optimize.c 58.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
/*
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that: (1) source code distributions
 * retain the above copyright notice and this paragraph in its entirety, (2)
 * distributions including binary code include the above copyright notice and
 * this paragraph in its entirety in the documentation or other materials
 * provided with the distribution, and (3) all advertising materials mentioning
 * features or use of this software display the following acknowledgement:
 * ``This product includes software developed by the University of California,
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
 * the University nor the names of its contributors may be used to endorse
 * or promote products derived from this software without specific prior
 * written permission.
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *  Optimization module for BPF code intermediate representation.
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <pcap-types.h>

#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <string.h>

#include <errno.h>

#include "pcap-int.h"

#include "gencode.h"
#include "optimize.h"

#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif

#ifdef BDEBUG
/*
 * The internal "debug printout" flag for the filter expression optimizer.
 * The code to print that stuff is present only if BDEBUG is defined, so
 * the flag, and the routine to set it, are defined only if BDEBUG is
 * defined.
 */
static int pcap_optimizer_debug;

/*
 * Routine to set that flag.
 *
 * This is intended for libpcap developers, not for general use.
 * If you want to set these in a program, you'll have to declare this
 * routine yourself, with the appropriate DLL import attribute on Windows;
 * it's not declared in any header file, and won't be declared in any
 * header file provided by libpcap.
 */
PCAP_API void pcap_set_optimizer_debug(int value);

PCAP_API_DEF void
pcap_set_optimizer_debug(int value)
{
	pcap_optimizer_debug = value;
}

/*
 * The internal "print dot graph" flag for the filter expression optimizer.
 * The code to print that stuff is present only if BDEBUG is defined, so
 * the flag, and the routine to set it, are defined only if BDEBUG is
 * defined.
 */
static int pcap_print_dot_graph;

/*
 * Routine to set that flag.
 *
 * This is intended for libpcap developers, not for general use.
 * If you want to set these in a program, you'll have to declare this
 * routine yourself, with the appropriate DLL import attribute on Windows;
 * it's not declared in any header file, and won't be declared in any
 * header file provided by libpcap.
 */
PCAP_API void pcap_set_print_dot_graph(int value);

PCAP_API_DEF void
pcap_set_print_dot_graph(int value)
{
	pcap_print_dot_graph = value;
}

#endif

/*
 * lowest_set_bit().
 *
 * Takes a 32-bit integer as an argument.
 *
 * If handed a non-zero value, returns the index of the lowest set bit,
 * counting upwards fro zero.
 *
 * If handed zero, the results are platform- and compiler-dependent.
 * Keep it out of the light, don't give it any water, don't feed it
 * after midnight, and don't pass zero to it.
 *
 * This is the same as the count of trailing zeroes in the word.
 */
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
  /*
   * GCC 3.4 and later; we have __builtin_ctz().
   */
  #define lowest_set_bit(mask) __builtin_ctz(mask)
#elif defined(_MSC_VER)
  /*
   * Visual Studio; we support only 2005 and later, so use
   * _BitScanForward().
   */
#include <intrin.h>

#ifndef __clang__
#pragma intrinsic(_BitScanForward)
#endif

static __forceinline int
lowest_set_bit(int mask)
{
	unsigned long bit;

	/*
	 * Don't sign-extend mask if long is longer than int.
	 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
	 */
	if (_BitScanForward(&bit, (unsigned int)mask) == 0)
		return -1;	/* mask is zero */
	return (int)bit;
}
#elif defined(MSDOS) && defined(__DJGPP__)
  /*
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
   * we've already included.
   */
  #define lowest_set_bit(mask)	(ffs((mask)) - 1)
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
  /*
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
   * or some other platform (UN*X conforming to a sufficient recent version
   * of the Single UNIX Specification).
   */
  #include <strings.h>
  #define lowest_set_bit(mask)	(ffs((mask)) - 1)
#else
/*
 * None of the above.
 * Use a perfect-hash-function-based function.
 */
static int
lowest_set_bit(int mask)
{
	unsigned int v = (unsigned int)mask;

	static const int MultiplyDeBruijnBitPosition[32] = {
		0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
		31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
	};

