at86rf2xx_getset.c 17.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/*
 * Copyright (C) 2015 Freie Universität Berlin
 *
 * This file is subject to the terms and conditions of the GNU Lesser
 * General Public License v2.1. See the file LICENSE in the top level
 * directory for more details.
 */

/**
 * @ingroup     drivers_at86rf2xx
 * @{
 *
 * @file
 * @brief       Getter and setter functions for the AT86RF2xx drivers
 *
 * @author      Thomas Eichinger <thomas.eichinger@fu-berlin.de>
 * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
 * @author      Baptiste Clenet <bapclenet@gmail.com>
 * @author      Daniel Krebs <github@daniel-krebs.net>
 * @author      Kévin Roussel <Kevin.Roussel@inria.fr>
 * @author      Joakim Nohlgård <joakim.nohlgard@eistec.se>
 *
 * @}
 */

#include "at86rf2xx.h"
#include "at86rf2xx_internal.h"
#include "at86rf2xx_registers.h"
#include "periph/spi.h"

#define ENABLE_DEBUG (0)
#include "debug.h"

#ifdef MODULE_AT86RF212B
/* See: Table 9-15. Recommended Mapping of TX Power, Frequency Band, and
 * PHY_TX_PWR (register 0x05), AT86RF212B data sheet. */
static const uint8_t dbm_to_tx_pow_868[] = {0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18,
                                            0x17, 0x15, 0x14, 0x13, 0x12, 0x11,
                                            0x10, 0x0f, 0x31, 0x30, 0x2f, 0x94,
                                            0x93, 0x91, 0x90, 0x29, 0x49, 0x48,
                                            0x47, 0xad, 0xcd, 0xcc, 0xcb, 0xea,
                                            0xe9, 0xe8, 0xe7, 0xe6, 0xe4, 0x80,
                                            0xa0};
static const uint8_t dbm_to_tx_pow_915[] = {0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x17,
                                            0x16, 0x15, 0x14, 0x13, 0x12, 0x11,
                                            0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,
                                            0x09, 0x91, 0x08, 0x07, 0x05, 0x27,
                                            0x04, 0x03, 0x02, 0x01, 0x00, 0x86,
                                            0x40, 0x84, 0x83, 0x82, 0x80, 0xc1,
                                            0xc0};
static int16_t _tx_pow_to_dbm_212b(uint8_t channel, uint8_t page, uint8_t reg) {
    const uint8_t *dbm_to_tx_pow;
    size_t nelem;

    if (page == 0 || page == 2) {
        /* Channel 0 is 868.3 MHz */
        if (channel == 0) {
            dbm_to_tx_pow = &dbm_to_tx_pow_868[0];
            nelem = sizeof(dbm_to_tx_pow_868) / sizeof(dbm_to_tx_pow_868[0]);
        }
        else {
            /* Channels 1+ are 915 MHz */
            dbm_to_tx_pow = &dbm_to_tx_pow_915[0];
            nelem = sizeof(dbm_to_tx_pow_915) / sizeof(dbm_to_tx_pow_915[0]);
        }
    }
    else {
        return 0;
    }

    for(size_t i = 0; i < nelem; i++){
        if (dbm_to_tx_pow[i] == reg) {
            return i - 25;
        }
    }
    return 0;
}

#elif MODULE_AT86RF233
static const int16_t tx_pow_to_dbm[] = {4, 4, 3, 3, 2, 2, 1,
                                        0, -1, -2, -3, -4, -6, -8, -12, -17};
static const uint8_t dbm_to_tx_pow[] = {0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e,
                                        0x0e, 0x0d, 0x0d, 0x0d, 0x0c, 0x0c,
                                        0x0b, 0x0b, 0x0a, 0x09, 0x08, 0x07,
                                        0x06, 0x05, 0x03,0x00};
#else
static const int16_t tx_pow_to_dbm[] = {3, 3, 2, 2, 1, 1, 0,
                                        -1, -2, -3, -4, -5, -7, -9, -12, -17};
static const uint8_t dbm_to_tx_pow[] = {0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e,
                                        0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b,
                                        0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,
                                        0x05, 0x03, 0x00};
#endif

