BootloaderCDC.c 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                           .ParityType  = CDC_PARITY_None,
                                           .DataBits    = 8                            };

/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
static uint32_t CurrAddress;

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
static bool RunBootloader = true;

/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
uint16_t MagicBootKey ATTR_NO_INIT;


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
	bool JumpToApplication = false;

	#if (BOARD == BOARD_LEONARDO)
		/* Enable pull-up on the IO13 pin so we can use it to select the mode */
		PORTC |= (1 << 7);
		Delay_MS(10);

		/* If IO13 is not jumpered to ground, start the user application instead */
		JumpToApplication = ((PINC & (1 << 7)) != 0);

		/* Disable pull-up after the check has completed */
		PORTC &= ~(1 << 7);
	#elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
		/* Disable JTAG debugging */
		JTAG_DISABLE();

		/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
		PORTF |= (1 << 4);
		Delay_MS(10);

		/* If the TCK pin is not jumpered to ground, start the user application instead */
		JumpToApplication = ((PINF & (1 << 4)) != 0);

		/* Re-enable JTAG debugging */
		JTAG_ENABLE();
	#else
		/* Check if the device's BOOTRST fuse is set */
		if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
		{
			/* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
			if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
			  JumpToApplication = true;

			/* Clear reset source */
			MCUSR &= ~(1 << EXTRF);
		}
		else
		{
			/* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
			 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
			if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
				JumpToApplication = true;

			/* Clear reset source */
			MCUSR &= ~(1 << WDRF);
		}
	#endif

	/* Don't run the user application if the reset vector is blank (no app loaded) */
	bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);

	/* If a request has been made to jump to the user application, honor it */
	if (JumpToApplication && ApplicationValid)
	{
		/* Turn off the watchdog */
		MCUSR &= ~(1 << WDRF);
		wdt_disable();

		/* Clear the boot key and jump to the user application */
		MagicBootKey = 0;

		// cppcheck-suppress constStatement
		((void (*)(void))0x0000)();
	}
}

/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

	/* Enable global interrupts so that the USB stack can function */
	GlobalInterruptEnable();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}

	/* Wait a short time to end all USB transactions and then disconnect */
	_delay_us(1000);

	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();

	/* Unlock the forced application start mode of the bootloader if it is restarted */
	MagicBootKey = MAGIC_BOOT_KEY;

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
static void SetupHardware(void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);

	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

	/* Initialize the USB and other board hardware drivers */
	USB_Init();
	LEDs_Init();

	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
	TCCR1B = ((1 << CS11) | (1 << CS10));
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
	                           CDC_NOTIFICATION_EPSIZE, 1);

	Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);

	Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
}

/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
 */
void EVENT_USB_Device_ControlRequest(void)
{
	/* Ignore any requests that aren't directed to the CDC interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
		case CDC_REQ_GetLineEncoding:
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
				Endpoint_ClearOUT();
			}

			break;
		case CDC_REQ_SetLineEncoding:
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
				Endpoint_ClearIN();
			}

			break;
        case CDC_REQ_SetControlLineState:
	        if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
	        {
	            Endpoint_ClearSETUP();
	            Endpoint_ClearStatusStage();
	        }

	        break;
	}
}

#if !defined(NO_BLOCK_SUPPORT)
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR109 protocol command issued.
 *
 *  \param[in] Command  Single character AVR109 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;

	uint8_t  HighByte = 0;
	uint8_t  LowByte  = 0;

	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();

	MemoryType =  FetchNextCommandByte();

	if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');

		return;
	}

	/* Check if command is to read a memory block */
	if (Command == AVR109_COMMAND_BlockRead)
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == MEMORY_TYPE_FLASH)
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
				#endif

				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;

				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == MEMORY_TYPE_FLASH)
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}

		while (BlockSize--)
		{
			if (MemoryType == MEMORY_TYPE_FLASH)
			{
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;
				}
				else
				{
					LowByte = FetchNextCommandByte();
				}

				HighByte = !HighByte;
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
				eeprom_update_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == MEMORY_TYPE_FLASH)
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);

			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}

		/* Send response byte back to the host */
		WriteNextResponseByte('\r');
	}
}
#endif

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);

	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}

	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_8();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);

	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();

		while (!(Endpoint_IsINReady()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}

	/* Write the next byte to the IN endpoint */
	Endpoint_Write_8(Response);
}

/** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
static void CDC_Task(void)
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);

	/* Check if endpoint has a command in it sent from the host */
	if (!(Endpoint_IsOUTReceived()))
	  return;

