kw2xrf_getset.c
14.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/*
* Copyright (C) 2016 PHYTEC Messtechnik GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup drivers_kw2xrf
* @{
* @file
* @brief get/set functionality of kw2xrf driver
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Jonas Remmert <j.remmert@phytec.de>
* @author Oliver Hahm <oliver.hahm@inria.fr>
* @author Sebastian Meiling <s@mlng.net>
* @}
*/
#include "log.h"
#include "kw2xrf.h"
#include "kw2xrf_spi.h"
#include "kw2xrf_reg.h"
#include "kw2xrf_getset.h"
#include "kw2xrf_intern.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define KW2XRF_LQI_HW_MAX 230 /**< LQI Saturation Level */
/* Modem_PA_PWR Register (PA Power Control) has a valid range from 3-31 */
#define KW2XRF_PA_RANGE_MAX 31 /**< Maximum value of PA Power Control Register */
#define KW2XRF_PA_RANGE_MIN 3 /**< Minimum value of PA Power Control Register */
#define KW2XRF_NUM_CHANNEL (KW2XRF_MAX_CHANNEL - KW2XRF_MIN_CHANNEL + 1)
/* PLL integer and fractional lookup tables
*
* Fc = 2405 + 5(k - 11) , k = 11,12,...,26
*
* Equation for PLL frequency, MKW2xD Reference Manual, p.255 :
* F = ((PLL_INT0 + 64) + (PLL_FRAC0/65536))32MHz
*
*/
static const uint8_t pll_int_lt[16] = {
11, 11, 11, 11,
11, 11, 12, 12,
12, 12, 12, 12,
13, 13, 13, 13
};
static const uint16_t pll_frac_lt[16] = {
10240, 20480, 30720, 40960,
51200, 61440, 6144, 16384,
26624, 36864, 47104, 57344,
2048, 12288, 22528, 32768
};
static const uint8_t pow_lt[44] = {
3, 4, 4, 5,
6, 6, 7, 7,
8, 9, 9, 10,
11, 11, 12, 13,
13, 14, 14, 15,
16, 16, 17, 18,
18, 19, 20, 20,
21, 21, 22, 23,
23, 24, 25, 25,
26, 27, 27, 28,
28, 29, 30, 31
};
void kw2xrf_set_tx_power(kw2xrf_t *dev, int16_t txpower)
{
if (txpower > KW2XDRF_OUTPUT_POWER_MAX) {
txpower = KW2XDRF_OUTPUT_POWER_MAX;
}
if (txpower < KW2XDRF_OUTPUT_POWER_MIN) {
txpower = KW2XDRF_OUTPUT_POWER_MIN;
}
uint8_t level = pow_lt[txpower - KW2XDRF_OUTPUT_POWER_MIN];
kw2xrf_write_dreg(dev, MKW2XDM_PA_PWR, MKW2XDM_PA_PWR(level));
LOG_DEBUG("[kw2xrf] set txpower to: %d\n", txpower);
dev->tx_power = txpower;
}
uint16_t kw2xrf_get_txpower(kw2xrf_t *dev)
{
return dev->tx_power;
}
uint8_t kw2xrf_get_channel(kw2xrf_t *dev)
{
uint8_t pll_int = kw2xrf_read_dreg(dev, MKW2XDM_PLL_INT0);
uint16_t pll_frac = kw2xrf_read_dreg(dev, MKW2XDM_PLL_FRAC0_LSB);
pll_frac |= ((uint16_t)kw2xrf_read_dreg(dev, MKW2XDM_PLL_FRAC0_MSB) << 8);
for (unsigned i = 0; i < KW2XRF_NUM_CHANNEL; i++) {
if ((pll_frac_lt[i] == pll_frac) && (pll_int_lt[i] == pll_int)) {
return i + 11;
}
}
return 0;
}
static int kw2xrf_get_sequence(kw2xrf_t *dev)
{
int reg = 0;
reg = kw2xrf_read_dreg(dev, MKW2XDM_PHY_CTRL1);
reg &= MKW2XDM_PHY_CTRL1_XCVSEQ_MASK;
return reg;
}
int kw2xrf_set_channel(kw2xrf_t *dev, uint8_t channel)
{
/* Save old sequence to restore this state later */
uint8_t old_seq = kw2xrf_get_sequence(dev);
