uart.c
6.84 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
* Copyright (C) 2014-2015 Freie Universität Berlin
* Copyright (C) 2016 OTA keys
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32f2
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Hermann Lelong <hermann@otakeys.com>
* @author Toon Stegen <toon.stegen@altran.com>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph/uart.h"
#include "periph/gpio.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Allocate memory to store the callback functions
*/
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
/**
* @brief Get the base register for the given UART device
*/
static inline USART_TypeDef *_dev(uart_t uart)
{
return uart_config[uart].dev;
}
/**
* @brief Transmission locks
*/
static mutex_t tx_sync[UART_NUMOF];
static mutex_t tx_lock[UART_NUMOF];
/**
* @brief Find out which peripheral bus the UART device is connected to
*
* @return 1: APB1
* @return 2: APB2
*/
static inline int _bus(uart_t uart)
{
return (uart_config[uart].rcc_mask < RCC_APB1ENR_USART2EN) ? 2 : 1;
}
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
USART_TypeDef *dev;
DMA_Stream_TypeDef *stream;
float divider;
uint16_t mantissa;
uint8_t fraction;
uint32_t max_clock;
uint8_t over8;
/* check if given UART device does exist */
if (uart < 0 || uart >= UART_NUMOF) {
return UART_NODEV;
}
/* check if baudrate is reachable and choose the right oversampling method*/
max_clock = (_bus(uart) == 1) ? CLOCK_APB1 : CLOCK_APB2;
if (baudrate < (max_clock / 16)) {
over8 = 0;
}
else if (baudrate < (max_clock / 8)) {
over8 = 1;
}
else {
return UART_NOBAUD;
}
/* get UART base address */
dev = _dev(uart);
/* remember callback addresses and argument */
uart_ctx[uart].rx_cb = rx_cb;
uart_ctx[uart].arg = arg;
/* init tx lock */
mutex_init(&tx_sync[uart]);
mutex_lock(&tx_sync[uart]);
mutex_init(&tx_lock[uart]);
/* configure pins */
gpio_init(uart_config[uart].rx_pin, uart_config[uart].rx_mode);
gpio_init(uart_config[uart].tx_pin, uart_config[uart].tx_mode);
gpio_init_af(uart_config[uart].rx_pin, uart_config[uart].af);
gpio_init_af(uart_config[uart].tx_pin, uart_config[uart].af);
/* enable UART clock */
uart_poweron(uart);
/* calculate and set baudrate */
divider = max_clock / (8 * (2 - over8) * baudrate);
mantissa = (uint16_t)divider;
fraction = (uint8_t)((divider - mantissa) * (8 * (2 - over8)));
dev->BRR = ((mantissa & 0x0fff) << 4) | (0x07 & fraction);
/* configure UART to 8N1 and enable receive and transmit mode*/
dev->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
if (over8) {
dev->CR1 |= USART_CR1_OVER8;
}
dev->CR3 = USART_CR3_DMAT;
dev->CR2 = 0;
if(uart_config[uart].hw_flow_ctrl) {
gpio_init(uart_config[uart].cts_pin, uart_config[uart].cts_mode);
gpio_init(uart_config[uart].rts_pin, uart_config[uart].rts_mode);
gpio_init_af(uart_config[uart].cts_pin, uart_config[uart].af);
gpio_init_af(uart_config[uart].rts_pin, uart_config[uart].af);
DEBUG("Init flow control on uart %u\n", uart);
/* configure hardware flow control */
dev->CR3 |= USART_CR3_RTSE | USART_CR3_CTSE;
}
/* configure the DMA stream for transmission */
dma_poweron(uart_config[uart].dma_stream);
stream = dma_stream(uart_config[uart].dma_stream);
stream->CR = ((uart_config[uart].dma_chan << 25) |
DMA_SxCR_PL_0 |
DMA_SxCR_MINC |
DMA_SxCR_DIR_0 |
DMA_SxCR_TCIE);
stream->PAR = (uint32_t)&(dev->DR);
stream->FCR = 0;
/* enable global and receive interrupts */
NVIC_EnableIRQ(uart_config[uart].irqn);
dma_isr_enable(uart_config[uart].dma_stream);
dev->CR1 |= USART_CR1_RXNEIE;
return UART_OK;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
/* in case we are inside an ISR, we need to send blocking */
if (irq_is_in()) {
/* send data by active waiting on the TXE flag */
USART_TypeDef *dev = _dev(uart);
for (int i = 0; i < len; i++) {
while (!(dev->SR & USART_SR_TXE));
dev->DR = data[i];
}
}
else {
mutex_lock(&tx_lock[uart]);
DMA_Stream_TypeDef *stream = dma_stream(uart_config[uart].dma_stream);
/* configure and start DMA transfer */
stream->M0AR = (uint32_t)data;
stream->NDTR = (uint16_t)len;
stream->CR |= DMA_SxCR_EN;
/* wait for transfer to complete */
mutex_lock(&tx_sync[uart]);
mutex_unlock(&tx_lock[uart]);
}
}
void uart_poweron(uart_t uart)
{
if (_bus(uart) == 1) {
periph_clk_en(APB1, uart_config[uart].rcc_mask);
}
else {
periph_clk_en(APB2, uart_config[uart].rcc_mask);
}
}
void uart_poweroff(uart_t uart)
{
if (_bus(uart) == 1) {
periph_clk_dis(APB1, uart_config[uart].rcc_mask);
}
else {
periph_clk_dis(APB2, uart_config[uart].rcc_mask);
}
}
static inline void irq_handler(int uart, USART_TypeDef *dev)
{
if (dev->SR & USART_SR_RXNE) {
char data = (char)dev->DR;
uart_ctx[uart].rx_cb(uart_ctx[uart].arg, data);
}
cortexm_isr_end();
}
static inline void dma_handler(int uart, int stream)
{
/* clear DMA done flag */
if (stream < 4) {
dma_base(stream)->LIFCR = dma_ifc(stream);
}
else {
dma_base(stream)->HIFCR = dma_ifc(stream);
}
mutex_unlock(&tx_sync[uart]);
cortexm_isr_end();
}
#ifdef UART_0_ISR
void UART_0_ISR(void)
{
irq_handler(0, uart_config[0].dev);
}
void UART_0_DMA_ISR(void)
{
dma_handler(0, uart_config[0].dma_stream);
}
#endif
#ifdef UART_1_ISR
void UART_1_ISR(void)
{
irq_handler(1, uart_config[1].dev);
}
void UART_1_DMA_ISR(void)
{
dma_handler(1, uart_config[1].dma_stream);
}
#endif
#ifdef UART_2_ISR
void UART_2_ISR(void)
{
irq_handler(2, uart_config[2].dev);
}
void UART_2_DMA_ISR(void)
{
dma_handler(2, uart_config[2].dma_stream);
}
#endif
#ifdef UART_3_ISR
void UART_3_ISR(void)
{
irq_handler(3, uart_config[3].dev);
}
void UART_3_DMA_ISR(void)
{
dma_handler(3, uart_config[3].dma_stream);
}
#endif
#ifdef UART_4_ISR
void UART_4_ISR(void)
{
irq_handler(4, uart_config[4].dev);
}
void UART_4_DMA_ISR(void)
{
dma_handler(4, uart_config[4].dma_stream);
}
#endif
#ifdef UART_5_ISR
void UART_5_ISR(void)
{
irq_handler(5, uart_config[5].dev);
}
void UART_5_DMA_ISR(void)
{
dma_handler(5, uart_config[5].dma_stream);
}
#endif