uint16_t at86rf2xx_get_addr_short(at86rf2xx_t *dev)
{
    return (dev->netdev.short_addr[0] << 8) | dev->netdev.short_addr[1];
}

void at86rf2xx_set_addr_short(at86rf2xx_t *dev, uint16_t addr)
{
    dev->netdev.short_addr[0] = (uint8_t)(addr);
    dev->netdev.short_addr[1] = (uint8_t)(addr >> 8);
#ifdef MODULE_SIXLOWPAN
    /* https://tools.ietf.org/html/rfc4944#section-12 requires the first bit to
     * 0 for unicast addresses */
    dev->netdev.short_addr[0] &= 0x7F;
#endif
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__SHORT_ADDR_0,
                        dev->netdev.short_addr[1]);
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__SHORT_ADDR_1,
                        dev->netdev.short_addr[0]);
}

uint64_t at86rf2xx_get_addr_long(at86rf2xx_t *dev)
{
    uint64_t addr;
    uint8_t *ap = (uint8_t *)(&addr);
    for (int i = 0; i < 8; i++) {
        ap[i] = dev->netdev.long_addr[i];
    }
    return addr;
}

void at86rf2xx_set_addr_long(at86rf2xx_t *dev, uint64_t addr)
{
    for (int i = 0; i < 8; i++) {
        dev->netdev.long_addr[i] = (uint8_t)(addr >> (i * 8));
        at86rf2xx_reg_write(dev, (AT86RF2XX_REG__IEEE_ADDR_0 + i),
                            (addr >> ((7 - i) * 8)));
    }
}

uint8_t at86rf2xx_get_chan(at86rf2xx_t *dev)
{
    return dev->netdev.chan;
}

void at86rf2xx_set_chan(at86rf2xx_t *dev, uint8_t channel)
{
    if ((channel < AT86RF2XX_MIN_CHANNEL) ||
        (channel > AT86RF2XX_MAX_CHANNEL) ||
        (dev->netdev.chan == channel)) {
        return;
    }

    dev->netdev.chan = channel;

    at86rf2xx_configure_phy(dev);
}

uint8_t at86rf2xx_get_page(at86rf2xx_t *dev)
{
#ifdef MODULE_AT86RF212B
    return dev->page;
#else
    (void) dev;
    return 0;
#endif
}

void at86rf2xx_set_page(at86rf2xx_t *dev, uint8_t page)
{
#ifdef MODULE_AT86RF212B
    if ((page != 0) && (page != 2)) {
        return;
    }
    dev->page = page;

    at86rf2xx_configure_phy(dev);
#else
    (void) dev;
    (void) page;
#endif
}

uint16_t at86rf2xx_get_pan(at86rf2xx_t *dev)
{
    return dev->netdev.pan;
}

void at86rf2xx_set_pan(at86rf2xx_t *dev, uint16_t pan)
{
    le_uint16_t le_pan = byteorder_btols(byteorder_htons(pan));
    dev->netdev.pan = pan;
    DEBUG("pan0: %u, pan1: %u\n", le_pan.u8[0], le_pan.u8[1]);
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__PAN_ID_0, le_pan.u8[0]);
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__PAN_ID_1, le_pan.u8[1]);
}

int16_t at86rf2xx_get_txpower(at86rf2xx_t *dev)
{
#ifdef MODULE_AT86RF212B
    uint8_t txpower = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_TX_PWR);
    DEBUG("txpower value: %x\n", txpower);
    return _tx_pow_to_dbm_212b(dev->netdev.chan, dev->page, txpower);
#else
    uint8_t txpower = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_TX_PWR)
                & AT86RF2XX_PHY_TX_PWR_MASK__TX_PWR;
    return tx_pow_to_dbm[txpower];
#endif
}

