main.c 10.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/*
 * Copyright (C) 2015 Freie Universität Berlin
 *
 * This file is subject to the terms and conditions of the GNU Lesser
 * General Public License v2.1. See the file LICENSE in the top level
 * directory for more details.
 */

/**
 * @ingroup     examples
 * @{
 *
 * @file
 * @brief       Example application for demonstrating the RIOT network stack
 *
 * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
 *
 * @}
 */
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

#include <arpa/inet.h>
#include "periph/gpio.h"
#include "board.h"
#include "periph_conf.h"
#include "net/sock/udp.h"
#include "net/gnrc/ipv6.h"
#include "net/af.h"
#include "net/sixlowpan.h"
#include "net/gnrc/pktdump.h"
#include "shell.h"
#include "shell_commands.h"
#include "msg.h"
#include "thread.h"
#include "sched.h"
#include "thread.h"
#include "kernel_types.h"
#include "net/netstats.h"
#include "net/ipv6/addr.h"
#include "periph/timer.h"
#include "net/gnrc/ipv6/netif.h"
#include "net/gnrc/netif.h"
#include "net/gnrc/netapi.h"
#include "net/netopt.h"
#include "net/gnrc/pkt.h"
#include "net/gnrc/pktbuf.h"
#include "net/gnrc/netif/hdr.h"
#include "net/gnrc/sixlowpan/netif.h"
#include "net/fib.h"
#include "net/gnrc/udp.h"
#include "periph/pwm.h"
#include "od.h"
#include "net/sntp.h"
#include "net/ntp_packet.h"
#include "net/gnrc/rpl.h"
#include "net/gnrc/rpl/structs.h"
#include "net/gnrc/rpl/dodag.h"
#include "utlist.h"
#include "trickle.h"
#ifdef MODULE_SCHEDSTATISTICS
#include "xtimer.h"
#endif

#ifdef MODULE_TLSF
#include "tlsf.h"
#endif

#define MAIN_QUEUE_SIZE     (8)
/**
 * @brief   The maximal expected link layer address length in byte
 */
#define MAX_ADDR_LEN            (8U)

/**
 * @brief   The default IPv6 prefix length if not specified.
 */
#define SC_NETIF_IPV6_DEFAULT_PREFIX_LEN     (64)

#define _STACKSIZE      (THREAD_STACKSIZE_DEFAULT + THREAD_EXTRA_STACKSIZE_PRINTF)
#define MSG_TYPE_ISR    (0x3456)

#define PWM_FREQ 1000
#define PWM_RES 1000
#define DEADLINE 30000
#define SEC_IN_USEC (1000000)

static msg_t _main_msg_queue[MAIN_QUEUE_SIZE];

char sock_server_stack[THREAD_STACKSIZE_MAIN];
char sock_client_stack[THREAD_STACKSIZE_MAIN];
char sock_time_server_stack[THREAD_STACKSIZE_MAIN];


kernel_pid_t server, client, time_server;
int ordre = 0;
int64_t offset = 0;
int timer_run = 0;
int tourne = 0;
int arret = 0;
sock_udp_ep_t local = SOCK_IPV6_EP_ANY;
sock_udp_t sock; 
sock_udp_ep_t local_ntp = SOCK_IPV6_EP_ANY;
sock_udp_t sock_ntp; 
static ntp_packet_t sntp_packet;

typedef struct tableau {
  uint32_t heure_actuelle;
  char donnees[2];
}Data;

/***************** RPL functions *****************/

int crea_rpl_dodag_root(uint8_t instance_id, ipv6_addr_t dodag_id)
{
  gnrc_rpl_instance_t *inst = NULL;
  inst = gnrc_rpl_root_init(instance_id, &dodag_id, false, false);
  if (inst == NULL) {
    char addr_str[IPV6_ADDR_MAX_STR_LEN];
    printf("error: could not add DODAG (%s) to instance (%d)\n",
	   ipv6_addr_to_str(addr_str, &dodag_id, sizeof(addr_str)), instance_id);
    return 1;
  }
  
  printf("successfully added a new RPL DODAG\n");
  return 0;
}
/***************** /RPL functions ****************/

void *sock_time_server_thread(void *arg)
{
  (void) arg;
  local_ntp.port = NTP_PORT;
  
  if (sock_udp_create(&sock_ntp, &local_ntp, NULL, 0) < 0) {
    puts("Error creating UDP sock");
    return NULL;
  }
  
  while (1) {
    sock_udp_ep_t remote;
    ssize_t res;
    
    if ((res = sock_udp_recv(&sock_ntp,&sntp_packet, sizeof(sntp_packet), SOCK_NO_TIMEOUT,
      &remote)) >= 0) {
      sntp_packet.receive.seconds=byteorder_htonl( xtimer_now_usec());
    sntp_packet.origin.seconds=sntp_packet.transmit.seconds;
    sntp_packet.transmit.seconds=byteorder_htonl( xtimer_now_usec());
    