if (channel < KW2XRF_MIN_CHANNEL || channel > KW2XRF_MAX_CHANNEL) {
LOG_ERROR("[kw2xrf] Invalid channel %u\n", channel);
return -1;
}
if (old_seq) {
kw2xrf_abort_sequence(dev);
}
uint8_t tmp = channel - 11;
kw2xrf_write_dreg(dev, MKW2XDM_PLL_INT0, MKW2XDM_PLL_INT0_VAL(pll_int_lt[tmp]));
kw2xrf_write_dreg(dev, MKW2XDM_PLL_FRAC0_LSB, (uint8_t)pll_frac_lt[tmp]);
kw2xrf_write_dreg(dev, MKW2XDM_PLL_FRAC0_MSB, (uint8_t)(pll_frac_lt[tmp] >> 8));
dev->netdev.chan = channel;
if (old_seq) {
kw2xrf_set_sequence(dev, old_seq);
}
LOG_DEBUG("[kw2xrf] set channel to %u\n", channel);
return 0;
}
void kw2xrf_abort_sequence(kw2xrf_t *dev)
{
uint8_t regs[MKW2XDM_PHY_CTRL4 + 1];
kw2xrf_mask_irq_b(dev);
kw2xrf_read_dregs(dev, MKW2XDM_IRQSTS1, regs, (MKW2XDM_PHY_CTRL4 + 1));
if ((regs[MKW2XDM_PHY_CTRL1] & MKW2XDM_PHY_CTRL1_XCVSEQ_MASK) != XCVSEQ_IDLE) {
/* abort any ongoing sequence */
regs[MKW2XDM_PHY_CTRL1] &= ~(MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
kw2xrf_write_dreg(dev, MKW2XDM_PHY_CTRL1, regs[MKW2XDM_PHY_CTRL1]);
}
uint8_t state;
do {
state = kw2xrf_read_dreg(dev, MKW2XDM_SEQ_STATE);
DEBUG("[kw2xrf] abort SEQ_STATE: %x\n", state);
} while ((state & 0x1F) != 0);
/* clear all IRQ bits */
regs[MKW2XDM_IRQSTS1] = 0x7f;
regs[MKW2XDM_IRQSTS2] = 0x03;
regs[MKW2XDM_IRQSTS3] |= 0x0f;
kw2xrf_write_dregs(dev, MKW2XDM_IRQSTS1, regs, 3);
kw2xrf_enable_irq_b(dev);
}
/*
* Simplified version for irq handling where the state of
* the sequenz manager is known.
*/
void kw2xrf_set_idle_sequence(kw2xrf_t *dev)
{
kw2xrf_mask_irq_b(dev);
uint8_t reg = kw2xrf_read_dreg(dev, MKW2XDM_PHY_CTRL1);
/* reset sequenz manager */
reg &= ~(MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
kw2xrf_write_dreg(dev, MKW2XDM_PHY_CTRL1, reg);
if (dev->pending_tx) {
DEBUG("[kw2xrf] pending tx, cannot set idle sequenz\n");
return;
}
/* start new sequenz */
reg |= MKW2XDM_PHY_CTRL1_XCVSEQ(dev->idle_state);
kw2xrf_write_dreg(dev, MKW2XDM_PHY_CTRL1, reg);
switch (dev->idle_state) {
case XCVSEQ_IDLE:
/* for inexplicable reasons, the receive mode is also idle mode */
case XCVSEQ_RECEIVE:
dev->state = NETOPT_STATE_IDLE;
break;
case XCVSEQ_CONTINUOUS_CCA:
case XCVSEQ_CCA:
dev->state = NETOPT_STATE_RX;
break;
case XCVSEQ_TRANSMIT:
case XCVSEQ_TX_RX:
dev->state = NETOPT_STATE_TX;
break;
default:
dev->state = NETOPT_STATE_IDLE;
}
kw2xrf_enable_irq_b(dev);
}
void kw2xrf_set_sequence(kw2xrf_t *dev, kw2xrf_physeq_t seq)
{
uint8_t reg = 0;
kw2xrf_abort_sequence(dev);
switch (seq) {
case XCVSEQ_IDLE:
/* for inexplicable reasons, the receive mode is also idle mode */
case XCVSEQ_RECEIVE:
dev->state = NETOPT_STATE_IDLE;
break;
case XCVSEQ_CONTINUOUS_CCA:
case XCVSEQ_CCA:
dev->state = NETOPT_STATE_RX;
break;
case XCVSEQ_TRANSMIT:
case XCVSEQ_TX_RX:
dev->state = NETOPT_STATE_TX;
break;
default:
DEBUG("[kw2xrf] undefined state assigned to phy\n");
dev->state = NETOPT_STATE_IDLE;
}
