spi.c 10.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/*
 * Copyright (C) 2014 Hamburg University of Applied Sciences
 * Copyright (C) 2014 Freie Universität Berlin
 * Copyright (C) 2015 Kaspar Schleiser <kaspar@schleiser.de>
 *
 * This file is subject to the terms and conditions of the GNU Lesser General
 * Public License v2.1. See the file LICENSE in the top level directory for more
 * details.
 */

/**
 * @ingroup     cpu_stm32f3
 * @{
 *
 * @file
 * @brief       Low-level SPI driver implementation
 *
 * @author      Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
 * @author      Fabian Nack <nack@inf.fu-berlin.de>
 * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
 * @author      Joakim Nohlgård <joakim.nohlgard@eistec.se>
 * @author      Kaspar Schleiser <kaspar@schleiser.de>
 *
 * @}
 */
#include <stdio.h>

#include "board.h"
#include "cpu.h"
#include "mutex.h"
#include "periph/spi.h"
#include "periph_conf.h"

#define ENABLE_DEBUG (0)
#include "debug.h"

/* guard this file in case no SPI device is defined */
#if SPI_NUMOF

typedef struct {
    char(*cb)(char data);
} spi_state_t;

/* static device mapping */
static SPI_TypeDef *const spi[] = {
#if SPI_0_EN
    SPI_0_DEV,
#endif
#if SPI_1_EN
    SPI_1_DEV,
#endif
#if SPI_2_EN
    SPI_2_DEV
#endif
};

static inline void irq_handler_transfer(SPI_TypeDef *spi, spi_t dev);

static spi_state_t spi_config[SPI_NUMOF];

/**
 * @brief Array holding one pre-initialized mutex for each SPI device
 */
static mutex_t locks[] =  {
#if SPI_0_EN
    [SPI_0] = MUTEX_INIT,
#endif
#if SPI_1_EN
    [SPI_1] = MUTEX_INIT,
#endif
#if SPI_2_EN
    [SPI_2] = MUTEX_INIT
#endif
};

int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed)
{
    uint8_t speed_divider;

    switch (speed) {
        case SPI_SPEED_100KHZ:
            return -2;          /* not possible for stm32f3 */
            break;
        case SPI_SPEED_400KHZ:
            speed_divider = 7;  /* makes 656 kHz */
            break;
        case SPI_SPEED_1MHZ:
            speed_divider = 6;  /* makes 1.3 MHz */
            break;
        case SPI_SPEED_5MHZ:
            speed_divider = 4;  /* makes 5.3 MHz */
            break;
        case SPI_SPEED_10MHZ:
            speed_divider = 3;  /* makes 10.5 MHz */
            break;
        default:
            return -1;
    }

    switch (dev) {
#if SPI_0_EN
        case SPI_0:
            /* enable clocks */
            SPI_0_CLKEN();
            SPI_0_SCK_PORT_CLKEN();
            SPI_0_MISO_PORT_CLKEN();
            SPI_0_MOSI_PORT_CLKEN();
            break;
#endif /* SPI_0_EN */
#if SPI_1_EN
        case SPI_1:
            /* enable clocks */
            SPI_1_CLKEN();
            SPI_1_SCK_PORT_CLKEN();
            SPI_1_MISO_PORT_CLKEN();
            SPI_1_MOSI_PORT_CLKEN();
            break;
#endif /* SPI_1_EN */
#if SPI_2_EN
        case SPI_2:
            /* enable clocks */
            SPI_2_CLKEN();
            SPI_2_SCK_PORT_CLKEN();
            SPI_2_MISO_PORT_CLKEN();
            SPI_2_MOSI_PORT_CLKEN();
            break;
#endif /* SPI_2_EN */
        default:
            return -2;
    }

    /* configure SCK, MISO and MOSI pin */
    spi_conf_pins(dev);

    /**************** SPI-Init *****************/
#ifdef CPU_MODEL_STM32F303VC
    spi[dev]->I2SCFGR &= ~(SPI_I2SCFGR_I2SMOD);/* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
#endif
    spi[dev]->CR1 = 0;
    spi[dev]->CR2 = 0;
    /* the NSS (chip select) is managed purely by software */
    spi[dev]->CR1 |= SPI_CR1_SSM | SPI_CR1_SSI;
    spi[dev]->CR1 |= (speed_divider << 3);  /* Define serial clock baud rate. 001 leads to f_PCLK/4 */
    spi[dev]->CR1 |= (SPI_CR1_MSTR);  /* 1: master configuration */
    spi[dev]->CR1 |= (conf);

    spi[dev]->CR2 |= SPI_CR2_FRXTH; /* set FIFO reception threshold to 8bit (default: 16bit) */

