timer.c
19.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/*
* Copyright (C) 2016 Eistec AB
* Copyright (C) 2014 Freie Universität Berlin
* Copyright (C) 2014-2015 PHYTEC Messtechnik GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_kinetis_common
* @ingroup drivers_periph_timer
*
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Johann Fischer <j.fischer@phytec.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include <stdlib.h>
#include "cpu.h"
#include "bit.h"
#include "board.h"
#include "periph_conf.h"
#include "periph/timer.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define PIT_MAX_VALUE (PIT_LDVAL_TSV_MASK >> PIT_LDVAL_TSV_SHIFT)
#define LPTMR_MAX_VALUE (LPTMR_CNR_COUNTER_MASK >> LPTMR_CNR_COUNTER_SHIFT)
#if TIMER_NUMOF != (PIT_NUMOF + LPTMR_NUMOF)
#error TIMER_NUMOF should be the total of PIT and LPTMR timers in the system
#endif
/*
* The RTC prescaler will normally count to 32767 every second unless configured
* otherwise through the time compensation register.
*/
#define TIMER_RTC_SUBTICK_MAX (0x7fff)
/*
* Number of bits in the ideal RTC prescaler counter
*/
#define TIMER_RTC_SUBTICK_BITS (15)
/**
* @brief The number of ticks that will be lost when setting a new target in the LPTMR
*
* The counter will otherwise drop ticks when setting new timeouts.
*/
#define LPTMR_RELOAD_OVERHEAD 2
/**
* @brief Base clock frequency of the LPTMR module
*/
/* The LPTMR implementation is hard-coded to use ER32KCLK */
#define LPTMR_BASE_FREQ (32768ul)
/* PIT channel state */
typedef struct {
timer_isr_ctx_t isr_ctx;
uint32_t count;
uint32_t tctrl;
uint32_t ldval;
} pit_t;
/* LPTMR state */
typedef struct {
timer_isr_ctx_t isr_ctx;
uint32_t csr;
uint32_t cmr;
uint32_t running;
uint16_t reference;
uint16_t rtt_offset;
} lptmr_t;
static const pit_conf_t pit_config[PIT_NUMOF] = PIT_CONFIG;
static const lptmr_conf_t lptmr_config[LPTMR_NUMOF] = LPTMR_CONFIG;
static pit_t pit[PIT_NUMOF];
static lptmr_t lptmr[LPTMR_NUMOF];
/**
* @brief Find out whether a given timer is a LPTMR or a PIT timer
*/
static inline unsigned int _timer_variant(tim_t dev) {
if ((unsigned int) dev >= PIT_NUMOF) {
return TIMER_LPTMR;
}
else {
return TIMER_PIT;
}
}
/**
* @brief Find device index in the pit_config array
*/
static inline unsigned int _pit_index(tim_t dev) {
return ((unsigned int)dev) - TIMER_DEV(0);
}
/**
* @brief Get TIMER_x enum value from PIT device index
*/
static inline tim_t _pit_tim_t(uint8_t dev) {
return (tim_t)(((unsigned int)TIMER_DEV(0)) + dev);
}
/**
* @brief Find device index in the lptmr_config array
*/
static inline unsigned int _lptmr_index(tim_t dev) {
return ((unsigned int)dev) - TIMER_DEV(0) - PIT_NUMOF;
}
/**
* @brief Get TIMER_x enum value from LPTMR device index
*/
static inline tim_t _lptmr_tim_t(uint8_t dev) {
return (tim_t)(((unsigned int)TIMER_DEV(0)) + PIT_NUMOF + dev);
}
/* ****** PIT module functions ****** */
/* Forward declarations */
inline static int pit_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg);
inline static int pit_set(uint8_t dev, uint32_t timeout);
inline static int pit_set_absolute(uint8_t dev, uint32_t target);
inline static int pit_clear(uint8_t dev);
inline static uint32_t pit_read(uint8_t dev);
