i + 11;
val[1] = 0;
return 2;
}
}
return -EINVAL;
}
int kw2xrf_get_sequence(void)
{
int reg = 0;
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= MKW2XDM_PHY_CTRL1_XCVSEQ_MASK;
return reg;
}
void kw2xrf_set_sequence(kw2xrf_t *dev, kw2xrf_physeq_t seq)
{
uint8_t reg = 0;
/* Only interrupt interruptable states */
uint8_t curr_seq = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
curr_seq &= (MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
if ((curr_seq == XCVSEQ_RECEIVE) || (curr_seq == XCVSEQ_CONTINUOUS_CCA)) {
/* Clear all pending interrupts */
gpio_irq_disable(kw2xrf_gpio_int);
/* abort any ongoing sequence */
DEBUG("kw2xrf_tx: abort SEQ_STATE: %x\n", kw2xrf_read_dreg(MKW2XDM_SEQ_STATE));
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
/* Mask all possible interrupts */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL3);
reg |= MKW2XDM_PHY_CTRL3_WAKE_MSK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL3, reg);
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, 0x7f);
kw2xrf_write_dreg(MKW2XDM_IRQSTS2, 0x03);
kw2xrf_write_dreg(MKW2XDM_IRQSTS3, 0xff);
gpio_irq_enable(kw2xrf_gpio_int);
}
#ifdef DEVELHELP
uint16_t max_tries = 0;
#endif
/* Wait for all other states finish */
while (kw2xrf_read_dreg(MKW2XDM_SEQ_STATE)) {
#ifdef DEVELHELP
max_tries++;
/* At 10MHz SPI-Clock, 40000 should be in the magnitue of 0.1s */
if (max_tries == 40000) {
DEBUG("kw2xrf_error: device does not finish sequence\n");
core_panic(PANIC_GENERAL_ERROR, "kw2xrf_error: device does not finish sequence");
}
#endif
}
/* For all sequences only enable SEQ-irq will be set when sequence completed */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL2);
reg &= ~(MKW2XDM_PHY_CTRL2_SEQMSK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL2, reg);
/* Progrmm new sequence */
switch (seq) {
case XCVSEQ_IDLE:
dev->state = NETOPT_STATE_SLEEP;
break;
case XCVSEQ_RECEIVE:
dev->state = NETOPT_STATE_RX;
break;
case XCVSEQ_TRANSMIT:
dev->state = NETOPT_STATE_TX;
break;
case XCVSEQ_CCA:
dev->state = NETOPT_STATE_TX;
break;
case XCVSEQ_TX_RX:
dev->state = NETOPT_STATE_TX;
break;
case XCVSEQ_CONTINUOUS_CCA:
dev->state = NETOPT_STATE_TX;
break;
default:
DEBUG("kw2xrf: undefined state assigned to phy\n");
dev->state = NETOPT_STATE_IDLE;
}
/* Mapping of TX-sequences depending on AUTOACK flag */
/* TODO: This should only used in combination with
* an CSMA-MAC layer. Currently not working
*/
/*if ((seq == XCVSEQ_TRANSMIT) || (seq == XCVSEQ_TX_RX)) {
if ((dev->option) & KW2XRF_OPT_AUTOACK) {
seq = XCVSEQ_TX_RX;
}
else {
seq = XCVSEQ_TRANSMIT;
}
}*/
DEBUG("kw2xrf: Set sequence to %i\n", seq);
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
reg |= MKW2XDM_PHY_CTRL1_XCVSEQ(seq);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
}
int kw2xrf_set_channel(kw2xrf_t *dev, uint8_t *val, size_t len)
{
/* Save old sequence to restore this state later */
uint8_t old_seq = kw2xrf_get_sequence();
if (old_seq) {
kw2xrf_set_sequence(dev, XCVSEQ_IDLE);
}
if ((val[0] < 11) || (val[0] > 26)) {
DEBUG("kw2xrf: Invalid channel %i set. Valid channels are 11 through 26\n", val[0]);
return -ENOTSUP;
}
if ((len != 2) || (val[1] != 0)) {
DEBUG("kw2xrf: set channel failed, len: %u, val[0]:%u\n", len, val[0]);
return -EINVAL;
}
/*
* Fc = 2405 + 5(k - 11) , k = 11,12,...,26
*
* Equation for PLL frequency, MKW2xD Reference Manual, p.255 :
* F = ((PLL_INT0 + 64) + (PLL_FRAC0/65536))32MHz
*
*/
uint8_t tmp = val[0] - 11;
kw2xrf_write_dreg(MKW2XDM_PLL_INT0, MKW2XDM_PLL_INT0_VAL(pll_int_lt[tmp]));
kw2xrf_write_dreg(MKW2XDM_PLL_FRAC0_LSB, (uint8_t)pll_frac_lt[tmp]);
kw2xrf_write_dreg(MKW2XDM_PLL_FRAC0_MSB, (uint8_t)(pll_frac_lt[tmp] >> 8));
DEBUG("kw2xrf: set channel to %u\n", val[0]);
if (old_seq) {
kw2xrf_set_sequence(dev, old_seq);
}
return 2;
}
void kw2xrf_irq_handler(void *args)
{
msg_t msg;
kw2xrf_t *dev = (kw2xrf_t *)args;
/* notify driver thread about the interrupt */
msg.type = GNRC_NETDEV_MSG_TYPE_EVENT;
msg_send_int(&msg, dev->mac_pid);
}
/* Set up interrupt sources, triggered by the radio-module */
void kw2xrf_init_interrupts(kw2xrf_t *dev, gpio_t int_pin)
{
/* Clear all pending interrupts */
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, 0x7f);
kw2xrf_write_dreg(MKW2XDM_IRQSTS2, 0x03);
kw2xrf_write_dreg(MKW2XDM_IRQSTS3, 0xff);
/* Disable all interrups:
* Selectively enable only one interrupt source selectively in sequence manager.
