main.c 8.44 KB
/*
 * Copyright (C) 2015 Freie Universität Berlin
 *
 * This file is subject to the terms and conditions of the GNU Lesser
 * General Public License v2.1. See the file LICENSE in the top level
 * directory for more details.
 */

/**
 * @ingroup     examples
 * @{
 *
 * @file
 * @brief       Example application for demonstrating the RIOT network stack
 *
 * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
 *
 * @}
 */
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <arpa/inet.h>

#include "board.h"
#include "periph_conf.h"
#include "periph/gpio.h"
#include "net/sock/udp.h"
#include "net/gnrc/ipv6.h"
#include "net/af.h"
#include "net/sixlowpan.h"
#include "net/gnrc/pktdump.h"
#include "shell.h"
#include "shell_commands.h"
#include "msg.h"
#include "thread.h"
#include "sched.h"
#include "kernel_types.h"
#include "net/netstats.h"
#include "net/ipv6/addr.h"
#include "periph/timer.h"
#include "net/gnrc/ipv6/netif.h"
#include "net/gnrc/netif.h"
#include "net/gnrc/netapi.h"
#include "net/netopt.h"
#include "net/gnrc/pkt.h"
#include "net/gnrc/pktbuf.h"
#include "net/gnrc/netif/hdr.h"
#include "net/gnrc/sixlowpan/netif.h"
#include "net/fib.h"
#include "net/gnrc/udp.h"
#include "periph/pwm.h"
#include "od.h"
#include "net/sntp.h"
#include "net/ntp_packet.h"
#ifdef MODULE_SCHEDSTATISTICS
#include "xtimer.h"
#endif

#ifdef MODULE_TLSF
#include "tlsf.h"
#endif

#define MAIN_QUEUE_SIZE     (8)
/**
 * @brief   The maximal expected link layer address length in byte
 */
#define MAX_ADDR_LEN            (8U)

/**
 * @brief   The default IPv6 prefix length if not specified.
 */
#define SC_NETIF_IPV6_DEFAULT_PREFIX_LEN     (64)

#define _STACKSIZE      (THREAD_STACKSIZE_DEFAULT + THREAD_EXTRA_STACKSIZE_PRINTF)
#define MSG_TYPE_ISR    (0x3456)

#define MAXPAC 100
#define MAXLEN 1024
#define ECHOLEN 1

//addr ipv6 link local node 1: fe80::1210:642c:1432:1702
uint8_t node1[16]={0xfe,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x12,0x10,0x64,0x2c,0x14,0x32,0x17,0x02};
// addr ipv6 link local node 2: fe80::1210:6432:140f:1732
//uint8_t node2[16]={0xfe,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x12,0x10,0x64,0x32,0x14,0x0f,0x17,0x32};
//addr ipv6 link local node 3: fe80::1210:642d:1439:1736
uint8_t node3[16]={0xfe,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x12,0x10,0x64,0x2d,0x14,0x39,0x17,0x36};


char sock_server_stack[THREAD_STACKSIZE_MAIN];
char sock_client_stack[THREAD_STACKSIZE_MAIN];
char sock_time_server_stack[THREAD_STACKSIZE_MAIN];

kernel_pid_t server, client,time_server;

sock_udp_ep_t local = SOCK_IPV6_EP_ANY;
sock_udp_t sock;

sock_udp_ep_t local_ntp = SOCK_IPV6_EP_ANY;
sock_udp_t sock_ntp; 
static ntp_packet_t sntp_packet;

void *sock_time_server_thread(void *arg)
{
  (void) arg;
  local_ntp.port = NTP_PORT;
  
  if (sock_udp_create(&sock_ntp, &local_ntp, NULL, 0) < 0) {
    puts("Error creating UDP sock");
    return NULL;
  }
  
  while (1) {
    sock_udp_ep_t remote;
    ssize_t res;
    
