timer.c 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Copyright (C) 2016 Eistec AB
 * Copyright (C) 2014 Freie Universität Berlin
 * Copyright (C) 2014-2015 PHYTEC Messtechnik GmbH
 *
 * This file is subject to the terms and conditions of the GNU Lesser General
 * Public License v2.1. See the file LICENSE in the top level directory for more
 * details.
 */

/**
 * @ingroup     cpu_kinetis_common
 * @ingroup     drivers_periph_timer
 *
 * @{
 *
 * @file
 * @brief       Low-level timer driver implementation
 *
 * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
 * @author      Johann Fischer <j.fischer@phytec.de>
 * @author      Joakim Nohlgård <joakim.nohlgard@eistec.se>
 *
 * @}
 */

#include <stdlib.h>

#include "cpu.h"
#include "bit.h"
#include "board.h"
#include "periph_conf.h"
#include "periph/timer.h"

#define ENABLE_DEBUG (0)
#include "debug.h"

#define PIT_MAX_VALUE     (PIT_LDVAL_TSV_MASK >> PIT_LDVAL_TSV_SHIFT)
#define LPTMR_MAX_VALUE   (LPTMR_CNR_COUNTER_MASK >> LPTMR_CNR_COUNTER_SHIFT)

#if TIMER_NUMOF != (PIT_NUMOF + LPTMR_NUMOF)
#error TIMER_NUMOF should be the total of PIT and LPTMR timers in the system
#endif

/*
 * The RTC prescaler will normally count to 32767 every second unless configured
 * otherwise through the time compensation register.
 */
#define TIMER_RTC_SUBTICK_MAX (0x7fff)
/*
 * Number of bits in the ideal RTC prescaler counter
 */
#define TIMER_RTC_SUBTICK_BITS (15)

/**
 * @brief  The number of ticks that will be lost when setting a new target in the LPTMR
 *
 * The counter will otherwise drop ticks when setting new timeouts.
 */
#define LPTMR_RELOAD_OVERHEAD 2

/**
 * @brief  Base clock frequency of the LPTMR module
 */
/* The LPTMR implementation is hard-coded to use ER32KCLK */
#define LPTMR_BASE_FREQ (32768ul)

/* PIT channel state */
typedef struct {
    timer_isr_ctx_t isr_ctx;
    uint32_t count;
    uint32_t tctrl;
    uint32_t ldval;
} pit_t;

/* LPTMR state */
typedef struct {
    timer_isr_ctx_t isr_ctx;
    uint32_t csr;
    uint32_t cmr;
    uint32_t running;
    uint16_t reference;
    uint16_t rtt_offset;
} lptmr_t;

static const pit_conf_t pit_config[PIT_NUMOF] = PIT_CONFIG;
static const lptmr_conf_t lptmr_config[LPTMR_NUMOF] = LPTMR_CONFIG;

static pit_t pit[PIT_NUMOF];
static lptmr_t lptmr[LPTMR_NUMOF];

/**
 * @brief  Find out whether a given timer is a LPTMR or a PIT timer
 */
static inline unsigned int _timer_variant(tim_t dev) {
    if ((unsigned int) dev >= PIT_NUMOF) {
        return TIMER_LPTMR;
    }
    else {
        return TIMER_PIT;
    }
}

/**
 * @brief  Find device index in the pit_config array
 */
static inline unsigned int _pit_index(tim_t dev) {
    return ((unsigned int)dev) - TIMER_DEV(0);
}

/**
 * @brief  Get TIMER_x enum value from PIT device index
 */
static inline tim_t _pit_tim_t(uint8_t dev) {
    return (tim_t)(((unsigned int)TIMER_DEV(0)) + dev);
}

/**
 * @brief  Find device index in the lptmr_config array
 */
static inline unsigned int _lptmr_index(tim_t dev) {
    return ((unsigned int)dev) - TIMER_DEV(0) - PIT_NUMOF;
}

/**
 * @brief  Get TIMER_x enum value from LPTMR device index
 */
static inline tim_t _lptmr_tim_t(uint8_t dev) {
    return (tim_t)(((unsigned int)TIMER_DEV(0)) + PIT_NUMOF + dev);
}

