device.c
18.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
* Copyright (C) 2016 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup sys_can_dll
* @{
* @file
* @brief CAN device interface
*
* @author Toon Stegen <toon.stegen@altran.com>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Aurelien Gonce <aurelien.gonce@altran.com>
* @}
*/
#include <errno.h>
#include "thread.h"
#include "can/device.h"
#include "can/common.h"
#include "can/pkt.h"
#include "can/dll.h"
#ifdef MODULE_CAN_TRX
#include "can/can_trx.h"
#endif
#define ENABLE_DEBUG (0)
#include "debug.h"
#ifndef CAN_DEVICE_MSG_QUEUE_SIZE
#define CAN_DEVICE_MSG_QUEUE_SIZE 64
#endif
#ifdef MODULE_CAN_PM
#define CAN_DEVICE_PM_DEFAULT_RX_TIMEOUT (10 * US_PER_SEC)
#define CAN_DEVICE_PM_DEFAULT_TX_TIMEOUT (2 * US_PER_SEC)
#endif
static int power_up(candev_dev_t *candev_dev);
static int power_down(candev_dev_t *candev_dev);
#ifdef MODULE_CAN_PM
static void pm_cb(void *arg);
static void pm_reset(candev_dev_t *candev_dev, uint32_t value);
#endif
static inline enum can_msg _can_event_error_to_msg(candev_event_t error)
{
switch (error) {
case CANDEV_EVENT_TX_ERROR:
return CAN_MSG_TX_ERROR;
case CANDEV_EVENT_RX_ERROR:
return CAN_MSG_RX_ERROR;
case CANDEV_EVENT_BUS_OFF:
return CAN_MSG_BUS_OFF;
case CANDEV_EVENT_ERROR_PASSIVE:
return CAN_MSG_ERROR_PASSIVE;
case CANDEV_EVENT_ERROR_WARNING:
return CAN_MSG_ERROR_WARNING;
default:
return 0;
}
}
static void _can_event(candev_t *dev, candev_event_t event, void *arg)
{
msg_t msg;
struct can_frame *frame;
can_pkt_t *pkt;
candev_dev_t *candev_dev = dev->isr_arg;
DEBUG("_can_event: dev=%p, params=%p\n", (void*)dev, (void*)candev_dev);
DEBUG("_can_event: params->ifnum=%d, params->pid=%" PRIkernel_pid ", params->dev=%p\n",
candev_dev->ifnum, candev_dev->pid, (void*)candev_dev->dev);
switch (event) {
case CANDEV_EVENT_ISR:
DEBUG("_can_event: CANDEV_EVENT_ISR\n");
msg.type = CAN_MSG_EVENT;
if (msg_send(&msg, candev_dev->pid) <= 0) {
DEBUG("can device: isr lost\n");
}
break;
case CANDEV_EVENT_WAKE_UP:
DEBUG("_can_event: CANDEV_EVENT_WAKE_UP\n");
power_up(candev_dev);
#ifdef MODULE_CAN_PM
pm_reset(candev_dev, candev_dev->rx_inactivity_timeout);
#endif
break;
case CANDEV_EVENT_TX_CONFIRMATION:
DEBUG("_can_event: CANDEV_EVENT_TX_CONFIRMATION\n");
/* frame pointer in arg */
pkt = container_of((struct can_frame *)arg, can_pkt_t, frame);
can_dll_dispatch_tx_conf(pkt);
break;
case CANDEV_EVENT_TX_ERROR:
DEBUG("_can_event: CANDEV_EVENT_TX_ERROR\n");
/* frame pointer in arg */
pkt = container_of((struct can_frame *)arg, can_pkt_t, frame);
can_dll_dispatch_tx_error(pkt);
break;
case CANDEV_EVENT_RX_INDICATION:
DEBUG("_can_event: CANDEV_EVENT_RX_INDICATION\n");
#ifdef MODULE_CAN_PM
pm_reset(candev_dev, candev_dev->rx_inactivity_timeout);
#endif
/* received frame in arg */
frame = (struct can_frame *) arg;
can_dll_dispatch_rx_frame(frame, candev_dev->pid);
break;
case CANDEV_EVENT_RX_ERROR:
DEBUG("_can_event: CANDEV_EVENT_RX_ERROR\n");
break;
case CANDEV_EVENT_BUS_OFF:
dev->state = CAN_STATE_BUS_OFF;
break;
case CANDEV_EVENT_ERROR_PASSIVE:
dev->state = CAN_STATE_ERROR_PASSIVE;
break;