void at86rf2xx_set_txpower(at86rf2xx_t *dev, int16_t txpower)
{
#ifdef MODULE_AT86RF212B
    txpower += 25;
#else
    txpower += 17;
#endif
    if (txpower < 0) {
        txpower = 0;
#ifdef MODULE_AT86RF212B
    }
    else if (txpower > 36) {
        txpower = 36;
#elif MODULE_AT86RF233
    }
    else if (txpower > 21) {
        txpower = 21;
#else
    }
    else if (txpower > 20) {
        txpower = 20;
#endif
    }
#ifdef MODULE_AT86RF212B
    if (dev->netdev.chan == 0) {
        at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR,
                            dbm_to_tx_pow_868[txpower]);
    }
    else if (dev->netdev.chan < 11) {
        at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR,
                            dbm_to_tx_pow_915[txpower]);
    }
#else
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR,
                        dbm_to_tx_pow[txpower]);
#endif
}

uint8_t at86rf2xx_get_max_retries(at86rf2xx_t *dev)
{
    return (at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0) >> 4);
}

void at86rf2xx_set_max_retries(at86rf2xx_t *dev, uint8_t max)
{
    max = (max > 7) ? 7 : max;
    uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0);
    tmp &= ~(AT86RF2XX_XAH_CTRL_0__MAX_FRAME_RETRIES);
    tmp |= (max << 4);
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_0, tmp);
}

uint8_t at86rf2xx_get_csma_max_retries(at86rf2xx_t *dev)
{
    uint8_t tmp;
    tmp  = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0);
    tmp &= AT86RF2XX_XAH_CTRL_0__MAX_CSMA_RETRIES;
    tmp >>= 1;
    return tmp;
}

void at86rf2xx_set_csma_max_retries(at86rf2xx_t *dev, int8_t retries)
{
    retries = (retries > 5) ? 5 : retries; /* valid values: 0-5 */
    retries = (retries < 0) ? 7 : retries; /* max < 0 => disable CSMA (set to 7) */
    DEBUG("[at86rf2xx] opt: Set CSMA retries to %u\n", retries);

    uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0);
    tmp &= ~(AT86RF2XX_XAH_CTRL_0__MAX_CSMA_RETRIES);
    tmp |= (retries << 1);
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_0, tmp);
}

void at86rf2xx_set_csma_backoff_exp(at86rf2xx_t *dev, uint8_t min, uint8_t max)
{
    max = (max > 8) ? 8 : max;
    min = (min > max) ? max : min;
    DEBUG("[at86rf2xx] opt: Set min BE=%u, max BE=%u\n", min, max);

    at86rf2xx_reg_write(dev,
            AT86RF2XX_REG__CSMA_BE,
            (max << 4) | (min));
}

void at86rf2xx_set_csma_seed(at86rf2xx_t *dev, uint8_t entropy[2])
{
    if(entropy == NULL) {
        DEBUG("[at86rf2xx] opt: CSMA seed entropy is nullpointer\n");
        return;
    }
    DEBUG("[at86rf2xx] opt: Set CSMA seed to 0x%x 0x%x\n", entropy[0], entropy[1]);

    at86rf2xx_reg_write(dev,
                           AT86RF2XX_REG__CSMA_SEED_0,
                           entropy[0]);

    uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
    tmp &= ~(AT86RF2XX_CSMA_SEED_1__CSMA_SEED_1);
    tmp |= entropy[1] & AT86RF2XX_CSMA_SEED_1__CSMA_SEED_1;
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
}

int8_t at86rf2xx_get_cca_threshold(at86rf2xx_t *dev)
{
    int8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CCA_THRES);
    tmp &= AT86RF2XX_CCA_THRES_MASK__CCA_ED_THRES;
    tmp <<= 1;
    return (RSSI_BASE_VAL + tmp);
}