    /* enable SPI */
    spi[dev]->CR1 |= (SPI_CR1_SPE);

    return 0;
}

int spi_init_slave(spi_t dev, spi_conf_t conf, char(*cb)(char data))
{
    switch (dev) {
#if SPI_0_EN
        case SPI_0:
            /* enable clocks */
            SPI_0_CLKEN();
            SPI_0_SCK_PORT_CLKEN();
            SPI_0_MISO_PORT_CLKEN();
            SPI_0_MOSI_PORT_CLKEN();
            /* configure interrupt channel */
            NVIC_SetPriority(SPI_0_IRQ, SPI_IRQ_PRIO); /* set SPI interrupt priority */
            NVIC_EnableIRQ(SPI_0_IRQ); /* set SPI interrupt priority */
            break;
#endif /* SPI_0_EN */
#if SPI_1_EN
        case SPI_1:
            /* enable clocks */
            SPI_1_CLKEN();
            SPI_1_SCK_PORT_CLKEN();
            SPI_1_MISO_PORT_CLKEN();
            SPI_1_MOSI_PORT_CLKEN();
            /* configure interrupt channel */
            NVIC_SetPriority(SPI_1_IRQ, SPI_IRQ_PRIO);
            NVIC_EnableIRQ(SPI_1_IRQ);
            break;
#endif /* SPI_1_EN */
#if SPI_2_EN
        case SPI_2:
            /* enable clocks */
            SPI_2_CLKEN();
            SPI_2_SCK_PORT_CLKEN();
            SPI_2_MISO_PORT_CLKEN();
            SPI_2_MOSI_PORT_CLKEN();
            /* configure interrupt channel */
            NVIC_SetPriority(SPI_2_IRQ, SPI_IRQ_PRIO);
            NVIC_EnableIRQ(SPI_2_IRQ);
            break;
#endif /* SPI_2_EN */
        default:
            return -1;
    }

    /* configure sck, miso and mosi pin */
    spi_conf_pins(dev);

    /***************** SPI-Init *****************/
#ifdef CPU_MODEL_STM32F303VC
    spi[dev]->I2SCFGR &= ~(SPI_I2SCFGR_I2SMOD);
#endif
    spi[dev]->CR1 = 0;
    spi[dev]->CR2 = 0;
    /* enable RXNEIE flag to enable rx buffer not empty interrupt */
    spi[dev]->CR2 |= (SPI_CR2_RXNEIE); /*1:not masked */
    spi[dev]->CR1 |= (conf);
     /* the NSS (chip select) is managed by software and NSS is low (slave enabled) */
    spi[dev]->CR1 |= SPI_CR1_SSM;
    /* set callback */
    spi_config[dev].cb = cb;
    /* enable SPI device */
    spi[dev]->CR1 |= SPI_CR1_SPE;
    return 0;
}

int spi_conf_pins(spi_t dev)
{
    GPIO_TypeDef *port[3];
    int pin[3], af[3];

    switch (dev) {
#if SPI_0_EN
        case SPI_0:
            port[0] = SPI_0_SCK_PORT;
            pin[0] = SPI_0_SCK_PIN;
            af[0] = SPI_0_SCK_AF;
            port[1] = SPI_0_MOSI_PORT;
            pin[1] = SPI_0_MOSI_PIN;
            af[1] = SPI_0_MOSI_AF;
            port[2] = SPI_0_MISO_PORT;
            pin[2] = SPI_0_MISO_PIN;
            af[2] = SPI_0_MISO_AF;
            break;
#endif /* SPI_0_EN */
#if SPI_1_EN
        case SPI_1:
            port[0] = SPI_1_SCK_PORT;
            pin[0] = SPI_1_SCK_PIN;
            af[0] = SPI_1_SCK_AF;
            port[1] = SPI_1_MOSI_PORT;
            pin[1] = SPI_1_MOSI_PIN;
            af[1] = SPI_1_MOSI_AF;
            port[2] = SPI_1_MISO_PORT;
            pin[2] = SPI_1_MISO_PIN;
            af[2] = SPI_1_MISO_AF;
            break;
#endif /* SPI_1_EN */
#if SPI_2_EN
        case SPI_2:
            port[0] = SPI_2_SCK_PORT;
            pin[0] = SPI_2_SCK_PIN;
            af[0] = SPI_2_SCK_AF;
            port[1] = SPI_2_MOSI_PORT;
            pin[1] = SPI_2_MOSI_PIN;
            af[1] = SPI_2_MOSI_AF;
            port[2] = SPI_2_MISO_PORT;
            pin[2] = SPI_2_MISO_PIN;
            af[2] = SPI_2_MISO_AF;
            break;
#endif /* SPI_2_EN */
        default:
            return -1;
    }