	/*
	 * We strip off all but the lowermost set bit (v & ~v),
	 * and perform a minimal perfect hash on it to look up the
	 * number of low-order zero bits in a table.
	 *
	 * See:
	 *
	 *	http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
	 *
	 *	http://supertech.csail.mit.edu/papers/debruijn.pdf
	 */
	return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
}
#endif

/*
 * Represents a deleted instruction.
 */
#define NOP -1

/*
 * Register numbers for use-def values.
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
 * location.  A_ATOM is the accumulator and X_ATOM is the index
 * register.
 */
#define A_ATOM BPF_MEMWORDS
#define X_ATOM (BPF_MEMWORDS+1)

/*
 * This define is used to represent *both* the accumulator and
 * x register in use-def computations.
 * Currently, the use-def code assumes only one definition per instruction.
 */
#define AX_ATOM N_ATOMS

/*
 * These data structures are used in a Cocke and Shwarz style
 * value numbering scheme.  Since the flowgraph is acyclic,
 * exit values can be propagated from a node's predecessors
 * provided it is uniquely defined.
 */
struct valnode {
	int code;
	int v0, v1;
	int val;
	struct valnode *next;
};

/* Integer constants mapped with the load immediate opcode. */
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)

struct vmapinfo {
	int is_const;
	bpf_int32 const_val;
};

typedef struct {
	/*
	 * A flag to indicate that further optimization is needed.
	 * Iterative passes are continued until a given pass yields no
	 * branch movement.
	 */
	int done;

	int n_blocks;
	struct block **blocks;
	int n_edges;
	struct edge **edges;

	/*
	 * A bit vector set representation of the dominators.
	 * We round up the set size to the next power of two.
	 */
	int nodewords;
	int edgewords;
	struct block **levels;
	bpf_u_int32 *space;

#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
/*
 * True if a is in uset {p}
 */
#define SET_MEMBER(p, a) \
((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))

/*
 * Add 'a' to uset p.
 */
#define SET_INSERT(p, a) \
(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))

/*
 * Delete 'a' from uset p.
 */
#define SET_DELETE(p, a) \
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))

/*
 * a := a intersect b
 */
#define SET_INTERSECT(a, b, n)\
{\
	register bpf_u_int32 *_x = a, *_y = b;\
	register int _n = n;\
	while (--_n >= 0) *_x++ &= *_y++;\
}

/*
 * a := a - b
 */
#define SET_SUBTRACT(a, b, n)\
{\
	register bpf_u_int32 *_x = a, *_y = b;\
	register int _n = n;\
	while (--_n >= 0) *_x++ &=~ *_y++;\
}

/*
 * a := a union b
 */
#define SET_UNION(a, b, n)\
{\
	register bpf_u_int32 *_x = a, *_y = b;\
	register int _n = n;\
	while (--_n >= 0) *_x++ |= *_y++;\
}

	uset all_dom_sets;
	uset all_closure_sets;
	uset all_edge_sets;

#define MODULUS 213
	struct valnode *hashtbl[MODULUS];
	int curval;
	int maxval;

	struct vmapinfo *vmap;
	struct valnode *vnode_base;
	struct valnode *next_vnode;
} opt_state_t;

typedef struct {
	/*
	 * Some pointers used to convert the basic block form of the code,
	 * into the array form that BPF requires.  'fstart' will point to
	 * the malloc'd array while 'ftail' is used during the recursive
	 * traversal.
	 */
	struct bpf_insn *fstart;
	struct bpf_insn *ftail;
} conv_state_t;

static void opt_init(compiler_state_t *, opt_state_t *, struct icode *);
static void opt_cleanup(opt_state_t *);

static void intern_blocks(opt_state_t *, struct icode *);

static void find_inedges(opt_state_t *, struct block *);
#ifdef BDEBUG
static void opt_dump(compiler_state_t *, struct icode *);
#endif

