fb11e647
vrobic
reseau statique a...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_samd21
* @{
*
* @file
* @brief Low-level SPI driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph/gpio.h"
#include "periph/spi.h"
#include "periph_conf.h"
#include "board.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#if SPI_0_EN || SPI_1_EN
/**
* @brief Internal helper function to do the actual work for spi_poweroff
*/
static void _spi_poweroff(SercomSpi* spi_dev);
/**
* @brief Internal helper function to do the actual work for spi_poweron
*/
static void _spi_poweron(SercomSpi* spi_dev);
/**
* @brief Array holding one pre-initialized mutex for each SPI device
*/
static mutex_t locks[] = {
#if SPI_0_EN
[SPI_0] = MUTEX_INIT,
#endif
#if SPI_1_EN
[SPI_1] = MUTEX_INIT,
#endif
#if SPI_2_EN
[SPI_2] = MUTEX_INIT
#endif
};
int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed)
{
SercomSpi* spi_dev = 0;
uint8_t sercom_gclk_id = 0;
gpio_t pin_sclk = 0;
gpio_t pin_miso = 0;
gpio_t pin_mosi = 0;
gpio_mux_t mux_sclk = 0;
gpio_mux_t mux_miso = 0;
gpio_mux_t mux_mosi = 0;
spi_mosipad_t mosi_pad = 0;
spi_misopad_t miso_pad = 0;
uint32_t cpha = 0;
uint32_t cpol = 0;
uint32_t f_baud = 0;
switch (speed)
{
case SPI_SPEED_100KHZ:
f_baud = 100000;
break;
case SPI_SPEED_400KHZ:
f_baud = 400000;
break;
case SPI_SPEED_1MHZ:
f_baud = 1000000;
break;
case SPI_SPEED_5MHZ:
#if CLOCK_CORECLOCK >= 5000000
f_baud = 5000000;
break;
#else
return -1;
#endif
case SPI_SPEED_10MHZ:
#if CLOCK_CORECLOCK >= 10000000
f_baud = 10000000;
break;
#else
return -1;
#endif
}
switch (conf)
{
case SPI_CONF_FIRST_RISING: /**< first data bit is transacted on the first rising SCK edge */
cpha = 0;
cpol = 0;
break;
case SPI_CONF_SECOND_RISING: /**< first data bit is transacted on the second rising SCK edge */
cpha = SERCOM_SPI_CTRLA_CPHA;
cpol = 0;
break;
case SPI_CONF_FIRST_FALLING: /**< first data bit is transacted on the first falling SCK edge */
cpha = 0;
cpol = SERCOM_SPI_CTRLA_CPOL;
break;
case SPI_CONF_SECOND_FALLING: /**< first data bit is transacted on the second falling SCK edge */
cpha = SERCOM_SPI_CTRLA_CPHA;
cpol = SERCOM_SPI_CTRLA_CPOL;
break;
}
switch (dev)
{
#if SPI_0_EN
case SPI_0:
spi_dev = &SPI_0_DEV;
sercom_gclk_id = SPI_0_GCLK_ID;
pin_sclk = SPI_0_SCLK;
mux_sclk = SPI_0_SCLK_MUX;
pin_miso = SPI_0_MISO;
mux_miso = SPI_0_MISO_MUX;
pin_mosi = SPI_0_MOSI;
mux_mosi = SPI_0_MOSI_MUX;
mosi_pad = SPI_0_MOSI_PAD;
miso_pad = SPI_0_MISO_PAD;
break;
#endif
#if SPI_1_EN
case SPI_1:
spi_dev = &SPI_1_DEV;
sercom_gclk_id = SPI_1_GCLK_ID;
pin_sclk = SPI_1_SCLK;
mux_sclk = SPI_1_SCLK_MUX;
pin_miso = SPI_1_MISO;
mux_miso = SPI_1_MISO_MUX;
pin_mosi = SPI_1_MOSI;
mux_mosi = SPI_1_MOSI_MUX;
mosi_pad = SPI_1_MOSI_PAD;
miso_pad = SPI_1_MISO_PAD;
break;
#endif
default:
return -1;
}
/* Use the same sequence as ArduinoCore
* - setup pins
* - disable SPI
* - init SPI (reset, init clock NVIC, CTRLA, CTRLB)
* - init cpha/cpol, BAUD.reg
* - enable SPI
*/
gpio_init(pin_miso, GPIO_IN_PD);
gpio_init_mux(pin_sclk, mux_sclk);