inline static void pit_start(uint8_t dev);
inline static void pit_stop(uint8_t dev);
inline static void pit_irq_handler(tim_t dev);
inline static void _pit_set_cb_config(uint8_t dev, timer_cb_t cb, void *arg)
{
/* set callback function */
pit[dev].isr_ctx.cb = cb;
pit[dev].isr_ctx.arg = arg;
}
/** use channel n-1 as prescaler */
inline static void _pit_set_prescaler(uint8_t ch, uint32_t freq)
{
/* Disable channel completely */
PIT->CHANNEL[ch].TCTRL = 0x0;
PIT->CHANNEL[ch].LDVAL = (PIT_BASECLOCK / freq) - 1;
/* Start the prescaler counter immediately */
PIT->CHANNEL[ch].TCTRL = (PIT_TCTRL_TEN_MASK);
}
inline static void _pit_set_counter(uint8_t dev)
{
const uint8_t ch = pit_config[dev].count_ch;
/* Disable channel completely */
PIT->CHANNEL[ch].TCTRL = 0x0;
PIT->CHANNEL[ch].LDVAL = pit[dev].ldval;
PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;
/* Restore previous timer state */
PIT->CHANNEL[ch].TCTRL = pit[dev].tctrl;
}
inline static int pit_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg)
{
/* Turn on module clock gate */
PIT_CLKEN();
/* Completely disable the module before messing with the settings */
PIT->MCR = PIT_MCR_MDIS_MASK;
/* Disable IRQs to avoid race with ISR */
unsigned int mask = irq_disable();
/* Clear configuration */
PIT->CHANNEL[pit_config[dev].count_ch].TCTRL = 0;
/* Freeze timers during debug break, resume normal operations (clear MDIS) */
PIT->MCR = PIT_MCR_FRZ_MASK;
_pit_set_cb_config(dev, cb, arg);
/* Clear IRQ flag */
PIT->CHANNEL[pit_config[dev].count_ch].TFLG = PIT_TFLG_TIF_MASK;
/* Refactor the below lines if there are any CPUs where the PIT IRQs are not sequential */
NVIC_ClearPendingIRQ(PIT0_IRQn + pit_config[dev].count_ch);
NVIC_EnableIRQ(PIT0_IRQn + pit_config[dev].count_ch);
/* Reset up-counter */
pit[dev].count = PIT_MAX_VALUE;
pit[dev].ldval = PIT_MAX_VALUE;
pit[dev].tctrl = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
_pit_set_prescaler(pit_config[dev].prescaler_ch, freq);
_pit_set_counter(dev);
irq_restore(mask);
return 0;
}
inline static int pit_set(uint8_t dev, uint32_t timeout)
{
const uint8_t ch = pit_config[dev].count_ch;
/* Disable IRQs to minimize the number of lost ticks */
unsigned int mask = irq_disable();
pit[dev].ldval = timeout;
pit[dev].tctrl = PIT_TCTRL_TIE_MASK | PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
/* Add the new timeout offset to the up-counter */
pit[dev].count += timeout;
if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
/* Timer is currently running */
uint32_t cval = PIT->CHANNEL[ch].CVAL;
/* Subtract if there was anything left on the counter */
pit[dev].count -= cval;
_pit_set_counter(dev);
}
irq_restore(mask);
return 0;
}
inline static int pit_set_absolute(uint8_t dev, uint32_t target)
{
uint8_t ch = pit_config[dev].count_ch;
/* Disable IRQs to minimize the number of lost ticks */
unsigned int mask = irq_disable();
uint32_t now = pit_read(dev);
uint32_t offset = target - now;
pit[dev].ldval = offset;
pit[dev].tctrl = PIT_TCTRL_TIE_MASK | PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
/* Set the new target time in the up-counter */
pit[dev].count = target;
if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