#ifndef MAX
#define MAX(a,b) ((a)>(b)?(a):(b))
#endif

static void
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
{
	int level;

	if (isMarked(ic, b))
		return;

	Mark(ic, b);
	b->link = 0;

	if (JT(b)) {
		find_levels_r(opt_state, ic, JT(b));
		find_levels_r(opt_state, ic, JF(b));
		level = MAX(JT(b)->level, JF(b)->level) + 1;
	} else
		level = 0;
	b->level = level;
	b->link = opt_state->levels[level];
	opt_state->levels[level] = b;
}

/*
 * Level graph.  The levels go from 0 at the leaves to
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
 * first node of the level list, whose elements are linked
 * with the 'link' field of the struct block.
 */
static void
find_levels(opt_state_t *opt_state, struct icode *ic)
{
	memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
	unMarkAll(ic);
	find_levels_r(opt_state, ic, ic->root);
}

/*
 * Find dominator relationships.
 * Assumes graph has been leveled.
 */
static void
find_dom(opt_state_t *opt_state, struct block *root)
{
	int i;
	struct block *b;
	bpf_u_int32 *x;

	/*
	 * Initialize sets to contain all nodes.
	 */
	x = opt_state->all_dom_sets;
	i = opt_state->n_blocks * opt_state->nodewords;
	while (--i >= 0)
		*x++ = 0xFFFFFFFFU;
	/* Root starts off empty. */
	for (i = opt_state->nodewords; --i >= 0;)
		root->dom[i] = 0;

	/* root->level is the highest level no found. */
	for (i = root->level; i >= 0; --i) {
		for (b = opt_state->levels[i]; b; b = b->link) {
			SET_INSERT(b->dom, b->id);
			if (JT(b) == 0)
				continue;
			SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
			SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
		}
	}
}

static void
propedom(opt_state_t *opt_state, struct edge *ep)
{
	SET_INSERT(ep->edom, ep->id);
	if (ep->succ) {
		SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
		SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
	}
}

/*
 * Compute edge dominators.
 * Assumes graph has been leveled and predecessors established.
 */
static void
find_edom(opt_state_t *opt_state, struct block *root)
{
	int i;
	uset x;
	struct block *b;

	x = opt_state->all_edge_sets;
	for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; )
		x[i] = 0xFFFFFFFFU;

	/* root->level is the highest level no found. */
	memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
	memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
	for (i = root->level; i >= 0; --i) {
		for (b = opt_state->levels[i]; b != 0; b = b->link) {
			propedom(opt_state, &b->et);
			propedom(opt_state, &b->ef);
		}
	}
}

/*
 * Find the backwards transitive closure of the flow graph.  These sets
 * are backwards in the sense that we find the set of nodes that reach
 * a given node, not the set of nodes that can be reached by a node.
 *
 * Assumes graph has been leveled.
 */
static void
find_closure(opt_state_t *opt_state, struct block *root)
{
	int i;
	struct block *b;

	/*
	 * Initialize sets to contain no nodes.
	 */
	memset((char *)opt_state->all_closure_sets, 0,
	      opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));

	/* root->level is the highest level no found. */
	for (i = root->level; i >= 0; --i) {
		for (b = opt_state->levels[i]; b; b = b->link) {
			SET_INSERT(b->closure, b->id);
			if (JT(b) == 0)
				continue;
			SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
			SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
		}
	}
}

/*
 * Return the register number that is used by s.  If A and X are both
 * used, return AX_ATOM.  If no register is used, return -1.
 *
 * The implementation should probably change to an array access.
 */
static int
atomuse(struct stmt *s)
{
	register int c = s->code;

	if (c == NOP)
		return -1;

	switch (BPF_CLASS(c)) {

	case BPF_RET:
		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;

	case BPF_LD:
	case BPF_LDX:
		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;

	case BPF_ST:
		return A_ATOM;

	case BPF_STX:
		return X_ATOM;

	case BPF_JMP:
	case BPF_ALU:
		if (BPF_SRC(c) == BPF_X)
			return AX_ATOM;
		return A_ATOM;

	case BPF_MISC:
		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
	}
	abort();
	/* NOTREACHED */
}