    for (int i = 0; i < 3; i++) {
        /* Set GPIOs to AF mode */
        port[i]->MODER &= ~(3 << (2 * pin[i]));
        port[i]->MODER |= (2 << (2 * pin[i]));
        /* Set speed */
        port[i]->OSPEEDR &= ~(3 << (2 * pin[i]));
        port[i]->OSPEEDR |= (3 << (2 * pin[i]));
        /* Set to push-pull configuration */
        port[i]->OTYPER &= ~(1 << pin[i]);
        /* Configure push-pull resistors */
        port[i]->PUPDR &= ~(3 << (2 * pin[i]));
        port[i]->PUPDR |= (2 << (2 * pin[i]));
        /* Configure GPIOs for the SPI alternate function */
        int hl = (pin[i] < 8) ? 0 : 1;
        port[i]->AFR[hl] &= ~(0xf << ((pin[i] - (hl * 8)) * 4));
        port[i]->AFR[hl] |= (af[i] << ((pin[i] - (hl * 8)) * 4));
    }

    return 0;
}

int spi_acquire(spi_t dev)
{
    if ((unsigned int)dev >= SPI_NUMOF) {
        return -1;
    }
    mutex_lock(&locks[dev]);
    return 0;
}

int spi_release(spi_t dev)
{
    if ((unsigned int)dev >= SPI_NUMOF) {
        return -1;
    }
    mutex_unlock(&locks[dev]);
    return 0;
}

int spi_transfer_byte(spi_t dev, char out, char *in)
{
    char tmp;

    /* recast to uint_8 to force 8bit access */
    volatile uint8_t *DR = (volatile uint8_t*) &spi[dev]->DR;

    /* wait for an eventually previous byte to be readily transferred */
    while(!(spi[dev]->SR & SPI_SR_TXE)) {}

    /* put next byte into the output register */
    *DR = out;

    /* wait until the current byte was successfully transferred */
    while(!(spi[dev]->SR & SPI_SR_RXNE)) {}

    /* read response byte to reset flags */
    tmp = *DR;

    /* 'return' response byte if wished for */
    if (in) {
        *in = tmp;
    }

    return 1;
}

void spi_transmission_begin(spi_t dev, char reset_val)
{
    if ((unsigned int)dev < SPI_NUMOF) {
        spi[dev]->DR = reset_val;
    }
}

void spi_poweron(spi_t dev)
{
    switch (dev) {
#if SPI_0_EN
        case SPI_0:
            SPI_0_CLKEN();
            break;
#endif
#if SPI_1_EN
        case SPI_1:
            SPI_1_CLKEN();
            break;
#endif
#if SPI_2_EN
        case SPI_2:
            SPI_2_CLKEN();
            break;
#endif
    }
}

void spi_poweroff(spi_t dev)
{
    switch (dev) {
#if SPI_0_EN
        case SPI_0:
            while (SPI_0_DEV->SR & SPI_SR_BSY) {}
            SPI_0_CLKDIS();
            break;
#endif
#if SPI_1_EN
        case SPI_1:
            while (SPI_1_DEV->SR & SPI_SR_BSY) {}
            SPI_1_CLKDIS();
            break;
#endif
#if SPI_2_EN
        case SPI_2:
            while (SPI_2_DEV->SR & SPI_SR_BSY) {}
            SPI_2_CLKDIS();
            break;
#endif
    }
}

static inline void irq_handler_transfer(SPI_TypeDef *spi, spi_t dev)
{

    if (spi->SR & SPI_SR_RXNE) {
        char data;
        data = spi->DR;
        data = spi_config[dev].cb(data);
        spi->DR = data;
    }
    /* see if a thread with higher priority wants to run now */
    cortexm_isr_end();
}

#if SPI_0_EN
void SPI_0_IRQ_HANDLER(void)
{
    irq_handler_transfer(SPI_0_DEV, SPI_0);
}
#endif

#if SPI_1_EN
void SPI_1_IRQ_HANDLER(void)
{
    irq_handler_transfer(SPI_1_DEV, SPI_1);
}
#endif

#if SPI_2_EN
void SPI_2_IRQ_HANDLER(void)
{
    irq_handler_transfer(SPI_2_DEV, SPI_2);
}
#endif

#endif /* SPI_NUMOF */