case CANDEV_EVENT_ERROR_WARNING:
dev->state = CAN_STATE_ERROR_WARNING;
break;
default:
DEBUG("_can_event: unknown event\n");
break;
}
}
static int power_up(candev_dev_t *candev_dev)
{
candev_t *dev = candev_dev->dev;
DEBUG("candev: power up\n");
#ifdef MODULE_CAN_TRX
can_trx_set_mode(candev_dev->trx, TRX_NORMAL_MODE);
#endif
canopt_state_t state = CANOPT_STATE_ON;
int res = dev->driver->set(dev, CANOPT_STATE, &state, sizeof(state));
dev->state = CAN_STATE_ERROR_ACTIVE;
return res;
}
static int power_down(candev_dev_t *candev_dev)
{
candev_t *dev = candev_dev->dev;
DEBUG("candev: power down\n");
#ifdef MODULE_CAN_TRX
can_trx_set_mode(candev_dev->trx, TRX_SLEEP_MODE);
#endif
canopt_state_t state = CANOPT_STATE_SLEEP;
int res = dev->driver->set(dev, CANOPT_STATE, &state, sizeof(state));
if (dev->state != CAN_STATE_BUS_OFF) {
dev->state = CAN_STATE_SLEEPING;
}
#ifdef MODULE_CAN_PM
xtimer_remove(&candev_dev->pm_timer);
candev_dev->last_pm_update = 0;
#endif
return res;
}
#ifdef MODULE_CAN_PM
static void pm_cb(void *arg)
{
candev_dev_t *dev = arg;
msg_t msg;
msg.type = CAN_MSG_PM;
msg_send(&msg, dev->pid);
}
static void pm_reset(candev_dev_t *candev_dev, uint32_t value)
{
DEBUG("pm_reset: dev=%p, value=%" PRIu32 ", last_pm_value=%" PRIu32
", last_pm_update=%" PRIu32 "\n", (void *)candev_dev, value,
candev_dev->last_pm_value, candev_dev->last_pm_update);
if (value == 0) {
candev_dev->last_pm_value = 0;
xtimer_remove(&candev_dev->pm_timer);
return;
}
if (candev_dev->last_pm_update == 0 ||
value > (candev_dev->last_pm_value - (xtimer_now_usec() - candev_dev->last_pm_update))) {
candev_dev->last_pm_value = value;
candev_dev->last_pm_update = xtimer_now_usec();
xtimer_set(&candev_dev->pm_timer, value);
}
}
#endif
static void *_can_device_thread(void *args)
{
candev_dev_t *candev_dev = (candev_dev_t *) args;
candev_t *dev = candev_dev->dev;
DEBUG("_can_device_thread: starting thread for ifnum=%d, pid=%" PRIkernel_pid "\n",
candev_dev->ifnum, thread_getpid());
DEBUG("_cand_device_thread: dev=%p, params=%p\n", (void*)dev, (void*)candev_dev);
candev_dev->pid = thread_getpid();
#ifdef MODULE_CAN_TRX
can_trx_init(candev_dev->trx);
#endif
#ifdef MODULE_CAN_PM
if (candev_dev->rx_inactivity_timeout == 0) {
candev_dev->rx_inactivity_timeout = CAN_DEVICE_PM_DEFAULT_RX_TIMEOUT;
}
if (candev_dev->tx_wakeup_timeout == 0) {
candev_dev->tx_wakeup_timeout = CAN_DEVICE_PM_DEFAULT_TX_TIMEOUT;
}
candev_dev->pm_timer.callback = pm_cb;
candev_dev->pm_timer.arg = candev_dev;
pm_reset(candev_dev, candev_dev->rx_inactivity_timeout);
#endif
int res;
can_pkt_t *pkt;
can_opt_t *opt;
msg_t msg, reply, msg_queue[CAN_DEVICE_MSG_QUEUE_SIZE];
/* setup the device layers message queue */
msg_init_queue(msg_queue, CAN_DEVICE_MSG_QUEUE_SIZE);
dev->event_callback = _can_event;
dev->isr_arg = candev_dev;
candev_dev->ifnum = can_dll_register_candev(candev_dev);
dev->driver->init(dev);
power_up(candev_dev);
while (1) {
msg_receive(&msg);
switch (msg.type) {
case CAN_MSG_EVENT:
DEBUG("can device: CAN_MSG_EVENT received\n");
dev->driver->isr(dev);
break;
case CAN_MSG_ABORT_FRAME:
DEBUG("can device: CAN_MSG_ABORT_FRAME received\n");