/*
 * Return the register number that is defined by 's'.  We assume that
 * a single stmt cannot define more than one register.  If no register
 * is defined, return -1.
 *
 * The implementation should probably change to an array access.
 */
static int
atomdef(struct stmt *s)
{
	if (s->code == NOP)
		return -1;

	switch (BPF_CLASS(s->code)) {

	case BPF_LD:
	case BPF_ALU:
		return A_ATOM;

	case BPF_LDX:
		return X_ATOM;

	case BPF_ST:
	case BPF_STX:
		return s->k;

	case BPF_MISC:
		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
	}
	return -1;
}

/*
 * Compute the sets of registers used, defined, and killed by 'b'.
 *
 * "Used" means that a statement in 'b' uses the register before any
 * statement in 'b' defines it, i.e. it uses the value left in
 * that register by a predecessor block of this block.
 * "Defined" means that a statement in 'b' defines it.
 * "Killed" means that a statement in 'b' defines it before any
 * statement in 'b' uses it, i.e. it kills the value left in that
 * register by a predecessor block of this block.
 */
static void
compute_local_ud(struct block *b)
{
	struct slist *s;
	atomset def = 0, use = 0, killed = 0;
	int atom;

	for (s = b->stmts; s; s = s->next) {
		if (s->s.code == NOP)
			continue;
		atom = atomuse(&s->s);
		if (atom >= 0) {
			if (atom == AX_ATOM) {
				if (!ATOMELEM(def, X_ATOM))
					use |= ATOMMASK(X_ATOM);
				if (!ATOMELEM(def, A_ATOM))
					use |= ATOMMASK(A_ATOM);
			}
			else if (atom < N_ATOMS) {
				if (!ATOMELEM(def, atom))
					use |= ATOMMASK(atom);
			}
			else
				abort();
		}
		atom = atomdef(&s->s);
		if (atom >= 0) {
			if (!ATOMELEM(use, atom))
				killed |= ATOMMASK(atom);
			def |= ATOMMASK(atom);
		}
	}
	if (BPF_CLASS(b->s.code) == BPF_JMP) {
		/*
		 * XXX - what about RET?
		 */
		atom = atomuse(&b->s);
		if (atom >= 0) {
			if (atom == AX_ATOM) {
				if (!ATOMELEM(def, X_ATOM))
					use |= ATOMMASK(X_ATOM);
				if (!ATOMELEM(def, A_ATOM))
					use |= ATOMMASK(A_ATOM);
			}
			else if (atom < N_ATOMS) {
				if (!ATOMELEM(def, atom))
					use |= ATOMMASK(atom);
			}
			else
				abort();
		}
	}

	b->def = def;
	b->kill = killed;
	b->in_use = use;
}

/*
 * Assume graph is already leveled.
 */
static void
find_ud(opt_state_t *opt_state, struct block *root)
{
	int i, maxlevel;
	struct block *p;

	/*
	 * root->level is the highest level no found;
	 * count down from there.
	 */
	maxlevel = root->level;
	for (i = maxlevel; i >= 0; --i)
		for (p = opt_state->levels[i]; p; p = p->link) {
			compute_local_ud(p);
			p->out_use = 0;
		}

	for (i = 1; i <= maxlevel; ++i) {
		for (p = opt_state->levels[i]; p; p = p->link) {
			p->out_use |= JT(p)->in_use | JF(p)->in_use;
			p->in_use |= p->out_use &~ p->kill;
		}
	}
}
static void
init_val(opt_state_t *opt_state)
{
	opt_state->curval = 0;
	opt_state->next_vnode = opt_state->vnode_base;
	memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
	memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
}

