sha1.c
5.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
* Copyright (C) 2016 Oliver Hahm <oliver.hahm@inria.fr>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/* This code is public-domain - it is based on libcrypt
* placed in the public domain by Wei Dai and other contributors.
*/
/**
* @defgroup sys_hashes_sha1 SHA-1
* @ingroup sys_hashes
* @brief Implementation of the SHA-1 hashing function
* @{
*
* @file
* @brief SHA-1 interface definition
*
* @author Wei Dai and others
* @author Oliver Hahm <oliver.hahm@inria.fr>
*/
#include <stdint.h>
#include <string.h>
#include "hashes/sha1.h"
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
void sha1_init(sha1_context *ctx)
{
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xc3d2e1f0;
ctx->byte_count = 0;
ctx->buffer_offset = 0;
}
static uint32_t sha1_rol32(uint32_t number, uint8_t bits)
{
return ((number << bits) | (number >> (32 - bits)));
}
static void sha1_hash_block(sha1_context *s)
{
uint8_t i;
uint32_t a, b, c, d, e, t;
a = s->state[0];
b = s->state[1];
c = s->state[2];
d = s->state[3];
e = s->state[4];
for (i = 0; i < 80; i++) {
if (i >= 16) {
t = s->buffer[(i + 13) & 15] ^ s->buffer[(i + 8) & 15] ^
s->buffer[(i + 2) & 15] ^ s->buffer[i & 15];
s->buffer[i & 15] = sha1_rol32(t, 1);
}
if (i < 20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
}
else if (i < 40) {
t = (b ^ c ^ d) + SHA1_K20;
}
else if (i < 60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
}
else {
t = (b ^ c ^ d) + SHA1_K60;
}
t += sha1_rol32(a, 5) + e + s->buffer[i & 15];
e = d;
d = c;
c = sha1_rol32(b, 30);
b = a;
a = t;
}
s->state[0] += a;
s->state[1] += b;
s->state[2] += c;
s->state[3] += d;
s->state[4] += e;
}
static void sha1_add_uncounted(sha1_context *s, uint8_t data)
{
uint8_t *const b = (uint8_t *) s->buffer;
#ifdef __BIG_ENDIAN__
b[s->buffer_offset] = data;
#else
b[s->buffer_offset ^ 3] = data;
#endif
s->buffer_offset++;
if (s->buffer_offset == SHA1_BLOCK_LENGTH) {
sha1_hash_block(s);
s->buffer_offset = 0;
}
}
static void sha1_update_byte(sha1_context *ctx, uint8_t data)
{
++ctx->byte_count;
sha1_add_uncounted(ctx, data);
}
void sha1_update(sha1_context *ctx, const void *data, size_t len)
{
const uint8_t *d = data;
while (len--) {
sha1_update_byte(ctx, *(d++));
}
}
static void sha1_pad(sha1_context *s)
{
/* Implement SHA-1 padding (fips180-2 §5.1.1) */
/* Pad with 0x80 followed by 0x00 until the end of the block */
sha1_add_uncounted(s, 0x80);
while (s->buffer_offset != 56) {
sha1_add_uncounted(s, 0x00);
}
/* Append length in the last 8 bytes */
sha1_add_uncounted(s, 0); /* We're only using 32 bit lengths */
sha1_add_uncounted(s, 0); /* But SHA-1 supports 64 bit lengths */
sha1_add_uncounted(s, 0); /* So zero pad the top bits */
sha1_add_uncounted(s, s->byte_count >> 29); /* Shifting to multiply by 8 */
sha1_add_uncounted(s, s->byte_count >> 21); /* as SHA-1 supports bitstreams as well as */
sha1_add_uncounted(s, s->byte_count >> 13); /* byte. */
sha1_add_uncounted(s, s->byte_count >> 5);
sha1_add_uncounted(s, s->byte_count << 3);
}
void sha1_final(sha1_context *ctx, void *digest)
{
/* Pad to complete the last block */
sha1_pad(ctx);
/* Swap byte order back */
for (int i = 0; i < 5; i++) {
ctx->state[i] =
(((ctx->state[i]) << 24) & 0xff000000)
| (((ctx->state[i]) << 8) & 0x00ff0000)
| (((ctx->state[i]) >> 8) & 0x0000ff00)
| (((ctx->state[i]) >> 24) & 0x000000ff);
}
/* Copy the content of the hash (20 characters) */
memcpy(digest, ctx->state, 20);
}
void sha1(void *digest, const void *data, size_t len)
{
sha1_context ctx;
sha1_init(&ctx);
sha1_update(&ctx, (unsigned char *) data, len);
sha1_final(&ctx, digest);
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void sha1_init_hmac(sha1_context *ctx, const void *key, size_t key_length)
{
uint8_t i;
const uint8_t *k = key;
memset(ctx->key_buffer, 0, SHA1_BLOCK_LENGTH);
if (key_length > SHA1_BLOCK_LENGTH) {
/* Hash long keys */
sha1_init(ctx);
while (key_length--) {
sha1_update_byte(ctx, *k++);
}
sha1_final(ctx, ctx->key_buffer);
}
else {
/* Block length keys are used as is */
memcpy(ctx->key_buffer, key, key_length);
}
/* Start inner hash */
sha1_init(ctx);
for (i = 0; i < SHA1_BLOCK_LENGTH; i++) {
sha1_update_byte(ctx, ctx->key_buffer[i] ^ HMAC_IPAD);
}
}
void sha1_final_hmac(sha1_context *ctx, void *digest)
{
uint8_t i;
/* Complete inner hash */
sha1_final(ctx, ctx->inner_hash);
/* Calculate outer hash */
sha1_init(ctx);
for (i = 0; i < SHA1_BLOCK_LENGTH; i++) {
sha1_update_byte(ctx, ctx->key_buffer[i] ^ HMAC_OPAD);
}
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
sha1_update_byte(ctx, ctx->inner_hash[i]);
}
sha1_final(ctx, digest);
}