    if (sock_udp_send(&sock_ntp, &sntp_packet, sizeof(sntp_packet), &remote) < 0) {
      puts("Error sending reply");
    }
      }
  }
  return NULL;
}


void *sock_server_thread(void *arg)
{
  (void) arg;
  Data buf;
  int compteur = 5;
  int deadline;
  local.port = 1234;
  int interruption_msg = 0;
  int sync = 0;
  sock_udp_ep_t server = { .port = NTP_PORT, .family = AF_INET6 };
  ipv6_addr_from_str((ipv6_addr_t *)&server.addr, "baad:a555::1702");
  
  if (sock_udp_create(&sock, &local, NULL, 0) < 0) {
    puts("Error creating UDP sock");
    return NULL;
  }
  
  while (1) {
    sock_udp_ep_t remote;
    ssize_t res;
    if ((res = sock_udp_recv(&sock, &buf, sizeof(buf), 5 * SEC_IN_USEC ,&remote)) >= 0) {
      deadline = xtimer_now_usec() + offset - buf.heure_actuelle;
      printf("tps de transmission : %i\n",deadline);
      
      if(buf.donnees[0] == 'g' && buf.donnees[1] == 'o') {
	if(sync == 0)
	{
	  while(sntp_sync(&server, 5000000) < 0) {
	    puts("Erreur dans la synchronisation - Nouvelle tentative :");
	  }
	  offset = sntp_get_offset();
	  sync = 1;
	  printf("offset : %i\n",(int)offset);
	}
	if(interruption_msg == 1) {
	  puts("reprise de la communication - tentative de synchronisation :");
	  while(sntp_sync(&server, 5000000) < 0) {
	    puts("Erreur dans la synchronisation - Nouvelle tentative :");
	  }
	  offset = sntp_get_offset();
	  printf("offset : %i\n",(int)offset);
	  interruption_msg = 0;
	}
	if(deadline >= DEADLINE && compteur >=5) {
	  compteur = 0;
	  if(arret == 0) {
	    if (sock_udp_send(&sock, "d", sizeof("d"), &remote) < 0) {
	      puts("Error sending reply");
	    }
	  }
	  if(tourne == 1) 
	  {
	    pwm_set(PWM_DEV(0),1,987);
	    pwm_set(PWM_DEV(1),1,960);
	  }
	  if(timer_run == 0) {
	    puts("Degradation");
	    gpio_clear(LED1_PIN);
	    gpio_clear(LED2_PIN);
	    gpio_set(LED0_PIN);
	    timer_set(TIMER_DEV(1),0,25200);
	    timer_run = 1;
	  }
	}
	if(deadline >= DEADLINE && compteur < 5) {
	  compteur = 0;
	  if (sock_udp_send(&sock, "d", sizeof("d"), &remote) < 0) {
	    puts("Error sending reply");
	  }  
	}
	if(deadline<=DEADLINE && compteur >=5) {
	  pwm_set(PWM_DEV(0),1,992);
	  pwm_set(PWM_DEV(1),1,658);
	  tourne = 1;
	  timer_run=0;
	  timer_clear(TIMER_DEV(1),0);
	  if (sock_udp_send(&sock, "n", sizeof("n"), &remote) < 0) {
	    puts("Error sending reply");
	  }
	  arret = 0;
	  gpio_clear(LED2_PIN);
	  gpio_clear(LED0_PIN);
	  gpio_set(LED1_PIN);
	}
	if(deadline<=DEADLINE && compteur <5) {
	  compteur++;
	} 
	printf("compteur : %d\n",compteur);
	memset(&buf,0,sizeof(buf));
	if(arret == 1) {
	  if (sock_udp_send(&sock, "a", sizeof("a"), &remote) < 0) {
	    puts("Error sending reply");
	  }
	}
      }
    }
    else {
      puts("msg non recu");
      if(timer_run == 0 && interruption_msg == 0) {
	timer_run = 1;
	timer_set(TIMER_DEV(1),0,25200);
      }
      interruption_msg = 1;
      if(tourne == 1) 
      {
	pwm_set(PWM_DEV(0),1,987);
	pwm_set(PWM_DEV(1),1,960);
	gpio_clear(LED1_PIN);
	gpio_clear(LED2_PIN);
	gpio_set(LED0_PIN);
      }
    }
  }
  return NULL;
}


void *sock_client_thread(void *arg)
{
  (void) arg;
  Data data;
  int vitesse=2;
  uint8_t buf[3];
  ssize_t res;
  data.donnees[0] = 'g';
  data.donnees[1] = 'o';
  
  sock_udp_ep_t remote = { .family = AF_INET6 };
  
  remote.port = 1234;
  remote.addr.ipv6[0] = 0xba;
  remote.addr.ipv6[1] = 0xad;
  remote.addr.ipv6[2] = 0xa5;
  remote.addr.ipv6[3] = 0x55;
  remote.addr.ipv6[14] = 0x17;
  remote.addr.ipv6[15] = 0x36;
  