* After reset state all interrupts are disabled, except WAKE_IRQ.
*/
int reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL3);
reg |= MKW2XDM_PHY_CTRL3_WAKE_MSK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL3, reg);
/* set up GPIO-pin used for IRQ */
gpio_init_int(int_pin, GPIO_IN, GPIO_FALLING, &kw2xrf_irq_handler, dev);
}
int kw2xrf_set_pan(kw2xrf_t *dev, uint16_t pan)
{
dev->radio_pan = pan;
uint8_t val_ar[2];
val_ar[1] = (pan >> 8);
val_ar[0] = (uint8_t)pan;
kw2xrf_write_iregs(MKW2XDMI_MACPANID0_LSB, val_ar, 2);
return 2;
}
int kw2xrf_get_proto(kw2xrf_t *dev, uint8_t *val, size_t max)
{
if (max < sizeof(gnrc_nettype_t)) {
return -EOVERFLOW;
}
memcpy(val, &(dev->proto), sizeof(gnrc_nettype_t));
return sizeof(gnrc_nettype_t);
}
int kw2xrf_set_proto(kw2xrf_t *dev, uint8_t *val, size_t len)
{
if (len != sizeof(gnrc_nettype_t)) {
return -EINVAL;
}
memcpy(&(dev->proto), val, sizeof(gnrc_nettype_t));
return sizeof(gnrc_nettype_t);
}
int kw2xrf_on(kw2xrf_t *dev)
{
uint8_t tmp;
/* check modem's crystal oscillator, CLK_OUT shall be 4MHz */
tmp = kw2xrf_read_dreg(MKW2XDM_CLK_OUT_CTRL);
if (tmp != 0x8Bu) {
return -1;
}
DEBUG("SEQ_STATE: %x\n", kw2xrf_read_dreg(MKW2XDM_SEQ_STATE));
/* enable RFon mode */
kw2xrf_write_dreg(MKW2XDM_PWR_MODES,
(MKW2XDM_PWR_MODES_XTALEN | MKW2XDM_PWR_MODES_PMC_MODE));
/* abort any ongoing sequence */
kw2xrf_set_sequence(dev, XCVSEQ_IDLE);
dev->state = NETOPT_STATE_SLEEP;
return 0;
}
int kw2xrf_set_addr(kw2xrf_t *dev, uint16_t addr)
{
uint8_t val_ar[2];
val_ar[0] = (addr >> 8);
val_ar[1] = (uint8_t)addr;
dev->addr_short[0] = val_ar[0];
dev->addr_short[1] = val_ar[1];
#ifdef MODULE_SIXLOWPAN
/* https://tools.ietf.org/html/rfc4944#section-12 requires the first bit to
* 0 for unicast addresses */
dev->addr_short[1] &= 0x7F;
#endif
kw2xrf_write_iregs(MKW2XDMI_MACSHORTADDRS0_LSB, val_ar,
IEEE802154_SHORT_ADDRESS_LEN);
return sizeof(uint16_t);
}
int kw2xrf_set_addr_long(kw2xrf_t *dev, uint64_t addr)
{
for (int i = 0; i < IEEE802154_LONG_ADDRESS_LEN; i++) {
dev->addr_long[i] = (addr >> ((IEEE802154_LONG_ADDRESS_LEN - 1 - i) * 8));
}
kw2xrf_write_iregs(MKW2XDMI_MACLONGADDRS0_0, (dev->addr_long),
IEEE802154_LONG_ADDRESS_LEN);
return sizeof(uint64_t);
}
int kw2xrf_init(kw2xrf_t *dev, spi_t spi, spi_speed_t spi_speed,
gpio_t cs_pin, gpio_t int_pin)
{
uint8_t reg = 0;
uint8_t tmp[2];
kw2xrf_gpio_int = int_pin;
#if CPUID_LEN
/* make sure that the buffer is always big enough to store a 64bit value */
# if CPUID_LEN < IEEE802154_LONG_ADDRESS_LEN
uint8_t cpuid[IEEE802154_LONG_ADDRESS_LEN];
# else
uint8_t cpuid[CPUID_LEN];
#endif
uint16_t addr_short = 0;
eui64_t addr_long;
#endif
/* check device parameters */
if (dev == NULL) {
return -ENODEV;
}
kw2xrf_spi_init(spi, spi_speed, cs_pin);
if (kw2xrf_on(dev) != 0) {
core_panic(PANIC_GENERAL_ERROR, "Could not start MKW2XD radio transceiver");
}
/* General initialization of interrupt sources.