pkt = (can_pkt_t *) msg.content.ptr;
dev->driver->abort(dev, &pkt->frame);
reply.type = CAN_MSG_ACK;
reply.content.value = 0;
msg_reply(&msg, &reply);
break;
case CAN_MSG_SEND_FRAME:
DEBUG("can device: CAN_MSG_SEND_FRAME received\n");
pkt = (can_pkt_t *) msg.content.ptr;
if (dev->state == CAN_STATE_BUS_OFF || dev->state == CAN_STATE_SLEEPING) {
DEBUG("can device: waking up driver\n");
power_up(candev_dev);
}
#ifdef MODULE_CAN_PM
pm_reset(candev_dev, candev_dev->tx_wakeup_timeout);
#endif
dev->driver->send(dev, &pkt->frame);
break;
case CAN_MSG_SET:
DEBUG("can device: CAN_MSG_SET received\n");
/* read incoming options */
opt = (can_opt_t *)msg.content.ptr;
/* set option for device driver */
res = dev->driver->set(dev, opt->opt, opt->data, opt->data_len);
/* send reply to calling thread */
reply.type = CAN_MSG_ACK;
reply.content.value = (uint32_t)res;
msg_reply(&msg, &reply);
break;
case CAN_MSG_GET:
DEBUG("can device: CAN_MSG_GET received\n");
/* read incoming options */
opt = (can_opt_t *)msg.content.ptr;
/* get option for device driver */
res = dev->driver->get(dev, opt->opt, opt->data, opt->data_len);
/* send reply to calling thread */
reply.type = CAN_MSG_ACK;
reply.content.value = (uint32_t)res;
msg_reply(&msg, &reply);
break;
case CAN_MSG_SET_FILTER:
DEBUG("can device: CAN_MSG_SET_FILTER received\n");
/* set filter for device driver */
res = dev->driver->set_filter(dev, msg.content.ptr);
/* send reply to calling thread */
reply.type = CAN_MSG_ACK;
reply.content.value = (uint32_t)res;
msg_reply(&msg, &reply);
break;
case CAN_MSG_REMOVE_FILTER:
DEBUG("can device: CAN_MSG_REMOVE_FILTER received\n");
/* set filter for device driver */
res = dev->driver->remove_filter(dev, msg.content.ptr);
/* send reply to calling thread */
reply.type = CAN_MSG_ACK;
reply.content.value = (uint32_t)res;
msg_reply(&msg, &reply);
break;
case CAN_MSG_POWER_UP:
DEBUG("can device: CAN_MSG_POWER_UP received\n");
res = power_up(candev_dev);
#ifdef MODULE_CAN_PM
pm_reset(candev_dev, 0);
#endif
/* send reply to calling thread */
reply.type = CAN_MSG_ACK;
reply.content.value = (uint32_t)res;
msg_reply(&msg, &reply);
break;
case CAN_MSG_POWER_DOWN:
DEBUG("can device: CAN_MSG_POWER_DOWN received\n");
res = power_down(candev_dev);
/* send reply to calling thread */
reply.type = CAN_MSG_ACK;
reply.content.value = (uint32_t)res;
msg_reply(&msg, &reply);
break;
#ifdef MODULE_CAN_TRX
case CAN_MSG_SET_TRX:
DEBUG("can device: CAN_MSG_SET_TRX received\n");
reply.type = CAN_MSG_ACK;
if (dev->state != CAN_STATE_SLEEPING) {
reply.content.value = -EBUSY;
}
else {
candev_dev->trx = msg.content.ptr;
reply.content.value = 0;
}
msg_reply(&msg, &reply);
break;
#endif
#ifdef MODULE_CAN_PM
case CAN_MSG_PM:
DEBUG("can device: pm power down\n");
power_down(candev_dev);
break;
#endif
default:
break;
}
}
return NULL;
}
kernel_pid_t can_device_init(char *stack, int stacksize, char priority,
const char *name, candev_dev_t *params)
{
kernel_pid_t res;
/* check if given device is defined and the driver is set */
if (params == NULL || params->dev == NULL || params->dev->driver == NULL) {
return -ENODEV;