  while (1) {
    data.heure_actuelle = xtimer_now_usec();
    if (sock_udp_send(&sock, &data, sizeof(data), &remote) < 0) {
      puts("Error sending message");
    }   
    if ((res = sock_udp_recv(&sock, buf, sizeof(buf), 0.05 * SEC_IN_USEC,NULL)) < 0) {
      if (res == -ETIMEDOUT) {
	vitesse = 1;
      }
      else {
	puts("Error receiving message");
      }
    }
    else {
      if(buf[0] == 'n')
	vitesse = 2;
      else if(buf[0] == 'a') {
	vitesse = 1;
	gpio_set(LED2_PIN);
      }
      else vitesse = 1;
    }
    if(vitesse==2) {
      gpio_clear(LED0_PIN);
      gpio_clear(LED2_PIN);
      gpio_toggle(LED1_PIN);
    }
    else {
      gpio_clear(LED1_PIN);
      gpio_toggle(LED0_PIN);
    }
    xtimer_sleep(vitesse);
  }
  return NULL;
}

static void arret_urgence(void *arg,int channel)
{
  pwm_set(PWM_DEV(0),1,0);
  pwm_set(PWM_DEV(1),1,0);
  tourne = 0;
  timer_run = 0;
  arret = 1;
  gpio_clear(LED0_PIN);
  gpio_clear(LED1_PIN);
  gpio_set(LED2_PIN);
  puts("Arret d'urgence");
}


static void _init_timer(void)
{
  timer_init(TIMER_DEV(1), CLOCK_CORECLOCK/2 ,&arret_urgence,NULL);
  //timer_irq_enable(TIMER_DEV(1));
}

static void _init_pwm(void)
{
  pwm_init(PWM_DEV(0), PWM_LEFT, PWM_FREQ, PWM_RES);
  pwm_set(PWM_DEV(0),1,0);
  pwm_init(PWM_DEV(1), PWM_LEFT, PWM_FREQ, PWM_RES);
  pwm_set(PWM_DEV(1),1,0);
}



static void _init_interface(void)
{
  kernel_pid_t ifs[GNRC_NETIF_NUMOF];
  ipv6_addr_t addr = IPV6_ADDR_UNSPECIFIED;
  ipv6_addr_t tmp_addr= IPV6_ADDR_UNSPECIFIED;
  uint8_t hwaddr[MAX_ADDR_LEN];
  int res;
  
  gnrc_netif_get(ifs);
  
  //addresses gobales
  addr.u8[0] = 0xba;
  addr.u8[1] = 0xad;
  addr.u8[2] = 0xa5;
  addr.u8[3] = 0x55;
  
  res = gnrc_netapi_get(ifs[0], NETOPT_ADDRESS, 0, hwaddr, sizeof(hwaddr));
  
  if (res >= 0) {
    addr.u8[14] = *hwaddr;
    addr.u8[15] = *(hwaddr+1);
  }
  
  memcpy(tmp_addr.u8,addr.u8,IPV6_ADDR_BIT_LEN);
  
  gnrc_ipv6_netif_add_addr(ifs[0], &addr, 64, GNRC_IPV6_NETIF_ADDR_FLAGS_UNICAST);
  /* model ipv6 addr: dead:beef::Hwaddr */
  if((addr.u8[14]==0x17)&&(addr.u8[15]==0x02)){
    crea_rpl_dodag_root(1, addr);
    client=thread_create(sock_client_stack,sizeof(sock_client_stack),8,THREAD_CREATE_STACKTEST | THREAD_CREATE_WOUT_YIELD,sock_client_thread,NULL,"sock_client_thread");
    time_server=thread_create(sock_time_server_stack,sizeof(sock_time_server_stack),6,THREAD_CREATE_STACKTEST,sock_time_server_thread,NULL,"sock_time_server_thread");
  }else if((addr.u8[14]==0x17)&&(addr.u8[15]==0x36)){
    _init_timer();
    _init_pwm();
    xtimer_sleep(2);
    server=thread_create(sock_server_stack,sizeof(sock_server_stack),6,THREAD_CREATE_STACKTEST,sock_server_thread,NULL,"sock_server_thread");
  }else{
    puts("new node ?");
  }
}

static const shell_command_t shell_commands[] = {
  { NULL, NULL, NULL }
};


int main(void)
{
  msg_init_queue(_main_msg_queue, MAIN_QUEUE_SIZE);
  puts("RIOT network stack example application");
  
  _init_interface();
  
  /* start shell */
  puts("All up, running the shell now");
  char line_buf[SHELL_DEFAULT_BUFSIZE];
  
  shell_run(shell_commands, line_buf, SHELL_DEFAULT_BUFSIZE);
  /* should be never reached */
  return 0;
}