    if ((res = sock_udp_recv(&sock_ntp,&sntp_packet, sizeof(sntp_packet), SOCK_NO_TIMEOUT,
      &remote)) >= 0) {
      sntp_packet.receive.seconds=byteorder_htonl( xtimer_now_usec());
      sntp_packet.origin.seconds=sntp_packet.transmit.seconds;
      sntp_packet.transmit.seconds=byteorder_htonl( xtimer_now_usec());
    
    if (sock_udp_send(&sock_ntp, &sntp_packet, sizeof(sntp_packet), &remote) < 0) {
      puts("Error sending reply");
    }
      }
  }
  return NULL;
}

 
typedef struct list {
  uint32_t send_time;
  char packet[MAXLEN];
}Data;

// calculate the time diff between start and end (in us)
uint32_t delay(uint32_t send_time, uint32_t recv_time)
{
	return(recv_time-send_time); 
}

// calculate the min/max/average value from an array
void rttd(float t[], int size, uint32_t time)
{
	float avg;
        float min = t[0];
        float max = 0.0;
        float sum=0.0;
        int i;
	
        for(i=0; i< size; i++){
	sum += t[i];
	if(t[i] > max) {max = t[i];}
	if(t[i] < min) {min = t[i];}
	}
	avg = sum/(float)size;
        if(size!=0)printf("Round-trip delay: min/avg/max = %f/%f/%f ms, time = %f s\n",min*1000,avg*1000,max*1000,(float)time/1000000);
}


void *sock_server_thread(void *arg)
{
  (void) arg;
  local.port = 1234; 
  Data buf;
  int64_t offset = 0;
  int latency;

  sock_udp_ep_t server = { .port = NTP_PORT, .family = AF_INET6 };
  ipv6_addr_from_str((ipv6_addr_t *)&server.addr, "baad:a555::1702");

  if (sock_udp_create(&sock, &local, NULL, 0) < 0)
    {
      puts("Error creating UDP sock");
      return NULL;
    }

   if (sntp_sync(&server, SOCK_NO_TIMEOUT) < 0) {
    puts("Error in synchronization");
    return NULL;
   }
   offset = sntp_get_offset();
   printf("offset: %i \n",(int)offset);

  while (1)
    {
      sock_udp_ep_t remote;
      size_t res;
      
      if ((res = sock_udp_recv(&sock,&buf, sizeof(buf),SOCK_NO_TIMEOUT ,&remote)) < 0)
	{
	  puts("Can't receive datagram\n"); 
	}
        latency = xtimer_now_usec() + offset - buf.send_time;
         printf("latency : %i\n",latency);

	//puts("Got a UDP datagram\n");
	//send  ack  
	if (sock_udp_send(&sock,&buf,sizeof(buf), &remote) != res)
	{
	   puts("Error sending reply");
	}

 
    }
  return NULL;
}

void *sock_client_thread(void *arg)
{
  (void) arg;
  ssize_t res;
  Data data;
  Data data2;
  //int i;
  //uint32_t timebuf;
  sock_udp_ep_t remote = { .family = AF_INET6 };

  remote.port = 1234;
  remote.addr.ipv6[0] = 0xba;
  remote.addr.ipv6[1] = 0xad;
  remote.addr.ipv6[2] = 0xa5;
  remote.addr.ipv6[3] = 0x55;
  remote.addr.ipv6[14] = 0x17;
  remote.addr.ipv6[15] = 0x36;
  