* sets radio to idle mode with all interrupt masked
*/
kw2xrf_init_interrupts(dev, kw2xrf_gpio_int);
/* set device driver */
dev->driver = &kw2xrf_driver;
/* set default option */
dev->proto = KW2XRF_DEFAULT_PROTOCOL;
dev->option = 0;
#if CPUID_LEN
/* in case CPUID_LEN < 8, fill missing bytes with zeros */
memset(cpuid, 0, CPUID_LEN);
cpuid_get(cpuid);
/* generate short hardware address if CPUID_LEN > 0 */
for (int i = 0; i < CPUID_LEN; i++) {
/* XOR each even byte of the CPUID with LSB of short address
and each odd byte with MSB */
addr_short ^= (uint16_t)(cpuid[i] << ((i & 0x01) * 8));
}
#if CPUID_LEN > IEEE802154_LONG_ADDRESS_LEN
for (int i = IEEE802154_LONG_ADDRESS_LEN; i < CPUID_LEN; i++) {
cpuid[i & 0x07] ^= cpuid[i];
}
#endif
/* make sure we mark the address as non-multicast and not globally unique */
cpuid[0] &= ~(0x01);
cpuid[0] |= 0x02;
/* copy and set long address */
memcpy(&addr_long, cpuid, IEEE802154_LONG_ADDRESS_LEN);
kw2xrf_set_addr_long(dev, NTOHLL(addr_long.uint64.u64));
kw2xrf_set_addr(dev, addr_short);
#else
kw2xrf_set_addr_long(dev, KW2XRF_DEFAULT_SHORT_ADDR);
kw2xrf_set_addr(dev, KW2XRF_DEFAULT_ADDR_LONG);
#endif
/* set default TX-Power */
dev->tx_power = KW2XRF_DEFAULT_TX_POWER;
kw2xrf_set_tx_power(dev, &(dev->tx_power), sizeof(dev->tx_power));
/* set default channel */
dev->radio_channel = KW2XRF_DEFAULT_CHANNEL;
tmp[0] = dev->radio_channel;
tmp[1] = 0;
kw2xrf_set_channel(dev, tmp, 2);
/* set default PAN ID */
kw2xrf_set_pan(dev, KW2XRF_DEFAULT_PANID);
/* CCA Setup */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL4);
/* Set up CCA mode 1 (RSSI threshold) */
reg |= MKW2XDM_PHY_CTRL4_CCATYPE(1);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL4, reg);
DEBUG("kw2xrf: Initialized and set to channel %i and pan %i.\n",
KW2XRF_DEFAULT_CHANNEL, KW2XRF_DEFAULT_PANID);
kw2xrf_set_option(dev, KW2XRF_OPT_AUTOACK, true);
kw2xrf_set_option(dev, KW2XRF_OPT_CSMA, true);
/* Switch to Receive state per default after initialization */
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
return 0;
}
int kw2xrf_add_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev == NULL) {
return -ENODEV;
}
if (dev->event_cb != NULL) {
return -ENOBUFS;
}
dev->event_cb = cb;
return 0;
}
int kw2xrf_rem_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev == NULL) {
return -ENODEV;
}
if (dev->event_cb != cb) {
return -ENOENT;
}
dev->event_cb = NULL;
return 0;
}
uint16_t kw2xrf_get_addr_short(kw2xrf_t *dev)
{
return (dev->addr_short[0] << 8) | dev->addr_short[1];
}
uint64_t kw2xrf_get_addr_long(kw2xrf_t *dev)
{
uint64_t addr;
uint8_t *ap = (uint8_t *)(&addr);
for (int i = 0; i < IEEE802154_LONG_ADDRESS_LEN; i++) {
ap[i] = dev->addr_long[IEEE802154_LONG_ADDRESS_LEN - 1 - i];
}
return addr;
}
int8_t kw2xrf_get_cca_threshold(kw2xrf_t *dev)
{
uint8_t tmp;
kw2xrf_read_iregs(MKW2XDMI_CCA1_THRESH, &tmp, 1);
/* KW2x register value represents absolute value in dBm
* default value: -75 dBm
*/
return (-tmp);
}
void kw2xrf_set_cca_threshold(kw2xrf_t *dev, int8_t value)
{
/* normalize to absolute value */
if (value < 0) {
value = -value;
}
kw2xrf_write_iregs(MKW2XDMI_CCA1_THRESH, (uint8_t*)&value, 1);
}
int kw2xrf_get(gnrc_netdev_t *netdev, netopt_t opt, void *value, size_t max_len)
{
kw2xrf_t *dev = (kw2xrf_t *)netdev;
if (dev == NULL) {
return -ENODEV;
}
switch (opt) {
case NETOPT_ADDRESS:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = kw2xrf_get_addr_short(dev);
return sizeof(uint16_t);
case NETOPT_ADDRESS_LONG:
if (max_len < sizeof(uint64_t)) {
return -EOVERFLOW;
}