DEBUG("[kw2xrf] set sequence to %i\n", seq);
reg = kw2xrf_read_dreg(dev, MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
reg |= MKW2XDM_PHY_CTRL1_XCVSEQ(seq);
kw2xrf_write_dreg(dev, MKW2XDM_PHY_CTRL1, reg);
}
void kw2xrf_set_pan(kw2xrf_t *dev, uint16_t pan)
{
dev->netdev.pan = pan;
uint8_t val_ar[2];
val_ar[1] = (pan >> 8);
val_ar[0] = (uint8_t)pan;
kw2xrf_write_iregs(dev, MKW2XDMI_MACPANID0_LSB, val_ar, 2);
LOG_DEBUG("[kw2xrf] set pan to: 0x%x\n", pan);
dev->netdev.pan = pan;
}
void kw2xrf_set_addr_short(kw2xrf_t *dev, uint16_t addr)
{
uint8_t val_ar[2];
val_ar[0] = (addr >> 8);
val_ar[1] = (uint8_t)addr;
dev->netdev.short_addr[0] = val_ar[1];
dev->netdev.short_addr[1] = val_ar[0];
#ifdef MODULE_SIXLOWPAN
/* https://tools.ietf.org/html/rfc4944#section-12 requires the first bit to
* 0 for unicast addresses */
dev->netdev.short_addr[1] &= 0x7F;
#endif
kw2xrf_write_iregs(dev, MKW2XDMI_MACSHORTADDRS0_LSB, val_ar,
IEEE802154_SHORT_ADDRESS_LEN);
}
void kw2xrf_set_addr_long(kw2xrf_t *dev, uint64_t addr)
{
uint64_t tmp;
uint8_t *ap = (uint8_t *)(&tmp);
for (unsigned i = 0; i < IEEE802154_LONG_ADDRESS_LEN; i++) {
dev->netdev.long_addr[i] = (uint8_t)(addr >> (i * 8));
ap[i] = (addr >> ((IEEE802154_LONG_ADDRESS_LEN - 1 - i) * 8));
}
kw2xrf_write_iregs(dev, MKW2XDMI_MACLONGADDRS0_0, ap,
IEEE802154_LONG_ADDRESS_LEN);
}
uint16_t kw2xrf_get_addr_short(kw2xrf_t *dev)
{
return (dev->netdev.short_addr[0] << 8) | dev->netdev.short_addr[1];
}
uint64_t kw2xrf_get_addr_long(kw2xrf_t *dev)
{
uint64_t addr;
uint8_t *ap = (uint8_t *)(&addr);
kw2xrf_read_iregs(dev, MKW2XDMI_MACLONGADDRS0_0, ap,
IEEE802154_LONG_ADDRESS_LEN);
return addr;
}
int8_t kw2xrf_get_cca_threshold(kw2xrf_t *dev)
{
uint8_t tmp;
kw2xrf_read_iregs(dev, MKW2XDMI_CCA1_THRESH, &tmp, 1);
/* KW2x register value represents absolute value in dBm
* default value: -75 dBm
*/
return (-tmp);
}
void kw2xrf_set_cca_threshold(kw2xrf_t *dev, int8_t value)
{
/* normalize to absolute value */
if (value < 0) {
value = -value;
}
kw2xrf_write_iregs(dev, MKW2XDMI_CCA1_THRESH, (uint8_t*)&value, 1);
}
void kw2xrf_set_cca_mode(kw2xrf_t *dev, uint8_t mode)
{
uint8_t tmp;
tmp = kw2xrf_read_dreg(dev, MKW2XDM_PHY_CTRL4);
tmp &= ~MKW2XDM_PHY_CTRL4_CCATYPE_MASK;
tmp |= MKW2XDM_PHY_CTRL4_CCATYPE(mode);
kw2xrf_write_dreg(dev, MKW2XDM_PHY_CTRL4, tmp);
}
uint8_t kw2xrf_get_cca_mode(kw2xrf_t *dev)
{
uint8_t tmp;
tmp = kw2xrf_read_dreg(dev, MKW2XDM_PHY_CTRL4);
return (tmp & MKW2XDM_PHY_CTRL4_CCATYPE_MASK) >> MKW2XDM_PHY_CTRL4_CCATYPE_SHIFT;
}
uint32_t kw2xrf_get_rssi(uint32_t value)
{
/* Get rssi (Received Signal Strength Indicator, unit is dBm)
* from lqi (Link Quality Indicator) value.
* There are two different equations for RSSI:
* RF = (LQI - 286.6) / 2.69333 (MKW2xD Reference Manual)
* RF = (LQI - 295.4) / 2.84 (MCR20A Reference Manual)
* The last appears more to match the graphic (Figure 3-10).