}
/* create new can device thread */
res = thread_create(stack, stacksize, priority, THREAD_CREATE_STACKTEST,
_can_device_thread, (void *)params, name);
if (res <= 0) {
return -EINVAL;
}
return res;
}
#define SJW 2
#define CAN_SYNC_SEG 1
static inline uint32_t min(uint32_t x, uint32_t y)
{
return x < y ? x : y;
}
static inline uint32_t max(uint32_t x, uint32_t y)
{
return x > y ? x : y;
}
static inline uint32_t clamp(uint32_t val, uint32_t lo, uint32_t hi)
{
return min(max(val, lo), hi);
}
/**
* @brief Compute tseg1 and tseg2 and returns the sample point
*
* tseg1 and tseg2 are calculated from the nominal sample point and tseg
*
* @param[in] btc the bittiming const
* @param[in] spt_nominal the nominal sample point
* @param[in] tseg number of tq in the nbt minus the SYNC_SEG
* @param[out] p_tseg1 number of tq in tseg1 (PHASE_SEG_1 + PROP_SEG)
* @param[out] p_tseg2 number of tq in tseg2 (PHASE_SEG_2)
* @param[out] p_spt_error (optional) the sample point difference between @p spt_nominal
* and computed sample point from @p tseg1 and @p tseg2
*
* @return the computed sample point from @p tseg1 and @p tseg2
*/
static uint32_t update_sample_point(const struct can_bittiming_const *btc, uint32_t spt_nominal,
uint32_t tseg, uint32_t *p_tseg1, uint32_t *p_tseg2, uint32_t *p_spt_error)
{
uint32_t best_spt = 0;
uint32_t min_spt_error = UINT32_MAX;
for (int i = 0; i <= 1; i++) {
uint32_t tseg1;
uint32_t tseg2;
uint32_t spt;
uint32_t spt_error;
tseg2 = tseg + CAN_SYNC_SEG - (spt_nominal * (tseg + CAN_SYNC_SEG)) / 1000 - i;
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
tseg1 = tseg - tseg2;
if (tseg1 > btc->tseg1_max) {
tseg1 = btc->tseg1_max;
tseg2 = tseg - tseg1;
}
spt = 1000 * (tseg1 + CAN_SYNC_SEG) / (tseg + CAN_SYNC_SEG);
spt_error = max(spt, spt_nominal) - min(spt, spt_nominal);
if (spt <= spt_nominal && spt_error < min_spt_error) {
best_spt = spt;
min_spt_error = spt_error;
*p_tseg1 = tseg1;
*p_tseg2 = tseg2;
}
if (p_spt_error) {
*p_spt_error = min_spt_error;
}
DEBUG("tseg1=%" PRIu32 ", tseg2=%" PRIu32 ", spt_error=%" PRIu32 "\n",
tseg1, tseg2, spt_error);
}
return best_spt;
}
/*
* Nominal bit time (nbt) composed of 8 time quantum (tq)
* |<------------------------------------------------------------------------------------->|
* | |
* +----------+----------+-------------------------------------------+---------------------+
* | SYNC_SEG | PROP_SEG | PHASE_SEG_1 | PHASE_SEG_2 |
* +----------+----------+-------------------------------------------+---------------------+
* | ^ |
* | Sample point | at 75% |
* |----------|----------|----------|----------|----------|----------|----------|----------|
* | Time quanta 6 | 2 |
*
* Synchronization segment = always 1 tq
* SYNC_SEG + PROP_SEG + PHASE_SEG1
* Sample point = --------------------------------
* nbt
*
* tseg1 = PROP_SEG + PHASE_SEG_1
* tseg2 = PHASE_SEG_2
* tseg = tseg1 + tseg2
* nbt = tseg + SYNC_SEG
*
*/
int can_device_calc_bittiming(uint32_t clock, const struct can_bittiming_const *timing_const,
struct can_bittiming *timing)
{
uint32_t spt; /* nominal sample point, in one-tenth of a percent */
uint32_t spt_error;
