/* * Copyright (C) 2014 Freie UniversitÀt Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_samd21 * @{ * * @file * @brief Low-level SPI driver implementation * * @author Thomas Eichinger * @author Troels Hoffmeyer * @author Hauke Petersen * @author Joakim NohlgÄrd * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/gpio.h" #include "periph/spi.h" #include "periph_conf.h" #include "board.h" #define ENABLE_DEBUG (0) #include "debug.h" #if SPI_0_EN || SPI_1_EN /** * @brief Internal helper function to do the actual work for spi_poweroff */ static void _spi_poweroff(SercomSpi* spi_dev); /** * @brief Internal helper function to do the actual work for spi_poweron */ static void _spi_poweron(SercomSpi* spi_dev); /** * @brief Array holding one pre-initialized mutex for each SPI device */ static mutex_t locks[] = { #if SPI_0_EN [SPI_0] = MUTEX_INIT, #endif #if SPI_1_EN [SPI_1] = MUTEX_INIT, #endif #if SPI_2_EN [SPI_2] = MUTEX_INIT #endif }; int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed) { SercomSpi* spi_dev = 0; uint8_t sercom_gclk_id = 0; gpio_t pin_sclk = 0; gpio_t pin_miso = 0; gpio_t pin_mosi = 0; gpio_mux_t mux_sclk = 0; gpio_mux_t mux_miso = 0; gpio_mux_t mux_mosi = 0; spi_mosipad_t mosi_pad = 0; spi_misopad_t miso_pad = 0; uint32_t cpha = 0; uint32_t cpol = 0; uint32_t f_baud = 0; switch (speed) { case SPI_SPEED_100KHZ: f_baud = 100000; break; case SPI_SPEED_400KHZ: f_baud = 400000; break; case SPI_SPEED_1MHZ: f_baud = 1000000; break; case SPI_SPEED_5MHZ: #if CLOCK_CORECLOCK >= 5000000 f_baud = 5000000; break; #else return -1; #endif case SPI_SPEED_10MHZ: #if CLOCK_CORECLOCK >= 10000000 f_baud = 10000000; break; #else return -1; #endif } switch (conf) { case SPI_CONF_FIRST_RISING: /**< first data bit is transacted on the first rising SCK edge */ cpha = 0; cpol = 0; break; case SPI_CONF_SECOND_RISING: /**< first data bit is transacted on the second rising SCK edge */ cpha = SERCOM_SPI_CTRLA_CPHA; cpol = 0; break; case SPI_CONF_FIRST_FALLING: /**< first data bit is transacted on the first falling SCK edge */ cpha = 0; cpol = SERCOM_SPI_CTRLA_CPOL; break; case SPI_CONF_SECOND_FALLING: /**< first data bit is transacted on the second falling SCK edge */ cpha = SERCOM_SPI_CTRLA_CPHA; cpol = SERCOM_SPI_CTRLA_CPOL; break; } switch (dev) { #if SPI_0_EN case SPI_0: spi_dev = &SPI_0_DEV; sercom_gclk_id = SPI_0_GCLK_ID; pin_sclk = SPI_0_SCLK; mux_sclk = SPI_0_SCLK_MUX; pin_miso = SPI_0_MISO; mux_miso = SPI_0_MISO_MUX; pin_mosi = SPI_0_MOSI; mux_mosi = SPI_0_MOSI_MUX; mosi_pad = SPI_0_MOSI_PAD; miso_pad = SPI_0_MISO_PAD; break; #endif #if SPI_1_EN case SPI_1: spi_dev = &SPI_1_DEV; sercom_gclk_id = SPI_1_GCLK_ID; pin_sclk = SPI_1_SCLK; mux_sclk = SPI_1_SCLK_MUX; pin_miso = SPI_1_MISO; mux_miso = SPI_1_MISO_MUX; pin_mosi = SPI_1_MOSI; mux_mosi = SPI_1_MOSI_MUX; mosi_pad = SPI_1_MOSI_PAD; miso_pad = SPI_1_MISO_PAD; break; #endif default: return -1; } /* Use the same sequence as ArduinoCore * - setup pins * - disable SPI * - init SPI (reset, init clock NVIC, CTRLA, CTRLB) * - init cpha/cpol, BAUD.reg * - enable SPI */ gpio_init(pin_miso, GPIO_IN_PD); gpio_init_mux(pin_sclk, mux_sclk); gpio_init_mux(pin_miso, mux_miso); gpio_init_mux(pin_mosi, mux_mosi); /* Disable spi to write confs */ _spi_poweroff(spi_dev); /* reset */ // Setting the Software Reset bit to 1 spi_dev->CTRLA.bit.SWRST = 1; // Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0 while (spi_dev->CTRLA.bit.SWRST || spi_dev->SYNCBUSY.bit.SWRST) {} /* Turn on power manager for sercom */ PM->APBCMASK.reg |= (PM_APBCMASK_SERCOM0 << (sercom_gclk_id - GCLK_CLKCTRL_ID_SERCOM0_CORE_Val)); /* Setup clock */ /* SPI using CLK GEN 0 */ GCLK->CLKCTRL.reg = (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(sercom_gclk_id)); while (GCLK->STATUS.bit.SYNCBUSY) {} /* ???? init NVIC. Maybe not needed in master mode. */ /* Master mode */ spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE_SPI_MASTER; while (spi_dev->SYNCBUSY.reg) {}// ???? not needed spi_dev->BAUD.bit.BAUD = (uint8_t) (((uint32_t)CLOCK_CORECLOCK) / (2 * f_baud) - 1); /* Synchronous mode*/ spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_DOPO(mosi_pad) | SERCOM_SPI_CTRLA_DIPO(miso_pad) | cpha | cpol; while (spi_dev->SYNCBUSY.reg) {} // ???? not needed /* datasize 0 => 8 bits */ spi_dev->CTRLB.reg = (SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN); while (spi_dev->SYNCBUSY.reg) {} // ???? Only wait for clear of spi_dev->SYNCBUSY.bit.CTRLB /* enable */ _spi_poweron(spi_dev); return 0; } int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char)) { /* TODO */ return -1; } void spi_transmission_begin(spi_t dev, char reset_val) { /* TODO*/ } int spi_acquire(spi_t dev) { if ((unsigned int)dev >= SPI_NUMOF) { return -1; } mutex_lock(&locks[dev]); return 0; } int spi_release(spi_t dev) { if ((unsigned int)dev >= SPI_NUMOF) { return -1; } mutex_unlock(&locks[dev]); return 0; } int spi_transfer_byte(spi_t dev, char out, char *in) { SercomSpi* spi_dev = 0; char tmp; switch(dev) { #if SPI_0_EN case SPI_0: spi_dev = &(SPI_0_DEV); break; #endif #if SPI_1_EN case SPI_1: spi_dev = &(SPI_1_DEV); break; #endif } while (!spi_dev->INTFLAG.bit.DRE) {} /* while data register is not empty*/ spi_dev->DATA.bit.DATA = out; while (!spi_dev->INTFLAG.bit.DRE || !spi_dev->INTFLAG.bit.RXC) {} /* while receive is not complete*/ tmp = (char)spi_dev->DATA.bit.DATA; if (in != NULL) { in[0] = tmp; } return 1; } static void _spi_poweron(SercomSpi* spi_dev) { if (spi_dev == NULL) { return; } spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE; while (spi_dev->SYNCBUSY.bit.ENABLE) {} } void spi_poweron(spi_t dev) { switch(dev) { #if SPI_0_EN case SPI_0: _spi_poweron(&SPI_0_DEV); break; #endif #if SPI_1_EN case SPI_1: _spi_poweron(&SPI_1_DEV); break; #endif } } static void _spi_poweroff(SercomSpi* spi_dev) { if (spi_dev == NULL) { return; } spi_dev->CTRLA.bit.ENABLE = 0; /* Disable spi */ while (spi_dev->SYNCBUSY.bit.ENABLE) {} } void spi_poweroff(spi_t dev) { switch(dev) { #if SPI_0_EN case SPI_0: _spi_poweroff(&SPI_0_DEV); break; #endif #if SPI_1_EN case SPI_1: _spi_poweroff(&SPI_1_DEV); break; #endif } } #endif /* SPI_0_EN || SPI_1_EN */