 /* fill up the echo message */
  for (i = 0; i < ECHOLEN; i++) {
	 
	data.donnees[i] = 'e';
  }

  for (;;)
    {

     
   data.send_time = xtimer_now_usec();
   //test=xtimer_now_usec();
    printf("Heure server: %" PRIu32 "\n",data.heure_actuelle);
    if (sock_udp_send(&sock,&data,sizeof(data), &remote) < 0)
      {
	puts("Error sending message");
      }
    if ((res = sock_udp_recv(&sock,&data2,sizeof(data2),1 * US_PER_SEC,NULL)) < 0)
      {
	if (res == -ETIMEDOUT)
	  {
	    puts("Timedout");
	  }
	else
	  {
	    puts("Error receiving message");
	  }
      }
    else{
	//end = xtimer_now_usec();
	//timebuf = delay(test,end);
       // printf("latency: %" PRIu32 "\n",timebuf);
        //printf("heure reception: %" PRIu32 "\n",end);  
        xtimer_sleep(1);
	      
    }
     
  }
  return NULL;
}

static void init_interface(void)
{
    kernel_pid_t ifs[GNRC_NETIF_NUMOF];
    ipv6_addr_t addr = IPV6_ADDR_UNSPECIFIED;
    ipv6_addr_t tmp_addr= IPV6_ADDR_UNSPECIFIED;
    uint8_t hwaddr[MAX_ADDR_LEN];
    int res;
    
    gnrc_netif_get(ifs);

    //addresses gobales
    addr.u8[0] = 0xba;
    addr.u8[1] = 0xad;
    addr.u8[2] = 0xa5;
    addr.u8[3] = 0x55;

    res = gnrc_netapi_get(ifs[0], NETOPT_ADDRESS, 0, hwaddr, sizeof(hwaddr));

    if (res >= 0) {
        addr.u8[14] = *hwaddr;
        addr.u8[15] = *(hwaddr+1);
    }
    memcpy(tmp_addr.u8,addr.u8,IPV6_ADDR_BIT_LEN);
    
    gnrc_ipv6_netif_add_addr(ifs[0], &addr, 64, GNRC_IPV6_NETIF_ADDR_FLAGS_UNICAST);
    
    /* model ipv6 addr: baad:a555::Hwaddr */
    if((addr.u8[14]==0x17)&&(addr.u8[15]==0x02))
      {  
	
	tmp_addr.u8[14] = 0x17;
        tmp_addr.u8[15] = 0x36;
        fib_add_entry(&gnrc_ipv6_fib_table, ifs[0],tmp_addr.u8, IN6ADDRSZ, 0,node3, IN6ADDRSZ, 0, FIB_LIFETIME_NO_EXPIRE);
        client=thread_create(sock_client_stack,sizeof(sock_client_stack),8,THREAD_CREATE_STACKTEST,sock_client_thread,NULL,"sock_client_thread");
        time_server=thread_create(sock_time_server_stack,sizeof(sock_time_server_stack),6,THREAD_CREATE_STACKTEST,sock_time_server_thread,NULL,"sock_time_server_thread");
      }
    else if((addr.u8[14]==0x17)&&(addr.u8[15]==0x36))
      {
	
	tmp_addr.u8[14] = 0x17;
	tmp_addr.u8[15] = 0x02;
	fib_add_entry(&gnrc_ipv6_fib_table, ifs[0],tmp_addr.u8, IN6ADDRSZ, 0,node1, IN6ADDRSZ, 0, FIB_LIFETIME_NO_EXPIRE);
	server=thread_create(sock_server_stack,sizeof(sock_server_stack),6,THREAD_CREATE_STACKTEST,sock_server_thread,NULL,"sock_server_thread");
      }
    else
      {
        puts("new node?");
      }
}

static msg_t _main_msg_queue[MAIN_QUEUE_SIZE];

static const shell_command_t shell_commands[] = {
  { NULL, NULL, NULL }
};


int main(void)
{

  msg_init_queue(_main_msg_queue, MAIN_QUEUE_SIZE);
  puts("RIOT network stack example application");
  init_interface();
  
  /* start shell */
  puts("All up, running the shell now");
  char line_buf[SHELL_DEFAULT_BUFSIZE];
  shell_run(shell_commands, line_buf, SHELL_DEFAULT_BUFSIZE);
  
  /* should be never reached */
  return 0;
}