/* ****** PIT module functions ****** */

/* Forward declarations */
inline static int pit_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg);
inline static int pit_set(uint8_t dev, uint32_t timeout);
inline static int pit_set_absolute(uint8_t dev, uint32_t target);
inline static int pit_clear(uint8_t dev);
inline static uint32_t pit_read(uint8_t dev);
inline static void pit_start(uint8_t dev);
inline static void pit_stop(uint8_t dev);
inline static void pit_irq_handler(tim_t dev);

inline static void _pit_set_cb_config(uint8_t dev, timer_cb_t cb, void *arg)
{
    /* set callback function */
    pit[dev].isr_ctx.cb = cb;
    pit[dev].isr_ctx.arg = arg;
}

/** use channel n-1 as prescaler */
inline static void _pit_set_prescaler(uint8_t ch, uint32_t freq)
{
    /* Disable channel completely */
    PIT->CHANNEL[ch].TCTRL = 0x0;
    PIT->CHANNEL[ch].LDVAL = (PIT_BASECLOCK / freq) - 1;
    /* Start the prescaler counter immediately */
    PIT->CHANNEL[ch].TCTRL = (PIT_TCTRL_TEN_MASK);
}

inline static void _pit_set_counter(uint8_t dev)
{
    const uint8_t ch = pit_config[dev].count_ch;
    /* Disable channel completely */
    PIT->CHANNEL[ch].TCTRL = 0x0;
    PIT->CHANNEL[ch].LDVAL = pit[dev].ldval;
    PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;
    /* Restore previous timer state */
    PIT->CHANNEL[ch].TCTRL = pit[dev].tctrl;
}

inline static int pit_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg)
{
    /* Turn on module clock gate */
    PIT_CLKEN();
    /* Completely disable the module before messing with the settings */
    PIT->MCR = PIT_MCR_MDIS_MASK;

    /* Disable IRQs to avoid race with ISR */
    unsigned int mask = irq_disable();

    /* Clear configuration */
    PIT->CHANNEL[pit_config[dev].count_ch].TCTRL = 0;

    /* Freeze timers during debug break, resume normal operations (clear MDIS) */
    PIT->MCR = PIT_MCR_FRZ_MASK;

    _pit_set_cb_config(dev, cb, arg);

    /* Clear IRQ flag */
    PIT->CHANNEL[pit_config[dev].count_ch].TFLG = PIT_TFLG_TIF_MASK;
    /* Refactor the below lines if there are any CPUs where the PIT IRQs are not sequential */
    NVIC_ClearPendingIRQ(PIT0_IRQn + pit_config[dev].count_ch);
    NVIC_EnableIRQ(PIT0_IRQn + pit_config[dev].count_ch);

    /* Reset up-counter */
    pit[dev].count = PIT_MAX_VALUE;
    pit[dev].ldval = PIT_MAX_VALUE;
    pit[dev].tctrl = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
    _pit_set_prescaler(pit_config[dev].prescaler_ch, freq);
    _pit_set_counter(dev);

    irq_restore(mask);
    return 0;
}

inline static int pit_set(uint8_t dev, uint32_t timeout)
{
    const uint8_t ch = pit_config[dev].count_ch;
    /* Disable IRQs to minimize the number of lost ticks */
    unsigned int mask = irq_disable();
    pit[dev].ldval = timeout;
    pit[dev].tctrl = PIT_TCTRL_TIE_MASK | PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
    /* Add the new timeout offset to the up-counter */
    pit[dev].count += timeout;
    if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
        /* Timer is currently running */
        uint32_t cval = PIT->CHANNEL[ch].CVAL;
        /* Subtract if there was anything left on the counter */
        pit[dev].count -= cval;
        _pit_set_counter(dev);
    }
    irq_restore(mask);
    return 0;
}