* Since RSSI value is always positive and we want to
* avoid the floating point computation:
* -RF * 65536 = (LQI / 2.84 - 295.4 / 2.84) * 65536
* RF * 65536 = (295.4 * 65536 / 2.84) - (LQI * 65536 / 2.84)
*/
uint32_t a = (uint32_t)(295.4 * 65536 / 2.84);
uint32_t b = (uint32_t)(65536 / 2.84);
return (a - (b * value)) >> 16;
}
void kw2xrf_set_option(kw2xrf_t *dev, uint16_t option, bool state)
{
DEBUG("[kw2xrf] set option %i to %i\n", option, state);
/* set option field */
if (state) {
dev->netdev.flags |= option;
/* trigger option specific actions */
switch (option) {
case KW2XRF_OPT_AUTOCCA:
LOG_DEBUG("[kw2xrf] opt: enabling CCA before TX mode\n");
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_CCABFRTX);
break;
case KW2XRF_OPT_PROMISCUOUS:
LOG_DEBUG("[kw2xrf] opt: enabling PROMISCUOUS mode\n");
/* disable auto ACKs in promiscuous mode */
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_AUTOACK | MKW2XDM_PHY_CTRL1_RXACKRQD);
/* enable promiscuous mode */
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL4,
MKW2XDM_PHY_CTRL4_PROMISCUOUS);
break;
case KW2XRF_OPT_AUTOACK:
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_AUTOACK);
break;
case KW2XRF_OPT_ACK_REQ:
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_RXACKRQD);
break;
case KW2XRF_OPT_TELL_RX_START:
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL2,
MKW2XDM_PHY_CTRL2_RX_WMRK_MSK);
break;
case KW2XRF_OPT_TELL_RX_END:
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL2,
MKW2XDM_PHY_CTRL2_RXMSK);
break;
case KW2XRF_OPT_TELL_TX_END:
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL2,
MKW2XDM_PHY_CTRL2_TXMSK);
break;
case KW2XRF_OPT_TELL_TX_START:
default:
/* do nothing */
break;
}
}
else {
dev->netdev.flags &= ~(option);
/* trigger option specific actions */
switch (option) {
case KW2XRF_OPT_AUTOCCA:
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_CCABFRTX);
break;
case KW2XRF_OPT_PROMISCUOUS:
/* disable promiscuous mode */
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL4,
MKW2XDM_PHY_CTRL4_PROMISCUOUS);
/* re-enable AUTOACK only if the option is set */
if (dev->netdev.flags & KW2XRF_OPT_AUTOACK) {
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_AUTOACK);
}
if (dev->netdev.flags & KW2XRF_OPT_ACK_REQ) {
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_RXACKRQD);
}
break;
case KW2XRF_OPT_AUTOACK:
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_AUTOACK);
break;
case KW2XRF_OPT_ACK_REQ:
kw2xrf_clear_dreg_bit(dev, MKW2XDM_PHY_CTRL1,
MKW2XDM_PHY_CTRL1_RXACKRQD);
break;
case KW2XRF_OPT_TELL_RX_START:
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL2,
MKW2XDM_PHY_CTRL2_RX_WMRK_MSK);
break;
case KW2XRF_OPT_TELL_RX_END:
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL2,
MKW2XDM_PHY_CTRL2_RXMSK);
break;
case KW2XRF_OPT_TELL_TX_END:
kw2xrf_set_dreg_bit(dev, MKW2XDM_PHY_CTRL2,
MKW2XDM_PHY_CTRL2_TXMSK);
break;
case KW2XRF_OPT_TELL_TX_START:
default:
/* do nothing */
break;
}
}
}
netopt_state_t kw2xrf_get_status(kw2xrf_t *dev)
{
uint8_t reg = kw2xrf_read_dreg(dev, MKW2XDM_PHY_CTRL1);
switch (reg & MKW2XDM_PHY_CTRL1_XCVSEQ_MASK) {
case XCVSEQ_RECEIVE:
return NETOPT_STATE_RX;
case XCVSEQ_TRANSMIT:
return NETOPT_STATE_TX;
case XCVSEQ_CCA:
return NETOPT_STATE_RX;
case XCVSEQ_TX_RX:
return NETOPT_STATE_TX;
case XCVSEQ_CONTINUOUS_CCA:
return NETOPT_STATE_RX;
case XCVSEQ_IDLE:
return NETOPT_STATE_IDLE;
default:
break;
}
return NETOPT_STATE_IDLE;
}
int kw2xrf_cca(kw2xrf_t *dev)
{
/* TODO: add Standalone CCA here */
kw2xrf_seq_timeout_on(dev, 0x3ffff);
kw2xrf_set_sequence(dev, XCVSEQ_CONTINUOUS_CCA);
return 0;
}
void kw2xrf_set_rx_watermark(kw2xrf_t *dev, uint8_t value)
{
kw2xrf_write_iregs(dev, MKW2XDMI_RX_WTR_MARK, &value, 1);
}