void at86rf2xx_set_cca_threshold(at86rf2xx_t *dev, int8_t value)
{
    /* ensure the given value is negative, since a CCA threshold > 0 is
       just impossible: thus, any positive value given is considered
       to be the absolute value of the actually wanted threshold */
    if (value > 0) {
        value = -value;
    }
    /* transform the dBm value in the form
       that will fit in the AT86RF2XX_REG__CCA_THRES register */
    value -= RSSI_BASE_VAL;
    value >>= 1;
    value &= AT86RF2XX_CCA_THRES_MASK__CCA_ED_THRES;
    value |= AT86RF2XX_CCA_THRES_MASK__RSVD_HI_NIBBLE;
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__CCA_THRES, value);
}

int8_t at86rf2xx_get_ed_level(at86rf2xx_t *dev)
{
    uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_ED_LEVEL);
#if MODULE_AT86RF212B
    /* AT86RF212B has different scale than the other variants */
    int8_t ed = (int8_t)(((int16_t)tmp * 103) / 100) + RSSI_BASE_VAL;
#else
    int8_t ed = (int8_t)tmp + RSSI_BASE_VAL;
#endif
    return ed;
}

void at86rf2xx_set_option(at86rf2xx_t *dev, uint16_t option, bool state)
{
    uint8_t tmp;

    DEBUG("set option %i to %i\n", option, state);

    /* set option field */
    if (state) {
        dev->netdev.flags |= option;
        /* trigger option specific actions */
        switch (option) {
            case AT86RF2XX_OPT_CSMA:
                DEBUG("[at86rf2xx] opt: enabling CSMA mode" \
                      "(4 retries, min BE: 3 max BE: 5)\n");
                /* Initialize CSMA seed with hardware address */
                at86rf2xx_set_csma_seed(dev, dev->netdev.long_addr);
                at86rf2xx_set_csma_max_retries(dev, 4);
                at86rf2xx_set_csma_backoff_exp(dev, 3, 5);
                break;
            case AT86RF2XX_OPT_PROMISCUOUS:
                DEBUG("[at86rf2xx] opt: enabling PROMISCUOUS mode\n");
                /* disable auto ACKs in promiscuous mode */
                tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
                tmp |= AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK;
                at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
                /* enable promiscuous mode */
                tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_1);
                tmp |= AT86RF2XX_XAH_CTRL_1__AACK_PROM_MODE;
                at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_1, tmp);
                break;
            case AT86RF2XX_OPT_AUTOACK:
                DEBUG("[at86rf2xx] opt: enabling auto ACKs\n");
                tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
                tmp &= ~(AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK);
                at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
                break;
            case AT86RF2XX_OPT_TELL_RX_START:
                DEBUG("[at86rf2xx] opt: enabling SFD IRQ\n");
                tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK);
                tmp |= AT86RF2XX_IRQ_STATUS_MASK__RX_START;
                at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp);
                break;
            default:
                /* do nothing */
                break;
        }
    }
    else {
        dev->netdev.flags &= ~(option);
        /* trigger option specific actions */
        switch (option) {
            case AT86RF2XX_OPT_CSMA:
                DEBUG("[at86rf2xx] opt: disabling CSMA mode\n");
                /* setting retries to -1 means CSMA disabled */
                at86rf2xx_set_csma_max_retries(dev, -1);
                break;
            case AT86RF2XX_OPT_PROMISCUOUS:
                DEBUG("[at86rf2xx] opt: disabling PROMISCUOUS mode\n");
                /* disable promiscuous mode */
                tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_1);
                tmp &= ~(AT86RF2XX_XAH_CTRL_1__AACK_PROM_MODE);
                at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_1, tmp);
                /* re-enable AUTOACK only if the option is set */
                if (dev->netdev.flags & AT86RF2XX_OPT_AUTOACK) {
                    tmp = at86rf2xx_reg_read(dev,
                                             AT86RF2XX_REG__CSMA_SEED_1);
                    tmp &= ~(AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK);
                    at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1,
                                        tmp);
                }
                break;
            case AT86RF2XX_OPT_AUTOACK:
                DEBUG("[at86rf2xx] opt: disabling auto ACKs\n");
                tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
                tmp |= AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK;
                at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
                break;
            case AT86RF2XX_OPT_TELL_RX_START:
                DEBUG("[at86rf2xx] opt: disabling SFD IRQ\n");
                tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK);
                tmp &= ~AT86RF2XX_IRQ_STATUS_MASK__RX_START;
                at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp);
                break;
            default:
                /* do nothing */
                break;
        }
    }
}