inline static int pit_set_absolute(uint8_t dev, uint32_t target)
{
    uint8_t ch = pit_config[dev].count_ch;
    /* Disable IRQs to minimize the number of lost ticks */
    unsigned int mask = irq_disable();
    uint32_t now = pit_read(dev);
    uint32_t offset = target - now;
    pit[dev].ldval = offset;
    pit[dev].tctrl = PIT_TCTRL_TIE_MASK | PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
    /* Set the new target time in the up-counter */
    pit[dev].count = target;
    if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
        _pit_set_counter(dev);
    }

    irq_restore(mask);
    return 0;
}

inline static int pit_clear(uint8_t dev)
{
    uint8_t ch = pit_config[dev].count_ch;
    /* Disable IRQs to minimize the number of lost ticks */
    unsigned int mask = irq_disable();

    pit[dev].ldval = PIT_MAX_VALUE;
    pit[dev].tctrl = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
    /* pit[dev].count += PIT_MAX_VALUE + 1; */ /* == 0 (mod 2**32) */

    if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
        /* Timer is currently running */
        uint32_t cval = PIT->CHANNEL[ch].CVAL;
        /* Subtract if there was anything left on the counter */
        pit[dev].count -= cval;
        /* Set a long timeout */
        _pit_set_counter(ch);
    }

    irq_restore(mask);
    return 0;
}

inline static uint32_t pit_read(uint8_t dev)
{
    uint8_t ch = pit_config[dev].count_ch;
    if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
        /* Timer running */
        return pit[dev].count - PIT->CHANNEL[ch].CVAL;
    }
    else {
        /* Timer stopped */
        return pit[dev].count;
    }
}

inline static void pit_start(uint8_t dev)
{
    uint8_t ch = pit_config[dev].count_ch;
    if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) != 0) {
        /* Already running */
        return;
    }
    PIT->CHANNEL[ch].LDVAL = pit[dev].ldval;
    pit[dev].count += pit[dev].ldval;
    PIT->CHANNEL[ch].TCTRL = pit[dev].tctrl;
}

inline static void pit_stop(uint8_t dev)
{
    uint8_t ch = pit_config[dev].count_ch;
    if ((PIT->CHANNEL[ch].TCTRL & PIT_TCTRL_TEN_MASK) == 0) {
        /* Already stopped */
        return;
    }
    uint32_t cval = PIT->CHANNEL[ch].CVAL;
    pit[dev].tctrl = PIT->CHANNEL[ch].TCTRL;
    PIT->CHANNEL[ch].TCTRL = 0;
    pit[dev].count -= cval;
    pit[dev].ldval = cval;
}

inline static void pit_irq_handler(tim_t dev)
{
    uint8_t ch = pit_config[_pit_index(dev)].count_ch;
    pit_t *pit_ctx = &pit[_pit_index(dev)];
    pit_ctx->ldval = PIT_MAX_VALUE;
    pit_ctx->count += PIT_MAX_VALUE;
    pit_ctx->tctrl = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
    _pit_set_counter(_pit_index(dev));

    if (pit_ctx->isr_ctx.cb != NULL) {
        pit_ctx->isr_ctx.cb(pit_ctx->isr_ctx.arg, 0);
    }

    PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;

    cortexm_isr_end();
}

/* ****** LPTMR module functions ****** */

/* Forward declarations */
inline static int lptmr_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg);
inline static int lptmr_set(uint8_t dev, uint16_t timeout);
inline static int lptmr_set_absolute(uint8_t dev, uint16_t target);
inline static int lptmr_clear(uint8_t dev);
inline static uint16_t lptmr_read(uint8_t dev);
inline static void lptmr_start(uint8_t dev);
inline static void lptmr_stop(uint8_t dev);
inline static void lptmr_irq_handler(tim_t tim);