/* Because we really don't have an IR, this stuff is a little messy. */
static int
F(opt_state_t *opt_state, int code, int v0, int v1)
{
	u_int hash;
	int val;
	struct valnode *p;

	hash = (u_int)code ^ ((u_int)v0 << 4) ^ ((u_int)v1 << 8);
	hash %= MODULUS;

	for (p = opt_state->hashtbl[hash]; p; p = p->next)
		if (p->code == code && p->v0 == v0 && p->v1 == v1)
			return p->val;

	val = ++opt_state->curval;
	if (BPF_MODE(code) == BPF_IMM &&
	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
		opt_state->vmap[val].const_val = v0;
		opt_state->vmap[val].is_const = 1;
	}
	p = opt_state->next_vnode++;
	p->val = val;
	p->code = code;
	p->v0 = v0;
	p->v1 = v1;
	p->next = opt_state->hashtbl[hash];
	opt_state->hashtbl[hash] = p;

	return val;
}

static inline void
vstore(struct stmt *s, int *valp, int newval, int alter)
{
	if (alter && newval != VAL_UNKNOWN && *valp == newval)
		s->code = NOP;
	else
		*valp = newval;
}

/*
 * Do constant-folding on binary operators.
 * (Unary operators are handled elsewhere.)
 */
static void
fold_op(compiler_state_t *cstate, opt_state_t *opt_state,
    struct stmt *s, int v0, int v1)
{
	bpf_u_int32 a, b;

	a = opt_state->vmap[v0].const_val;
	b = opt_state->vmap[v1].const_val;

	switch (BPF_OP(s->code)) {
	case BPF_ADD:
		a += b;
		break;

	case BPF_SUB:
		a -= b;
		break;

	case BPF_MUL:
		a *= b;
		break;

	case BPF_DIV:
		if (b == 0)
			bpf_error(cstate, "division by zero");
		a /= b;
		break;

	case BPF_MOD:
		if (b == 0)
			bpf_error(cstate, "modulus by zero");
		a %= b;
		break;

	case BPF_AND:
		a &= b;
		break;

	case BPF_OR:
		a |= b;
		break;

	case BPF_XOR:
		a ^= b;
		break;

	case BPF_LSH:
		a <<= b;
		break;

	case BPF_RSH:
		a >>= b;
		break;

	default:
		abort();
	}
	s->k = a;
	s->code = BPF_LD|BPF_IMM;
	opt_state->done = 0;
}

static inline struct slist *
this_op(struct slist *s)
{
	while (s != 0 && s->s.code == NOP)
		s = s->next;
	return s;
}

static void
opt_not(struct block *b)
{
	struct block *tmp = JT(b);

	JT(b) = JF(b);
	JF(b) = tmp;
}

static void
opt_peep(opt_state_t *opt_state, struct block *b)
{
	struct slist *s;
	struct slist *next, *last;
	int val;

	s = b->stmts;
	if (s == 0)
		return;

	last = s;
	for (/*empty*/; /*empty*/; s = next) {
		/*
		 * Skip over nops.
		 */
		s = this_op(s);
		if (s == 0)
			break;	/* nothing left in the block */

		/*
		 * Find the next real instruction after that one
		 * (skipping nops).
		 */
		next = this_op(s->next);
		if (next == 0)
			break;	/* no next instruction */
		last = next;

		/*
		 * st  M[k]	-->	st  M[k]
		 * ldx M[k]		tax
		 */
		if (s->s.code == BPF_ST &&
		    next->s.code == (BPF_LDX|BPF_MEM) &&
		    s->s.k == next->s.k) {
			opt_state->done = 0;
			next->s.code = BPF_MISC|BPF_TAX;
		}
		/*
		 * ld  #k	-->	ldx  #k
		 * tax			txa
		 */
		if (s->s.code == (BPF_LD|BPF_IMM) &&
		    next->s.code == (BPF_MISC|BPF_TAX)) {
			s->s.code = BPF_LDX|BPF_IMM;
			next->s.code = BPF_MISC|BPF_TXA;
			opt_state->done = 0;
		}
		/*
		 * This is an ugly special case, but it happens
		 * when you say tcp[k] or udp[k] where k is a constant.
		 */
		if (s->s.code == (BPF_LD|BPF_IMM)) {
			struct slist *add, *tax, *ild;