*((uint64_t *)value) = kw2xrf_get_addr_long(dev);
return sizeof(uint64_t);
case NETOPT_ADDR_LEN:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = 2;
return sizeof(uint16_t);
case NETOPT_SRC_LEN:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
if (dev->option & KW2XRF_OPT_SRC_ADDR_LONG) {
*((uint16_t *)value) = IEEE802154_LONG_ADDRESS_LEN;
}
else {
*((uint16_t *)value) = IEEE802154_SHORT_ADDRESS_LEN;
}
return sizeof(uint16_t);
case NETOPT_NID:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = dev->radio_pan;
return sizeof(uint16_t);
case NETOPT_IPV6_IID:
if (max_len < sizeof(eui64_t)) {
return -EOVERFLOW;
}
if (dev->option & KW2XRF_OPT_SRC_ADDR_LONG) {
uint64_t addr = kw2xrf_get_addr_long(dev);
ieee802154_get_iid(value, (uint8_t *)&addr, IEEE802154_LONG_ADDRESS_LEN);
}
else {
uint16_t addr = kw2xrf_get_addr_short(dev);
ieee802154_get_iid(value, (uint8_t *)&addr, IEEE802154_SHORT_ADDRESS_LEN);
}
return sizeof(eui64_t);
case NETOPT_CHANNEL:
return kw2xrf_get_channel(dev, (uint8_t *)value, max_len);
case NETOPT_PROTO:
return kw2xrf_get_proto(dev, (uint8_t *)value, max_len);
case NETOPT_STATE:
if (max_len < sizeof(netopt_state_t)) {
return -EOVERFLOW;
}
*(netopt_state_t *)value = *(netopt_state_t *) & (dev->state);
return 0;
case NETOPT_TX_POWER:
if (max_len < 1) {
return -EOVERFLOW;
}
*(int16_t *)value = dev->tx_power;
return 0;
case NETOPT_CCA_THRESHOLD:
if (max_len < sizeof(uint8_t)) {
return -EOVERFLOW;
} else {
*(int8_t *)value = kw2xrf_get_cca_threshold(dev);
}
return 0;
case NETOPT_MAX_PACKET_SIZE:
if (max_len < sizeof(int16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = KW2XRF_MAX_PKT_LENGTH - _MAX_MHR_OVERHEAD;
return sizeof(uint16_t);
case NETOPT_PRELOADING:
*((netopt_enable_t *)value) = !!(dev->option & KW2XRF_OPT_PRELOADING);
return sizeof(netopt_enable_t);
case NETOPT_AUTOACK:
*((netopt_enable_t *)value) = !!(dev->option & KW2XRF_OPT_AUTOACK);
return sizeof(netopt_enable_t);
case NETOPT_PROMISCUOUSMODE:
*((netopt_enable_t *)value) = !!(dev->option & KW2XRF_OPT_PROMISCUOUS);
return sizeof(netopt_enable_t);
case NETOPT_RAWMODE:
*((netopt_enable_t *)value) = !!(dev->option & KW2XRF_OPT_RAWDUMP);
return sizeof(netopt_enable_t);
default:
return -ENOTSUP;
}
}
void kw2xrf_set_option(kw2xrf_t *dev, uint16_t option, bool state)
{
uint8_t reg;
DEBUG("set option %i to %i\n", option, state);
/* set option field */
if (state) {
dev->option |= option;
/* trigger option specific actions */
switch (option) {
case KW2XRF_OPT_CSMA:
DEBUG("[kw2xrf] opt: enabling CSMA mode\n");
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg |= MKW2XDM_PHY_CTRL1_CCABFRTX;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
case KW2XRF_OPT_PROMISCUOUS:
DEBUG("[kw2xrf] opt: enabling PROMISCUOUS mode\n");
/* disable auto ACKs in promiscuous mode */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_AUTOACK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
/* enable promiscuous mode */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL4);
reg |= MKW2XDM_PHY_CTRL4_PROMISCUOUS;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL4, reg);
break;
case KW2XRF_OPT_AUTOACK:
DEBUG("[kw2xrf] opt: enabling auto ACKs\n");
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg |= MKW2XDM_PHY_CTRL1_AUTOACK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
default:
/* do nothing */
break;
}
}
else {
dev->option &= ~(option);
/* trigger option specific actions */
switch (option) {
case KW2XRF_OPT_CSMA:
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_CCABFRTX);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