uint32_t min_spt_error = UINT32_MAX;
uint32_t best_brp = 0;
uint32_t tseg;
uint32_t tseg1;
uint32_t tseg2;
uint32_t best_tseg = 0;
uint32_t rate; /* current bitrate */
uint32_t rate_error;
uint32_t min_rate_error;
assert((timing != NULL) && (timing->bitrate != 0));
assert(timing_const != NULL);
if (timing->sample_point) {
spt = timing->sample_point;
}
else {
/* Use recommended sample points */
/* See CiA 301 (https://www.can-cia.org/standardization/technical-documents/) */
/* 87.5% is recommended from 10kbit/s to 1Mbit/s */
spt = 875;
}
rate_error = min_rate_error = timing->bitrate;
DEBUG("init_bittiming: rate=%" PRIu32 ", clock=%" PRIu32 ", spt=%" PRIu32 "\n",
timing->bitrate, clock, timing->sample_point);
/* Starting from higher tq per nbt */
for (tseg = timing_const->tseg1_max + timing_const->tseg2_max;
tseg >= timing_const->tseg1_min + timing_const->tseg2_min; tseg--) {
uint32_t nbt = tseg + CAN_SYNC_SEG;
/* theoritical brp */
uint32_t brp = clock / (timing->bitrate * nbt);
/* brp according to brp_inc */
brp = (brp / timing_const->brp_inc) * timing_const->brp_inc;
DEBUG("tsegall=%" PRIu32 ", brp=%" PRIu32 "\n", nbt, brp);
if (brp < timing_const->brp_min || brp > timing_const->brp_max) {
/* Invalid brp */
DEBUG("invalid brp\n");
continue;
}
rate = clock / (brp * nbt);
rate_error = max(timing->bitrate, rate) - min(timing->bitrate, rate);
if (rate_error > min_rate_error) {
DEBUG("timing->rate=%" PRIu32 ", rate=%" PRIu32 ", rate_error=%" PRIu32 " > min_rate_error=%" PRIu32 ", continuing\n",
timing->bitrate, rate, rate_error, min_rate_error);
continue;
}
if (rate_error < min_rate_error) {
min_spt_error = UINT32_MAX;
}
update_sample_point(timing_const, spt, tseg, &tseg1, &tseg2, &spt_error);
if (spt_error > min_spt_error) {
DEBUG("spt_error=%" PRIu32 " > min_spt_error=%" PRIu32 ", continuing\n",
spt_error, min_spt_error);
continue;
}
min_spt_error = spt_error;
min_rate_error = rate_error;
best_tseg = tseg;
best_brp = brp;
DEBUG("rate_error=%" PRIu32 ", spt_error=%" PRIu32 "\n", rate_error, spt_error);
if (rate_error == 0 && spt_error == 0) {
break;
}
}
DEBUG("computed values: min_rate_error=%" PRIu32 ", min_spt_error=%" PRIu32 "\n", min_rate_error, min_spt_error);
if (min_rate_error) {
rate_error = min_rate_error * 1000 / timing->bitrate;
if (rate_error > CAN_MAX_RATE_ERROR) {
return -1;
}
}
timing->sample_point = update_sample_point(timing_const, spt,
best_tseg, &tseg1, &tseg2, NULL);
timing->prop_seg = tseg1 / 2;
timing->phase_seg1 = tseg1 - timing->prop_seg;
timing->phase_seg2 = tseg2;
if (!timing->sjw || !timing_const->sjw_max) {
timing->sjw = SJW;
}
else {
if (timing->sjw > timing_const->sjw_max) {
timing->sjw = timing_const->sjw_max;
}
if (timing->sjw > tseg2) {
timing->sjw = tseg2;
}
}
timing->brp = best_brp;
timing->bitrate = clock / (timing->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
DEBUG("bitrate=%" PRIu32 ", sample_point=%" PRIu32 ", brp=%" PRIu32 ", prop_seg=%" PRIu32
", phase_seg1=%" PRIu32 ", phase_seg2=%" PRIu32 "\n", timing->bitrate, timing->sample_point,
timing->brp, timing->prop_seg, timing->phase_seg1, timing->phase_seg2);
return 0;
}