			/*
			 * Check that X isn't used on exit from this
			 * block (which the optimizer might cause).
			 * We know the code generator won't generate
			 * any local dependencies.
			 */
			if (ATOMELEM(b->out_use, X_ATOM))
				continue;

			/*
			 * Check that the instruction following the ldi
			 * is an addx, or it's an ldxms with an addx
			 * following it (with 0 or more nops between the
			 * ldxms and addx).
			 */
			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
				add = next;
			else
				add = this_op(next->next);
			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
				continue;

			/*
			 * Check that a tax follows that (with 0 or more
			 * nops between them).
			 */
			tax = this_op(add->next);
			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
				continue;

			/*
			 * Check that an ild follows that (with 0 or more
			 * nops between them).
			 */
			ild = this_op(tax->next);
			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
			    BPF_MODE(ild->s.code) != BPF_IND)
				continue;
			/*
			 * We want to turn this sequence:
			 *
			 * (004) ldi     #0x2		{s}
			 * (005) ldxms   [14]		{next}  -- optional
			 * (006) addx			{add}
			 * (007) tax			{tax}
			 * (008) ild     [x+0]		{ild}
			 *
			 * into this sequence:
			 *
			 * (004) nop
			 * (005) ldxms   [14]
			 * (006) nop
			 * (007) nop
			 * (008) ild     [x+2]
			 *
			 * XXX We need to check that X is not
			 * subsequently used, because we want to change
			 * what'll be in it after this sequence.
			 *
			 * We know we can eliminate the accumulator
			 * modifications earlier in the sequence since
			 * it is defined by the last stmt of this sequence
			 * (i.e., the last statement of the sequence loads
			 * a value into the accumulator, so we can eliminate
			 * earlier operations on the accumulator).
			 */
			ild->s.k += s->s.k;
			s->s.code = NOP;
			add->s.code = NOP;
			tax->s.code = NOP;
			opt_state->done = 0;
		}
	}
	/*
	 * If the comparison at the end of a block is an equality
	 * comparison against a constant, and nobody uses the value
	 * we leave in the A register at the end of a block, and
	 * the operation preceding the comparison is an arithmetic
	 * operation, we can sometime optimize it away.
	 */
	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
	    !ATOMELEM(b->out_use, A_ATOM)) {
	    	/*
	    	 * We can optimize away certain subtractions of the
	    	 * X register.
	    	 */
		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
			val = b->val[X_ATOM];
			if (opt_state->vmap[val].is_const) {
				/*
				 * If we have a subtract to do a comparison,
				 * and the X register is a known constant,
				 * we can merge this value into the
				 * comparison:
				 *
				 * sub x  ->	nop
				 * jeq #y	jeq #(x+y)
				 */
				b->s.k += opt_state->vmap[val].const_val;
				last->s.code = NOP;
				opt_state->done = 0;
			} else if (b->s.k == 0) {
				/*
				 * If the X register isn't a constant,
				 * and the comparison in the test is
				 * against 0, we can compare with the
				 * X register, instead:
				 *
				 * sub x  ->	nop
				 * jeq #0	jeq x
				 */
				last->s.code = NOP;
				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
				opt_state->done = 0;
			}
		}
		/*
		 * Likewise, a constant subtract can be simplified:
		 *
		 * sub #x ->	nop
		 * jeq #y ->	jeq #(x+y)
		 */
		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
			last->s.code = NOP;
			b->s.k += last->s.k;
			opt_state->done = 0;
		}
		/*
		 * And, similarly, a constant AND can be simplified
		 * if we're testing against 0, i.e.:
		 *
		 * and #k	nop
		 * jeq #0  ->	jset #k
		 */
		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
		    b->s.k == 0) {
			b->s.k = last->s.k;
			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
			last->s.code = NOP;
			opt_state->done = 0;
			opt_not(b);
		}
	}
	/*
	 * jset #0        ->   never
	 * jset #ffffffff ->   always
	 */
	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
		if (b->s.k == 0)
			JT(b) = JF(b);
		if ((u_int)b->s.k == 0xffffffffU)
			JF(b) = JT(b);
	}
	/*
	 * If we're comparing against the index register, and the index
	 * register is a known constant, we can just compare against that
	 * constant.
	 */
	val = b->val[X_ATOM];
	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
		bpf_int32 v = opt_state->vmap[val].const_val;
		b->s.code &= ~BPF_X;
		b->s.k = v;
	}
	/*
	 * If the accumulator is a known constant, we can compute the
	 * comparison result.
	 */
	val = b->val[A_ATOM];
	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
		bpf_int32 v = opt_state->vmap[val].const_val;
		switch (BPF_OP(b->s.code)) {