case KW2XRF_OPT_PROMISCUOUS:
/* disable promiscuous mode */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL4);
reg &= ~(MKW2XDM_PHY_CTRL4_PROMISCUOUS);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL4, reg);
/* re-enable AUTOACK only if the option is set */
if (dev->option & KW2XRF_OPT_AUTOACK) {
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg |= MKW2XDM_PHY_CTRL1_AUTOACK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
}
break;
case KW2XRF_OPT_AUTOACK:
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_AUTOACK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
default:
/* do nothing */
break;
}
}
}
int kw2xrf_set(gnrc_netdev_t *netdev, netopt_t opt, void *value, size_t value_len)
{
kw2xrf_t *dev = (kw2xrf_t *)netdev;
if (dev == NULL) {
return -ENODEV;
}
switch (opt) {
case NETOPT_CHANNEL:
return kw2xrf_set_channel(dev, (uint8_t *)value, value_len);
case NETOPT_ADDRESS:
if (value_len > sizeof(uint16_t)) {
return -EOVERFLOW;
}
return kw2xrf_set_addr(dev, *((uint16_t *)value));
case NETOPT_ADDRESS_LONG:
if (value_len > sizeof(uint64_t)) {
return -EOVERFLOW;
}
return kw2xrf_set_addr_long(dev, *((uint64_t *)value));
case NETOPT_SRC_LEN:
if (value_len > sizeof(uint16_t)) {
return -EOVERFLOW;
}
if (*((uint16_t *)value) == IEEE802154_SHORT_ADDRESS_LEN) {
kw2xrf_set_option(dev, KW2XRF_OPT_SRC_ADDR_LONG,
false);
}
else if (*((uint16_t *)value) == IEEE802154_LONG_ADDRESS_LEN) {
kw2xrf_set_option(dev, KW2XRF_OPT_SRC_ADDR_LONG,
true);
}
else {
return -ENOTSUP;
}
return sizeof(uint16_t);
case NETOPT_NID:
if (value_len > sizeof(uint16_t)) {
return -EOVERFLOW;
}
return kw2xrf_set_pan(dev, *((uint16_t *)value));
case NETOPT_TX_POWER:
if (value_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
/* correct value if out of valid range */
if (*(int16_t *)value > MKW2XDRF_OUTPUT_POWER_MAX) {
*(int16_t *)value = MKW2XDRF_OUTPUT_POWER_MAX;
}
else if (*(int16_t *)value < MKW2XDRF_OUTPUT_POWER_MIN) {
*(int16_t *)value = MKW2XDRF_OUTPUT_POWER_MIN;
}
kw2xrf_set_tx_power(dev, (int8_t *)value, value_len);
dev->tx_power = *((uint16_t *)value);
return sizeof(uint16_t);
case NETOPT_CCA_THRESHOLD:
if (value_len < sizeof(uint8_t)) {
return -EOVERFLOW;
} else {
kw2xrf_set_cca_threshold(dev, *((int8_t*)value));
}
return sizeof(uint8_t);
case NETOPT_PROTO:
return kw2xrf_set_proto(dev, (uint8_t *)value, value_len);
case NETOPT_AUTOACK:
/* Set up HW generated automatic ACK after Receive */
kw2xrf_set_option(dev, KW2XRF_OPT_AUTOACK,
((bool *)value)[0]);
return sizeof(netopt_enable_t);
case NETOPT_PROMISCUOUSMODE:
kw2xrf_set_option(dev, KW2XRF_OPT_PROMISCUOUS,
((bool *)value)[0]);
return sizeof(netopt_enable_t);
case NETOPT_RAWMODE:
kw2xrf_set_option(dev, KW2XRF_OPT_RAWDUMP,
((bool *)value)[0]);
return sizeof(netopt_enable_t);
case NETOPT_PRELOADING:
kw2xrf_set_option(dev, KW2XRF_OPT_PRELOADING,
((bool *)value)[0]);
return sizeof(netopt_enable_t);
case NETOPT_AUTOCCA:
kw2xrf_set_option(dev, KW2XRF_OPT_CSMA,
((bool *)value)[0]);
return sizeof(netopt_enable_t);
case NETOPT_STATE:
if (*((netopt_state_t *)value) == NETOPT_STATE_TX) {
DEBUG("kw2xrf: Sending now.\n");
kw2xrf_set_sequence(dev, XCVSEQ_TRANSMIT);
return sizeof(netopt_state_t);
}
else if (*((netopt_state_t *)value) == NETOPT_STATE_SLEEP) {
kw2xrf_set_sequence(dev, XCVSEQ_IDLE);
return sizeof(netopt_state_t);
}
else if (*((netopt_state_t *)value) == NETOPT_STATE_IDLE) {
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
return sizeof(netopt_state_t);
}
/* TODO: Implement Off state here, when LPM functions are implemented */
default:
return -ENOTSUP;
}
}
/* TODO: generalize and move to ieee802154 */
/* TODO: include security header implications */
static size_t _get_frame_hdr_len(uint8_t *mhr)
{
uint8_t tmp;
size_t len = 3;
/* figure out address sizes */
tmp = (mhr[1] & IEEE802154_FCF_DST_ADDR_MASK);
if (tmp == IEEE802154_FCF_DST_ADDR_SHORT) {
len += 4;
}
else if (tmp == IEEE802154_FCF_DST_ADDR_LONG) {
len += 10;
}
else if (tmp != IEEE802154_FCF_DST_ADDR_VOID) {
return 0;
}
tmp = (mhr[1] & IEEE802154_FCF_SRC_ADDR_MASK);
if (tmp == IEEE802154_FCF_SRC_ADDR_VOID) {
return len;
}
else {
if (!(mhr[0] & IEEE802154_FCF_PAN_COMP)) {
len += 2;
}
if (tmp == IEEE802154_FCF_SRC_ADDR_SHORT) {
return (len + IEEE802154_SHORT_ADDRESS_LEN);
}
else if (tmp == IEEE802154_FCF_SRC_ADDR_LONG) {
return (len + IEEE802154_LONG_ADDRESS_LEN);
}
}
return 0;
}
/* TODO: generalize and move to (gnrc_)ieee802154 */
static gnrc_pktsnip_t *_make_netif_hdr(uint8_t *mhr)
{
uint8_t tmp;
uint8_t *addr;
uint8_t src_len, dst_len;
gnrc_pktsnip_t *snip;
gnrc_netif_hdr_t *hdr;
/* figure out address sizes */
tmp = mhr[1] & IEEE802154_FCF_SRC_ADDR_MASK;
if (tmp == IEEE802154_FCF_SRC_ADDR_SHORT) {
src_len = IEEE802154_SHORT_ADDRESS_LEN;
}
else if (tmp == IEEE802154_FCF_SRC_ADDR_LONG) {
src_len = IEEE802154_LONG_ADDRESS_LEN;
}
else if (tmp == 0) {
src_len = 0;
}
else {
return NULL;
}
tmp = mhr[1] & IEEE802154_FCF_DST_ADDR_MASK;
if (tmp == IEEE802154_FCF_DST_ADDR_SHORT) {
dst_len = IEEE802154_SHORT_ADDRESS_LEN;
}
else if (tmp == IEEE802154_FCF_DST_ADDR_LONG) {
dst_len = IEEE802154_LONG_ADDRESS_LEN;
}
else if (tmp == 0) {
dst_len = 0;
}
else {
return NULL;
}
/* allocate space for header */
snip = gnrc_pktbuf_add(NULL, NULL, sizeof(gnrc_netif_hdr_t) + src_len + dst_len,
GNRC_NETTYPE_NETIF);
if (snip == NULL) {
return NULL;
}
/* fill header */
hdr = (gnrc_netif_hdr_t *)snip->data;
gnrc_netif_hdr_init(hdr, src_len, dst_len);
if (dst_len > 0) {
tmp = 5 + dst_len;
addr = gnrc_netif_hdr_get_dst_addr(hdr);
for (int i = 0; i < dst_len; i++) {
addr[i] = mhr[5 + (dst_len - i) - 1];
}
}
else {
tmp = 3;
}
if (!(mhr[0] & IEEE802154_FCF_PAN_COMP)) {
tmp += 2;
}
if (src_len > 0) {
addr = gnrc_netif_hdr_get_src_addr(hdr);
for (int i = 0; i < src_len; i++) {
addr[i] = mhr[tmp + (src_len - i) - 1];
}
}
return snip;
}
void _receive_data(kw2xrf_t *dev)
{
size_t pkt_len, hdr_len;
gnrc_pktsnip_t *hdr, *payload = NULL;
gnrc_netif_hdr_t *netif;
/* get size of the received packet */
pkt_len = kw2xrf_read_dreg(MKW2XDM_RX_FRM_LEN);
/* read PSDU */
kw2xrf_read_fifo(dev->buf, pkt_len + 1);
/* abort here already if no event callback is registered */
if (!dev->event_cb) {
return;
}
/* If RAW-mode is selected directly forward pkt, MAC does the rest */
if (dev->option & KW2XRF_OPT_RAWDUMP) {
payload = gnrc_pktbuf_add(NULL, NULL, pkt_len, GNRC_NETTYPE_UNDEF);
if (payload == NULL) {
DEBUG("kw2xf: error: unable to allocate RAW data\n");
return;
}
payload->data = dev->buf;
dev->event_cb(NETDEV_EVENT_RX_COMPLETE, payload);
return;
}
/* get FCF field and compute 802.15.4 header length */
hdr_len = _get_frame_hdr_len(dev->buf);
if (hdr_len == 0) {
DEBUG("kw2xrf error: unable parse incoming frame header\n");
return;
}
/* read the rest of the header and parse the netif header from it */
hdr = _make_netif_hdr(dev->buf);
if (hdr == NULL) {
DEBUG("kw2xrf error: unable to allocate netif header\n");
return;
}
/* fill missing fields in netif header */
netif = (gnrc_netif_hdr_t *)hdr->data;
netif->if_pid = thread_getpid();
netif->lqi = dev->buf[pkt_len];
/* lqi and rssi are directly related to each other in the kw2x-device.