gpio_init_mux(pin_miso, mux_miso);
gpio_init_mux(pin_mosi, mux_mosi);
/* Disable spi to write confs */
_spi_poweroff(spi_dev);
/* reset */
// Setting the Software Reset bit to 1
spi_dev->CTRLA.bit.SWRST = 1;
// Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while (spi_dev->CTRLA.bit.SWRST || spi_dev->SYNCBUSY.bit.SWRST) {}
/* Turn on power manager for sercom */
PM->APBCMASK.reg |= (PM_APBCMASK_SERCOM0 << (sercom_gclk_id - GCLK_CLKCTRL_ID_SERCOM0_CORE_Val));
/* Setup clock */
/* SPI using CLK GEN 0 */
GCLK->CLKCTRL.reg = (GCLK_CLKCTRL_CLKEN |
GCLK_CLKCTRL_GEN_GCLK0 |
GCLK_CLKCTRL_ID(sercom_gclk_id));
while (GCLK->STATUS.bit.SYNCBUSY) {}
/* ???? init NVIC. Maybe not needed in master mode. */
/* Master mode */
spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE_SPI_MASTER;
while (spi_dev->SYNCBUSY.reg) {}// ???? not needed
spi_dev->BAUD.bit.BAUD = (uint8_t) (((uint32_t)CLOCK_CORECLOCK) / (2 * f_baud) - 1); /* Synchronous mode*/
spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_DOPO(mosi_pad)
| SERCOM_SPI_CTRLA_DIPO(miso_pad)
| cpha
| cpol;
while (spi_dev->SYNCBUSY.reg) {} // ???? not needed
/* datasize 0 => 8 bits */
spi_dev->CTRLB.reg = (SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN);
while (spi_dev->SYNCBUSY.reg) {} // ???? Only wait for clear of spi_dev->SYNCBUSY.bit.CTRLB
/* enable */
_spi_poweron(spi_dev);
return 0;
}
int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char))
{
/* TODO */
return -1;
}
void spi_transmission_begin(spi_t dev, char reset_val)
{
/* TODO*/
}
int spi_acquire(spi_t dev)
{
if ((unsigned int)dev >= SPI_NUMOF) {
return -1;
}
mutex_lock(&locks[dev]);
return 0;
}
int spi_release(spi_t dev)
{
if ((unsigned int)dev >= SPI_NUMOF) {
return -1;
}
mutex_unlock(&locks[dev]);
return 0;
}
int spi_transfer_byte(spi_t dev, char out, char *in)
{
SercomSpi* spi_dev = 0;
char tmp;
switch(dev)
{
#if SPI_0_EN
case SPI_0:
spi_dev = &(SPI_0_DEV);
break;
#endif
#if SPI_1_EN
case SPI_1:
spi_dev = &(SPI_1_DEV);
break;
#endif
}
while (!spi_dev->INTFLAG.bit.DRE) {} /* while data register is not empty*/
spi_dev->DATA.bit.DATA = out;
while (!spi_dev->INTFLAG.bit.DRE || !spi_dev->INTFLAG.bit.RXC) {} /* while receive is not complete*/
tmp = (char)spi_dev->DATA.bit.DATA;
if (in != NULL)
{
in[0] = tmp;
}
return 1;
}
static void _spi_poweron(SercomSpi* spi_dev)
{
if (spi_dev == NULL) {
return;
}
spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE;
while (spi_dev->SYNCBUSY.bit.ENABLE) {}
}
void spi_poweron(spi_t dev)
{
switch(dev) {
#if SPI_0_EN
case SPI_0:
_spi_poweron(&SPI_0_DEV);
break;
#endif
#if SPI_1_EN
case SPI_1:
_spi_poweron(&SPI_1_DEV);
break;
#endif
}
}
static void _spi_poweroff(SercomSpi* spi_dev)
{
if (spi_dev == NULL) {
return;
}
spi_dev->CTRLA.bit.ENABLE = 0; /* Disable spi */
while (spi_dev->SYNCBUSY.bit.ENABLE) {}
}
void spi_poweroff(spi_t dev)
{
switch(dev) {
#if SPI_0_EN
case SPI_0:
_spi_poweroff(&SPI_0_DEV);
break;
#endif
#if SPI_1_EN
case SPI_1:
_spi_poweroff(&SPI_1_DEV);
break;
#endif
}
}
#endif /* SPI_0_EN || SPI_1_EN */
|