_pit_set_counter(dev);
}
irq_restore(mask);
return 0;
}
inline static int pit_clear(uint8_t dev)
{
uint8_t ch = pit_config[dev].count_ch;
/* Disable IRQs to minimize the number of lost ticks */
unsigned int mask = irq_disable();
pit[dev].ldval = PIT_MAX_VALUE;
pit[dev].tctrl = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
/* pit[dev].count += PIT_MAX_VALUE + 1; */ /* == 0 (mod 2**32) */
if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
/* Timer is currently running */
uint32_t cval = PIT->CHANNEL[ch].CVAL;
/* Subtract if there was anything left on the counter */
pit[dev].count -= cval;
/* Set a long timeout */
_pit_set_counter(ch);
}
irq_restore(mask);
return 0;
}
inline static uint32_t pit_read(uint8_t dev)
{
uint8_t ch = pit_config[dev].count_ch;
if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
/* Timer running */
return pit[dev].count - PIT->CHANNEL[ch].CVAL;
}
else {
/* Timer stopped */
return pit[dev].count;
}
}
inline static void pit_start(uint8_t dev)
{
uint8_t ch = pit_config[dev].count_ch;
if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
/* Already running */
return;
}
PIT->CHANNEL[ch].LDVAL = pit[dev].ldval;
pit[dev].count += pit[dev].ldval;
PIT->CHANNEL[ch].TCTRL = pit[dev].tctrl;
}
inline static void pit_stop(uint8_t dev)
{
uint8_t ch = pit_config[dev].count_ch;
if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) == 0) {
/* Already stopped */
return;
}
uint32_t cval = PIT->CHANNEL[ch].CVAL;
pit[dev].tctrl = PIT->CHANNEL[ch].TCTRL;
PIT->CHANNEL[ch].TCTRL = 0;
pit[dev].count -= cval;
pit[dev].ldval = cval;
}
inline static void pit_irq_handler(tim_t dev)
{
uint8_t ch = pit_config[_pit_index(dev)].count_ch;
pit_t *pit_ctx = &pit[_pit_index(dev)];
pit_ctx->ldval = PIT_MAX_VALUE;
pit_ctx->count += PIT_MAX_VALUE;
pit_ctx->tctrl = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
_pit_set_counter(_pit_index(dev));
if (pit_ctx->isr_ctx.cb != NULL) {
pit_ctx->isr_ctx.cb(pit_ctx->isr_ctx.arg, 0);
}
PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;
cortexm_isr_end();
}
/* ****** LPTMR module functions ****** */
/* Forward declarations */
inline static int lptmr_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg);
inline static int lptmr_set(uint8_t dev, uint16_t timeout);
inline static int lptmr_set_absolute(uint8_t dev, uint16_t target);
inline static int lptmr_clear(uint8_t dev);
inline static uint16_t lptmr_read(uint8_t dev);
inline static void lptmr_start(uint8_t dev);
inline static void lptmr_stop(uint8_t dev);
inline static void lptmr_irq_handler(tim_t tim);
/**
* @brief Read the prescaler register from the RTC as a reliable 47 bit time counter
*/
inline static uint32_t _rtt_get_subtick(void)
{
uint32_t tpr;
uint32_t tsr;
for (int i = 0; i < 5; i++) {
/* Read twice to make sure we get a stable reading */
tpr = RTC->TPR & RTC_TPR_TPR_MASK;
tsr = RTC->TSR & RTC_TSR_TSR_MASK;
if ((tsr == (RTC->TSR & RTC_TSR_TSR_MASK)) &&
(tpr == (RTC->TPR & RTC_TPR_TPR_MASK))) {
break;
}
}
if (tpr > TIMER_RTC_SUBTICK_MAX) {
/* This only happens if the RTC time compensation value has been
* modified to compensate for RTC drift. See Kinetis ref.manual,
* RTC Time Compensation Register (RTC_TCR).