* The rssi-unit is dBm and in this case always negative, nevertheless a
* positive value is reported.
*/
netif->rssi = -((netif->lqi) - 286.6) / 2.69333;
payload = gnrc_pktbuf_add(hdr, (void *) & (dev->buf[hdr_len]),
pkt_len - hdr_len - 2, dev->proto);
if (payload == NULL) {
DEBUG("kw2xrf: ERROR allocating payload in packet buffer on RX\n");
gnrc_pktbuf_release(hdr);
return;
}
dev->event_cb(NETDEV_EVENT_RX_COMPLETE, payload);
}
void kw2xrf_isr_event(gnrc_netdev_t *netdev, uint32_t event_type)
{
kw2xrf_t *dev = (kw2xrf_t *)netdev;
uint8_t irqst1 = kw2xrf_read_dreg(MKW2XDM_IRQSTS1);
uint8_t irqst2 = kw2xrf_read_dreg(MKW2XDM_IRQSTS2);
if ((irqst1 & MKW2XDM_IRQSTS1_RXIRQ) && (irqst1 & MKW2XDM_IRQSTS1_SEQIRQ)) {
/* RX */
DEBUG("kw2xrf: RX Int\n");
_receive_data(dev);
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, MKW2XDM_IRQSTS1_RXIRQ | MKW2XDM_IRQSTS1_SEQIRQ);
}
else if ((irqst1 & MKW2XDM_IRQSTS1_TXIRQ) && (irqst1 & MKW2XDM_IRQSTS1_SEQIRQ)) {
/* TX_Complete */
/* Device is automatically in Radio-idle state when TX is done */
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
DEBUG("kw2xrf: TX Complete\n");
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, MKW2XDM_IRQSTS1_TXIRQ | MKW2XDM_IRQSTS1_SEQIRQ);
}
else if ((irqst1 & MKW2XDM_IRQSTS1_CCAIRQ) && (irqst1 & MKW2XDM_IRQSTS1_SEQIRQ)) {
/* TX_Started (CCA_done) */
if (irqst2 & MKW2XDM_IRQSTS2_CCA) {
DEBUG("kw2xrf: CCA done -> Channel busy\n");
}
else {
DEBUG("kw2xrf: CCA done -> Channel idle\n");
}
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, MKW2XDM_IRQSTS1_CCAIRQ | MKW2XDM_IRQSTS1_SEQIRQ);
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
}
else {
/* Unknown event */
/* Clear all interrupts to prevent ISR-loop */
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, 0x7f);
kw2xrf_write_dreg(MKW2XDM_IRQSTS2, 0x03);
kw2xrf_write_dreg(MKW2XDM_IRQSTS3, 0xff);
DEBUG("kw2xrf_isr_event: unknown Interrupt\n");
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
return;
}
}
/* TODO: Move to gnrc_ieee802.15.4 as soon as ready */
int _assemble_tx_buf(kw2xrf_t *dev, gnrc_pktsnip_t *pkt)
{
gnrc_netif_hdr_t *hdr;
int index = 4;
if (dev == NULL) {
return 0;
}
/* get netif header check address length */
hdr = (gnrc_netif_hdr_t *)pkt->data;
/* we are building a data frame here */
dev->buf[1] = IEEE802154_FCF_TYPE_DATA;
dev->buf[2] = IEEE802154_FCF_VERS_V0;
/* if AUTOACK is enabled, then we also expect ACKs for this packet */
if (!(hdr->flags & GNRC_NETIF_HDR_FLAGS_BROADCAST) &&
!(hdr->flags & GNRC_NETIF_HDR_FLAGS_MULTICAST) &&
(dev->option & KW2XRF_OPT_AUTOACK)) {
dev->buf[1] |= IEEE802154_FCF_ACK_REQ;
}
/* set destination pan_id */
dev->buf[index++] = (uint8_t)((dev->radio_pan) & 0xff);
dev->buf[index++] = (uint8_t)((dev->radio_pan) >> 8);
/* fill in destination address */
if (hdr->flags &
(GNRC_NETIF_HDR_FLAGS_BROADCAST | GNRC_NETIF_HDR_FLAGS_MULTICAST)) {
dev->buf[2] |= IEEE802154_FCF_DST_ADDR_SHORT;
dev->buf[index++] = 0xff;
dev->buf[index++] = 0xff;
}
else if (hdr->dst_l2addr_len == IEEE802154_SHORT_ADDRESS_LEN) {
/* set to short addressing mode */
dev->buf[2] |= IEEE802154_FCF_DST_ADDR_SHORT;
/* set destination address, byte order is inverted */
uint8_t *dst_addr = gnrc_netif_hdr_get_dst_addr(hdr);
dev->buf[index++] = dst_addr[1];
dev->buf[index++] = dst_addr[0];
}