/**
 * @brief Read the prescaler register from the RTC as a reliable 47 bit time counter
 */
inline static uint32_t _rtt_get_subtick(void)
{
    uint32_t tpr;
    uint32_t tsr;

    for (int i = 0; i < 5; i++) {
        /* Read twice to make sure we get a stable reading */
        tpr = RTC->TPR & RTC_TPR_TPR_MASK;
        tsr = RTC->TSR & RTC_TSR_TSR_MASK;

        if ((tsr == (RTC->TSR & RTC_TSR_TSR_MASK)) &&
            (tpr == (RTC->TPR & RTC_TPR_TPR_MASK))) {
            break;
        }
    }
    if (tpr > TIMER_RTC_SUBTICK_MAX) {
        /* This only happens if the RTC time compensation value has been
         * modified to compensate for RTC drift. See Kinetis ref.manual,
         *  RTC Time Compensation Register (RTC_TCR).
         */
        tpr = TIMER_RTC_SUBTICK_MAX;
    }

    return (tsr << TIMER_RTC_SUBTICK_BITS) | tpr;
}

inline static void _lptmr_set_cb_config(uint8_t dev, timer_cb_t cb, void *arg)
{
    /* set callback function */
    lptmr[dev].isr_ctx.cb = cb;
    lptmr[dev].isr_ctx.arg = arg;
}

/**
 * @brief  Compute the LPTMR prescaler setting, see reference manual for details
 */
inline static int32_t _lptmr_compute_prescaler(uint32_t freq) {
    uint32_t prescale = 0;
    if ((freq > LPTMR_BASE_FREQ) || (freq == 0)) {
        /* Frequency out of range */
        return -1;
    }
    while (freq < LPTMR_BASE_FREQ){
        ++prescale;
        freq <<= 1;
    }
    if (freq != LPTMR_BASE_FREQ) {
        /* freq was not a power of two division of LPTMR_BASE_FREQ */
        return -2;
    }
    if (prescale > 0) {
        /* LPTMR_PSR_PRESCALE == 0 yields LPTMR_BASE_FREQ/2,
         * LPTMR_PSR_PRESCALE == 1 yields LPTMR_BASE_FREQ/4 etc.. */
        return LPTMR_PSR_PRESCALE(prescale - 1);
    }
    else {
        /* Prescaler bypass enabled */
        return LPTMR_PSR_PBYP_MASK;
    }
}

/**
 * @brief  Update the offset between RTT and LPTMR
 */
inline static void _lptmr_update_rtt_offset(uint8_t dev)
{
    lptmr[dev].rtt_offset = _rtt_get_subtick();
}

/**
 * @brief  Update the reference time point (CNR=0)
 */
inline static void _lptmr_update_reference(uint8_t dev)
{
    lptmr[dev].reference = _rtt_get_subtick() + LPTMR_RELOAD_OVERHEAD - lptmr[dev].rtt_offset;
}

inline static void _lptmr_set_counter(uint8_t dev)
{
    _lptmr_update_reference(dev);
    LPTMR_Type *hw = lptmr_config[dev].dev;
    hw->CSR = 0;
    hw->CMR = lptmr[dev].cmr;
    /* restore saved state */
    hw->CSR = lptmr[dev].csr;
}

inline static int lptmr_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg)
{
    int32_t prescale = _lptmr_compute_prescaler(freq);
    if (prescale < 0) {
        return -1;
    }
    LPTMR_Type *hw = lptmr_config[dev].dev;
    /* Disable IRQs to avoid race with ISR */
    unsigned int mask = irq_disable();

    /* Turn on module clock */
    LPTMR_CLKEN();
    /* Completely disable the module before messing with the settings */
    hw->CSR = 0;
    /* select ERCLK32K as clock source for LPTMR */
    hw->PSR = LPTMR_PSR_PCS(2) | ((uint32_t)prescale);

    /* Clear IRQ flag in case it was already set */
    hw->CSR = LPTMR_CSR_TCF_MASK;
    /* Enable IRQs on the counting channel */
    NVIC_ClearPendingIRQ(lptmr_config[dev].irqn);
    NVIC_EnableIRQ(lptmr_config[dev].irqn);

    _lptmr_set_cb_config(dev, cb, arg);