*/
tpr = TIMER_RTC_SUBTICK_MAX;
}
return (tsr << TIMER_RTC_SUBTICK_BITS) | tpr;
}
inline static void _lptmr_set_cb_config(uint8_t dev, timer_cb_t cb, void *arg)
{
/* set callback function */
lptmr[dev].isr_ctx.cb = cb;
lptmr[dev].isr_ctx.arg = arg;
}
/**
* @brief Compute the LPTMR prescaler setting, see reference manual for details
*/
inline static int32_t _lptmr_compute_prescaler(uint32_t freq) {
uint32_t prescale = 0;
if ((freq > LPTMR_BASE_FREQ) || (freq == 0)) {
/* Frequency out of range */
return -1;
}
while (freq < LPTMR_BASE_FREQ){
++prescale;
freq <<= 1;
}
if (freq != LPTMR_BASE_FREQ) {
/* freq was not a power of two division of LPTMR_BASE_FREQ */
return -2;
}
if (prescale > 0) {
/* LPTMR_PSR_PRESCALE == 0 yields LPTMR_BASE_FREQ/2,
* LPTMR_PSR_PRESCALE == 1 yields LPTMR_BASE_FREQ/4 etc.. */
return LPTMR_PSR_PRESCALE(prescale - 1);
}
else {
/* Prescaler bypass enabled */
return LPTMR_PSR_PBYP_MASK;
}
}
/**
* @brief Update the offset between RTT and LPTMR
*/
inline static void _lptmr_update_rtt_offset(uint8_t dev)
{
lptmr[dev].rtt_offset = _rtt_get_subtick();
}
/**
* @brief Update the reference time point (CNR=0)
*/
inline static void _lptmr_update_reference(uint8_t dev)
{
lptmr[dev].reference = _rtt_get_subtick() + LPTMR_RELOAD_OVERHEAD - lptmr[dev].rtt_offset;
}
inline static void _lptmr_set_counter(uint8_t dev)
{
_lptmr_update_reference(dev);
LPTMR_Type *hw = lptmr_config[dev].dev;
hw->CSR = 0;
hw->CMR = lptmr[dev].cmr;
/* restore saved state */
hw->CSR = lptmr[dev].csr;
}
inline static int lptmr_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg)
{
int32_t prescale = _lptmr_compute_prescaler(freq);
if (prescale < 0) {
return -1;
}
LPTMR_Type *hw = lptmr_config[dev].dev;
/* Disable IRQs to avoid race with ISR */
unsigned int mask = irq_disable();
/* Turn on module clock */
LPTMR_CLKEN();
/* Completely disable the module before messing with the settings */
hw->CSR = 0;
/* select ERCLK32K as clock source for LPTMR */
hw->PSR = LPTMR_PSR_PCS(2) | ((uint32_t)prescale);
/* Clear IRQ flag in case it was already set */
hw->CSR = LPTMR_CSR_TCF_MASK;
/* Enable IRQs on the counting channel */
NVIC_ClearPendingIRQ(lptmr_config[dev].irqn);
NVIC_EnableIRQ(lptmr_config[dev].irqn);
_lptmr_set_cb_config(dev, cb, arg);
/* Reset state */
_lptmr_update_rtt_offset(dev);
lptmr[dev].running = 1;
lptmr_clear(dev);
irq_restore(mask);
return 0;
}
inline static uint16_t lptmr_read(uint8_t dev)
{
LPTMR_Type *hw = lptmr_config[dev].dev;
/* latch the current timer value into CNR */
hw->CNR = 0;
return lptmr[dev].reference + hw->CNR;
}
inline static int lptmr_set(uint8_t dev, uint16_t timeout)
{
/* Disable IRQs to minimize jitter */
unsigned int mask = irq_disable();
lptmr[dev].cmr = timeout;
/* Enable interrupt, enable timer */
lptmr[dev].csr = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TIE_MASK;
if (lptmr[dev].running != 0) {
/* Timer is currently running */
/* Set new target */
_lptmr_set_counter(dev);
}
irq_restore(mask);
return 0;
}
inline static int lptmr_set_absolute(uint8_t dev, uint16_t target)
{
/* Disable IRQs to minimize jitter */
unsigned int mask = irq_disable();
uint16_t offset = target - lptmr[dev].reference;
lptmr[dev].cmr = offset;
/* Enable interrupt, enable timer */
lptmr[dev].csr = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TIE_MASK;
if (lptmr[dev].running != 0) {
/* Timer is currently running */
/* Set new target */
_lptmr_set_counter(dev);
}
irq_restore(mask);
return 0;
}
inline static int lptmr_clear(uint8_t dev)
{
/* Disable IRQs to minimize jitter */
unsigned int mask = irq_disable();
lptmr[dev].cmr = LPTMR_MAX_VALUE;
/* Disable interrupt, enable timer */
lptmr[dev].csr = LPTMR_CSR_TEN_MASK;