	/* Read in the bootloader command (first byte sent from host) */
	uint8_t Command = FetchNextCommandByte();

	if (Command == AVR109_COMMAND_ExitBootloader)
	{
		RunBootloader = false;

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
	         (Command == AVR109_COMMAND_SelectDeviceType))
	{
		FetchNextCommandByte();

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
	{
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == AVR109_COMMAND_ReadPartCode)
	{
		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
		WriteNextResponseByte(0x44);
		WriteNextResponseByte(0x00);
	}
	else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
	{
		/* Indicate auto-address increment is supported */
		WriteNextResponseByte('Y');
	}
	else if (Command == AVR109_COMMAND_SetCurrentAddress)
	{
		/* Set the current address to that given by the host (translate 16-bit word address to byte address) */
		CurrAddress   = (FetchNextCommandByte() << 9);
		CurrAddress  |= (FetchNextCommandByte() << 1);

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
	{
		/* Indicate serial programmer back to the host */
		WriteNextResponseByte('S');
	}
	else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
	{
		/* Write the 7-byte software identifier to the endpoint */
		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
	}
	else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
	{
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
	}
	else if (Command == AVR109_COMMAND_ReadSignature)
	{
		WriteNextResponseByte(AVR_SIGNATURE_3);
		WriteNextResponseByte(AVR_SIGNATURE_2);
		WriteNextResponseByte(AVR_SIGNATURE_1);
	}
	else if (Command == AVR109_COMMAND_EraseFLASH)
	{
		/* Clear the application section of flash */
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
		{
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();
		}

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
	else if (Command == AVR109_COMMAND_WriteLockbits)
	{
		/* Set the lock bits to those given by the host */
		boot_lock_bits_set(FetchNextCommandByte());

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#endif
	else if (Command == AVR109_COMMAND_ReadLockbits)
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
	}
	else if (Command == AVR109_COMMAND_ReadLowFuses)
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
	}
	else if (Command == AVR109_COMMAND_ReadHighFuses)
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
	}
	else if (Command == AVR109_COMMAND_ReadExtendedFuses)
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
	}
	#if !defined(NO_BLOCK_SUPPORT)
	else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
	{
		WriteNextResponseByte('Y');

		/* Send block size to the host */
		WriteNextResponseByte(SPM_PAGESIZE >> 8);
		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
	}
	else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
	{
		/* Delegate the block write/read to a separate function for clarity */
		ReadWriteMemoryBlock(Command);
	}
	#endif
	#if !defined(NO_FLASH_BYTE_SUPPORT)
	else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
	{
		/* Write the high byte to the current flash page */
		boot_page_fill(CurrAddress, FetchNextCommandByte());

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
	{
		/* Write the low byte to the current flash page */
		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());

		/* Increment the address */
		CurrAddress += 2;

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == AVR109_COMMAND_WriteFlashPage)
	{
		/* Commit the flash page to memory */
		boot_page_write(CurrAddress);

		/* Wait until write operation has completed */
		boot_spm_busy_wait();

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == AVR109_COMMAND_ReadFLASHWord)
	{
		#if (FLASHEND > 0xFFFF)
		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
		#else
		uint16_t ProgramWord = pgm_read_word(CurrAddress);
		#endif

		WriteNextResponseByte(ProgramWord >> 8);
		WriteNextResponseByte(ProgramWord & 0xFF);
	}
	#endif
	#if !defined(NO_EEPROM_BYTE_SUPPORT)
	else if (Command == AVR109_COMMAND_WriteEEPROM)
	{
		/* Read the byte from the endpoint and write it to the EEPROM */
		eeprom_update_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());

		/* Increment the address after use */
		CurrAddress += 2;

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == AVR109_COMMAND_ReadEEPROM)
	{
		/* Read the EEPROM byte and write it to the endpoint */
		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));

		/* Increment the address after use */
		CurrAddress += 2;
	}
	#endif
	else if (Command != AVR109_COMMAND_Sync)
	{
		/* Unknown (non-sync) command, return fail code */
		WriteNextResponseByte('?');
	}

	/* Select the IN endpoint */
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);

	/* Remember if the endpoint is completely full before clearing it */
	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());

	/* Send the endpoint data to the host */
	Endpoint_ClearIN();

	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
	if (IsEndpointFull)
	{
		while (!(Endpoint_IsINReady()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}

		Endpoint_ClearIN();
	}

	/* Wait until the data has been sent to the host */
	while (!(Endpoint_IsINReady()))
	{
		if (USB_DeviceState == DEVICE_STATE_Unattached)
		  return;
	}

	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);

	/* Acknowledge the command from the host */
	Endpoint_ClearOUT();
}