    /* Reset state */
    _lptmr_update_rtt_offset(dev);
    lptmr[dev].running = 1;
    lptmr_clear(dev);

    irq_restore(mask);

    return 0;
}

inline static uint16_t lptmr_read(uint8_t dev)
{
    LPTMR_Type *hw = lptmr_config[dev].dev;
    /* latch the current timer value into CNR */
    hw->CNR = 0;
    return lptmr[dev].reference + hw->CNR;
}

inline static int lptmr_set(uint8_t dev, uint16_t timeout)
{
    /* Disable IRQs to minimize jitter */
    unsigned int mask = irq_disable();
    lptmr[dev].cmr = timeout;
    /* Enable interrupt, enable timer */
    lptmr[dev].csr = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TIE_MASK;
    if (lptmr[dev].running != 0) {
        /* Timer is currently running */
        /* Set new target */
        _lptmr_set_counter(dev);
    }
    irq_restore(mask);
    return 0;
}

inline static int lptmr_set_absolute(uint8_t dev, uint16_t target)
{
    /* Disable IRQs to minimize jitter */
    unsigned int mask = irq_disable();
    uint16_t offset = target - lptmr[dev].reference;
    lptmr[dev].cmr = offset;
    /* Enable interrupt, enable timer */
    lptmr[dev].csr = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TIE_MASK;
    if (lptmr[dev].running != 0) {
        /* Timer is currently running */
        /* Set new target */
        _lptmr_set_counter(dev);
    }
    irq_restore(mask);
    return 0;
}

inline static int lptmr_clear(uint8_t dev)
{
    /* Disable IRQs to minimize jitter */
    unsigned int mask = irq_disable();
    lptmr[dev].cmr = LPTMR_MAX_VALUE;
    /* Disable interrupt, enable timer */
    lptmr[dev].csr = LPTMR_CSR_TEN_MASK;
    if (lptmr[dev].running != 0) {
        /* Timer is currently running */
        /* Set new target */
        _lptmr_set_counter(dev);
    }
    irq_restore(mask);
    return 0;
}

inline static void lptmr_start(uint8_t dev)
{
    if (lptmr[dev].running != 0) {
        /* Timer already running */
        return;
    }
    lptmr[dev].running = 1;
    _lptmr_set_counter(dev);
}

inline static void lptmr_stop(uint8_t dev)
{
    if (lptmr[dev].running == 0) {
        /* Timer already stopped */
        return;
    }
    /* Disable IRQs to avoid race with ISR */
    unsigned int mask = irq_disable();
    lptmr[dev].running = 0;
    LPTMR_Type *hw = lptmr_config[dev].dev;
    /* latch the current timer value into CNR */
    hw->CNR = 12345;
    uint16_t cnr = hw->CNR;
    lptmr[dev].cmr = hw->CMR - cnr;
    lptmr[dev].csr = hw->CSR;
    _lptmr_update_reference(dev);
    /* Disable counter and clear interrupt flag */
    hw->CSR = LPTMR_CSR_TCF_MASK;
    /* Clear any pending IRQ */
    NVIC_ClearPendingIRQ(lptmr_config[dev].irqn);
    irq_restore(mask);
}

inline static void lptmr_irq_handler(tim_t tim)
{
    uint8_t dev = _lptmr_index(tim);
    LPTMR_Type *hw = lptmr_config[dev].dev;
    lptmr_t *lptmr_ctx = &lptmr[dev];
    lptmr_ctx->cmr = LPTMR_MAX_VALUE;
    _lptmr_set_counter(dev);

    if (lptmr_ctx->isr_ctx.cb != NULL) {
        lptmr_ctx->isr_ctx.cb(lptmr_ctx->isr_ctx.arg, 0);
    }

    /* Clear interrupt flag */
    bit_set32(&hw->CSR, LPTMR_CSR_TCF_SHIFT);

    cortexm_isr_end();
}

/* ****** Common timer API functions ****** */

int timer_init(tim_t dev, unsigned long freq, timer_cb_t cb, void *arg)
{
    if ((unsigned int)dev >= TIMER_NUMOF) {
        /* invalid timer */
        return -1;
    }
    /* demultiplex to handle two types of hardware timers */
    switch (_timer_variant(dev)) {
        case TIMER_PIT:
            return pit_init(_pit_index(dev), freq, cb, arg);
        case TIMER_LPTMR:
            return lptmr_init(_lptmr_index(dev), freq, cb, arg);
        default:
            return -1;
    }
}