else if (hdr->dst_l2addr_len == IEEE802154_LONG_ADDRESS_LEN) {
/* default to use long address mode for src and dst */
dev->buf[2] |= IEEE802154_FCF_DST_ADDR_LONG;
/* set destination address located directly after gnrc_ifhrd_t in memory */
uint8_t *dst_addr = gnrc_netif_hdr_get_dst_addr(hdr);
for (int i = IEEE802154_LONG_ADDRESS_LEN - 1; i >= 0; i--) {
dev->buf[index++] = dst_addr[i];
}
}
else {
return 0;
}
/* fill in source PAN ID (if applicable */
if (dev->option & KW2XRF_OPT_USE_SRC_PAN) {
dev->buf[index++] = (uint8_t)((dev->radio_pan) & 0xff);
dev->buf[index++] = (uint8_t)((dev->radio_pan) >> 8);
}
else {
dev->buf[1] |= IEEE802154_FCF_PAN_COMP;
}
/* insert source address according to length */
if (hdr->src_l2addr_len == IEEE802154_SHORT_ADDRESS_LEN) {
dev->buf[2] |= IEEE802154_FCF_SRC_ADDR_SHORT;
dev->buf[index++] = (uint8_t)(dev->addr_short[0]);
dev->buf[index++] = (uint8_t)(dev->addr_short[1]);
}
else {
dev->buf[2] |= IEEE802154_FCF_SRC_ADDR_LONG;
memcpy(&(dev->buf[index]), dev->addr_long, IEEE802154_LONG_ADDRESS_LEN);
index += IEEE802154_LONG_ADDRESS_LEN;
}
/* set sequence number */
dev->buf[3] = dev->seq_nr++;
/* return header size */
return index;
}
int kw2xrf_send(gnrc_netdev_t *netdev, gnrc_pktsnip_t *pkt)
{
int index = 0;
kw2xrf_t *dev = (kw2xrf_t *) netdev;
if ((dev->option & KW2XRF_OPT_PRELOADING) == NETOPT_DISABLE) {
kw2xrf_set_sequence(dev, XCVSEQ_TRANSMIT);
}
if (pkt == NULL) {
return -ENOMSG;
}
gnrc_pktsnip_t *payload = pkt->next;
if (netdev == NULL) {
gnrc_pktbuf_release(pkt);
return -ENODEV;
}
if (pkt->type == GNRC_NETTYPE_NETIF) {
/* Build header and fills this already into the tx-buf */
index = _assemble_tx_buf(dev, pkt);
if (index == 0) {
DEBUG("Unable to create 802.15.4 header\n");
gnrc_pktbuf_release(pkt);
return -ENOMSG;
}
DEBUG("Assembled header for GNRC_NETTYPE_UNDEF to tx-buf, index: %i\n", index);
}
else if (pkt->type == GNRC_NETTYPE_UNDEF) {
/* IEEE packet is already included in the header,
* no need to build the header manually */
DEBUG("Incoming packet of type GNRC_NETTYPE_802154: %i\n", index);
DEBUG("size of pktsnip: %i\n", pkt->size);
for (int i = 0; i < pkt->size; i++) {
uint8_t *tmp = pkt->data;
dev->buf[index + i + 1] = tmp[i];
}
/* count bytes */
index += pkt->size;
}
else {
DEBUG("Driver does not support this type of packet\n");
return -ENOTSUP;
}
while (payload) {
/* check we don't exceed FIFO size */
if (index + 2 + payload->size > KW2XRF_MAX_PKT_LENGTH) {
gnrc_pktbuf_release(pkt);
DEBUG("Packet exceeded FIFO size.\n");
return -ENOBUFS;
}
for (int i = 0; i < payload->size; i++) {
uint8_t *tmp = payload->data;
dev->buf[index + i] = tmp[i];
}
/* count bytes */
index += payload->size;
/* next snip */
payload = payload->next;
}
dev->buf[0] = index + 1; /* set packet size */
gnrc_pktbuf_release(pkt);
DEBUG("kw2xrf: packet with size %i loaded to tx_buf\n", dev->buf[0]);
kw2xrf_write_fifo(dev->buf, dev->buf[0]);
if ((dev->option & KW2XRF_OPT_PRELOADING) == NETOPT_DISABLE) {
DEBUG("kw2xrf: Sending now.\n");
kw2xrf_set_sequence(dev, XCVSEQ_TRANSMIT);
}
return index;
}
/* implementation of the netdev interface */
const gnrc_netdev_driver_t kw2xrf_driver = {
.send_data = kw2xrf_send,
.add_event_callback = kw2xrf_add_cb,
.rem_event_callback = kw2xrf_rem_cb,
.get = kw2xrf_get,
.set = kw2xrf_set,
.isr_event = kw2xrf_isr_event,
};