/**
 * @brief Internal function to change state
 * @details For all cases but AT86RF2XX_STATE_FORCE_TRX_OFF state and
 *          cmd parameter are the same.
 *
 * @param dev       device to operate on
 * @param state     target state
 * @param cmd       command to initiate state transition
 */

static inline void _set_state(at86rf2xx_t *dev, uint8_t state, uint8_t cmd)
{
    at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_STATE, cmd);

    /* To prevent a possible race condition when changing to
     * RX_AACK_ON state the state doesn't get read back in that
     * case. See discussion
     * in https://github.com/RIOT-OS/RIOT/pull/5244
     */
    if (state != AT86RF2XX_STATE_RX_AACK_ON) {
        while (at86rf2xx_get_status(dev) != state) {}
    }
    /* Although RX_AACK_ON state doesn't get read back,
     * at least make sure if state transition is in progress or not
     */
    else {
        while (at86rf2xx_get_status(dev) == AT86RF2XX_STATE_IN_PROGRESS) {}
    }

    dev->state = state;
}

uint8_t at86rf2xx_set_state(at86rf2xx_t *dev, uint8_t state)
{
    uint8_t old_state;

    /* make sure there is no ongoing transmission, or state transition already
     * in progress */
    do {
        old_state = at86rf2xx_get_status(dev);
    } while (old_state == AT86RF2XX_STATE_BUSY_RX_AACK ||
             old_state == AT86RF2XX_STATE_BUSY_TX_ARET ||
             old_state == AT86RF2XX_STATE_IN_PROGRESS);

    if (state == AT86RF2XX_STATE_FORCE_TRX_OFF) {
        _set_state(dev, AT86RF2XX_STATE_TRX_OFF, state);
        return old_state;
    }

    if (state == old_state) {
        return old_state;
    }

    /* we need to go via PLL_ON if we are moving between RX_AACK_ON <-> TX_ARET_ON */
    if ((old_state == AT86RF2XX_STATE_RX_AACK_ON &&
             state == AT86RF2XX_STATE_TX_ARET_ON) ||
        (old_state == AT86RF2XX_STATE_TX_ARET_ON &&
             state == AT86RF2XX_STATE_RX_AACK_ON)) {
        _set_state(dev, AT86RF2XX_STATE_PLL_ON, AT86RF2XX_STATE_PLL_ON);
    }
    /* check if we need to wake up from sleep mode */
    else if (old_state == AT86RF2XX_STATE_SLEEP) {
        DEBUG("at86rf2xx: waking up from sleep mode\n");
        at86rf2xx_assert_awake(dev);
    }

    if (state == AT86RF2XX_STATE_SLEEP) {
        /* First go to TRX_OFF */
        at86rf2xx_set_state(dev, AT86RF2XX_STATE_FORCE_TRX_OFF);
        /* Discard all IRQ flags, framebuffer is lost anyway */
        at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS);
        /* Go to SLEEP mode from TRX_OFF */
        gpio_set(dev->params.sleep_pin);
        dev->state = state;
    } else {
        _set_state(dev, state, state);
    }

    return old_state;
}