int timer_set(tim_t dev, int channel, unsigned int timeout)
{
    if (channel != 0) {
        /* only one channel is supported */
        return -1;
    }
    if ((unsigned int)dev >= TIMER_NUMOF) {
        /* invalid timer */
        return -1;
    }
    /* demultiplex to handle two types of hardware timers */
    switch (_timer_variant(dev)) {
        case TIMER_PIT:
            return pit_set(_pit_index(dev), timeout);
        case TIMER_LPTMR:
            return lptmr_set(_lptmr_index(dev), timeout);
        default:
            return -1;
    }
}

int timer_set_absolute(tim_t dev, int channel, unsigned int target)
{
    if (channel != 0) {
        /* only one channel is supported */
        return -1;
    }
    if ((unsigned int)dev >= TIMER_NUMOF) {
        /* invalid timer */
        return -1;
    }
    /* demultiplex to handle two types of hardware timers */
    switch (_timer_variant(dev)) {
        case TIMER_PIT:
            return pit_set_absolute(_pit_index(dev), target);
        case TIMER_LPTMR:
            return lptmr_set_absolute(_lptmr_index(dev), target);;
        default:
            return -1;
    }

    return 0;
}

int timer_clear(tim_t dev, int channel)
{
    if (channel != 0) {
        /* only one channel is supported */
        return -1;
    }
    if ((unsigned int)dev >= TIMER_NUMOF) {
        /* invalid timer */
        return -1;
    }
    /* demultiplex to handle two types of hardware timers */
    switch (_timer_variant(dev)) {
        case TIMER_PIT:
            return pit_clear(_pit_index(dev));
        case TIMER_LPTMR:
            return lptmr_clear(_lptmr_index(dev));
        default:
            return -1;
    }

    return 0;
}

unsigned int timer_read(tim_t dev)
{
    if ((unsigned int)dev >= TIMER_NUMOF) {
        /* invalid timer */
        return 0;
    }
    /* demultiplex to handle two types of hardware timers */
    switch (_timer_variant(dev)) {
        case TIMER_PIT:
            return pit_read(_pit_index(dev));
        case TIMER_LPTMR:
            return lptmr_read(_lptmr_index(dev));
        default:
            return 0;
    }
}

void timer_start(tim_t dev)
{
    if ((unsigned int)dev >= TIMER_NUMOF) {
        /* invalid timer */
        return;
    }
    /* demultiplex to handle two types of hardware timers */
    switch (_timer_variant(dev)) {
        case TIMER_PIT:
            pit_start(_pit_index(dev));
            return;
        case TIMER_LPTMR:
            lptmr_start(_lptmr_index(dev));
            return;
        default:
            return;
    }
}

void timer_stop(tim_t dev)
{
    if ((unsigned int)dev >= TIMER_NUMOF) {
        /* invalid timer */
        return;
    }
    /* demultiplex to handle two types of hardware timers */
    switch (_timer_variant(dev)) {
        case TIMER_PIT:
            pit_stop(_pit_index(dev));
            return;
        case TIMER_LPTMR:
            lptmr_stop(_lptmr_index(dev));
            return;
        default:
            return;
    }
}

/* ****** ISR instances ****** */

#ifdef PIT_ISR_0
void PIT_ISR_0(void)
{
    pit_irq_handler(_pit_tim_t(0));
}
#endif

#ifdef PIT_ISR_1
void PIT_ISR_1(void)
{
    pit_irq_handler(_pit_tim_t(1));
}
#endif

#ifdef PIT_ISR_2
void PIT_ISR_2(void)
{
    pit_irq_handler(_pit_tim_t(2));
}
#endif

#ifdef PIT_ISR_3
void PIT_ISR_3(void)
{
    pit_irq_handler(_pit_tim_t(3));
}
#endif

#ifdef LPTMR_ISR_0
void LPTMR_ISR_0(void)
{
    lptmr_irq_handler(_lptmr_tim_t(0));
}
#endif

#ifdef LPTMR_ISR_1
void LPTMR_ISR_1(void)
{
    lptmr_irq_handler(_lptmr_tim_t(1));
}
#endif