if (lptmr[dev].running != 0) {
/* Timer is currently running */
/* Set new target */
_lptmr_set_counter(dev);
}
irq_restore(mask);
return 0;
}
inline static void lptmr_start(uint8_t dev)
{
if (lptmr[dev].running != 0) {
/* Timer already running */
return;
}
lptmr[dev].running = 1;
_lptmr_set_counter(dev);
}
inline static void lptmr_stop(uint8_t dev)
{
if (lptmr[dev].running == 0) {
/* Timer already stopped */
return;
}
/* Disable IRQs to avoid race with ISR */
unsigned int mask = irq_disable();
lptmr[dev].running = 0;
LPTMR_Type *hw = lptmr_config[dev].dev;
/* latch the current timer value into CNR */
hw->CNR = 12345;
uint16_t cnr = hw->CNR;
lptmr[dev].cmr = hw->CMR - cnr;
lptmr[dev].csr = hw->CSR;
_lptmr_update_reference(dev);
/* Disable counter and clear interrupt flag */
hw->CSR = LPTMR_CSR_TCF_MASK;
/* Clear any pending IRQ */
NVIC_ClearPendingIRQ(lptmr_config[dev].irqn);
irq_restore(mask);
}
inline static void lptmr_irq_handler(tim_t tim)
{
uint8_t dev = _lptmr_index(tim);
LPTMR_Type *hw = lptmr_config[dev].dev;
lptmr_t *lptmr_ctx = &lptmr[dev];
lptmr_ctx->cmr = LPTMR_MAX_VALUE;
_lptmr_set_counter(dev);
if (lptmr_ctx->isr_ctx.cb != NULL) {
lptmr_ctx->isr_ctx.cb(lptmr_ctx->isr_ctx.arg, 0);
}
/* Clear interrupt flag */
bit_set32(&hw->CSR, LPTMR_CSR_TCF_SHIFT);
cortexm_isr_end();
}
/* ****** Common timer API functions ****** */
int timer_init(tim_t dev, unsigned long freq, timer_cb_t cb, void *arg)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_init(_pit_index(dev), freq, cb, arg);
case TIMER_LPTMR:
return lptmr_init(_lptmr_index(dev), freq, cb, arg);
default:
return -1;
}
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
if (channel != 0) {
/* only one channel is supported */
return -1;
}
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_set(_pit_index(dev), timeout);
case TIMER_LPTMR:
return lptmr_set(_lptmr_index(dev), timeout);
default:
return -1;
}
}
int timer_set_absolute(tim_t dev, int channel, unsigned int target)
{
if (channel != 0) {
/* only one channel is supported */
return -1;
}
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_set_absolute(_pit_index(dev), target);
case TIMER_LPTMR:
return lptmr_set_absolute(_lptmr_index(dev), target);;
default:
return -1;
}
return 0;
}
int timer_clear(tim_t dev, int channel)
{
if (channel != 0) {
/* only one channel is supported */
return -1;
}
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_clear(_pit_index(dev));
case TIMER_LPTMR:
return lptmr_clear(_lptmr_index(dev));
default:
return -1;
}
return 0;
}
unsigned int timer_read(tim_t dev)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return 0;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_read(_pit_index(dev));
case TIMER_LPTMR:
return lptmr_read(_lptmr_index(dev));
default:
return 0;
}
}
void timer_start(tim_t dev)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
pit_start(_pit_index(dev));
return;
case TIMER_LPTMR:
lptmr_start(_lptmr_index(dev));
return;
default:
return;
}
}
void timer_stop(tim_t dev)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
pit_stop(_pit_index(dev));
return;
case TIMER_LPTMR:
lptmr_stop(_lptmr_index(dev));
return;
default:
return;
}
}
/* ****** ISR instances ****** */
#ifdef PIT_ISR_0
void PIT_ISR_0(void)
{
pit_irq_handler(_pit_tim_t(0));
}
#endif
#ifdef PIT_ISR_1
void PIT_ISR_1(void)
{
pit_irq_handler(_pit_tim_t(1));
}
#endif
#ifdef PIT_ISR_2
void PIT_ISR_2(void)
{
pit_irq_handler(_pit_tim_t(2));
}
#endif
#ifdef PIT_ISR_3
void PIT_ISR_3(void)
{
pit_irq_handler(_pit_tim_t(3));
}
#endif
#ifdef LPTMR_ISR_0
void LPTMR_ISR_0(void)
{
lptmr_irq_handler(_lptmr_tim_t(0));
}
#endif
#ifdef LPTMR_ISR_1
void LPTMR_ISR_1(void)
{
lptmr_irq_handler(_lptmr_tim_t(1));
}
#endif