		case BPF_JEQ:
			v = v == b->s.k;
			break;

		case BPF_JGT:
			v = (unsigned)v > (unsigned)b->s.k;
			break;

		case BPF_JGE:
			v = (unsigned)v >= (unsigned)b->s.k;
			break;

		case BPF_JSET:
			v &= b->s.k;
			break;

		default:
			abort();
		}
		if (JF(b) != JT(b))
			opt_state->done = 0;
		if (v)
			JF(b) = JT(b);
		else
			JT(b) = JF(b);
	}
}

/*
 * Compute the symbolic value of expression of 's', and update
 * anything it defines in the value table 'val'.  If 'alter' is true,
 * do various optimizations.  This code would be cleaner if symbolic
 * evaluation and code transformations weren't folded together.
 */
static void
opt_stmt(compiler_state_t *cstate, opt_state_t *opt_state,
    struct stmt *s, int val[], int alter)
{
	int op;
	int v;

	switch (s->code) {

	case BPF_LD|BPF_ABS|BPF_W:
	case BPF_LD|BPF_ABS|BPF_H:
	case BPF_LD|BPF_ABS|BPF_B:
		v = F(opt_state, s->code, s->k, 0L);
		vstore(s, &val[A_ATOM], v, alter);
		break;

	case BPF_LD|BPF_IND|BPF_W:
	case BPF_LD|BPF_IND|BPF_H:
	case BPF_LD|BPF_IND|BPF_B:
		v = val[X_ATOM];
		if (alter && opt_state->vmap[v].is_const) {
			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
			s->k += opt_state->vmap[v].const_val;
			v = F(opt_state, s->code, s->k, 0L);
			opt_state->done = 0;
		}
		else
			v = F(opt_state, s->code, s->k, v);
		vstore(s, &val[A_ATOM], v, alter);
		break;

	case BPF_LD|BPF_LEN:
		v = F(opt_state, s->code, 0L, 0L);
		vstore(s, &val[A_ATOM], v, alter);
		break;

	case BPF_LD|BPF_IMM:
		v = K(s->k);
		vstore(s, &val[A_ATOM], v, alter);
		break;

	case BPF_LDX|BPF_IMM:
		v = K(s->k);
		vstore(s, &val[X_ATOM], v, alter);
		break;

	case BPF_LDX|BPF_MSH|BPF_B:
		v = F(opt_state, s->code, s->k, 0L);
		vstore(s, &val[X_ATOM], v, alter);
		break;

	case BPF_ALU|BPF_NEG:
		if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
			s->code = BPF_LD|BPF_IMM;
			s->k = -opt_state->vmap[val[A_ATOM]].const_val;
			val[A_ATOM] = K(s->k);
		}
		else
			val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
		break;

	case BPF_ALU|BPF_ADD|BPF_K:
	case BPF_ALU|BPF_SUB|BPF_K:
	case BPF_ALU|BPF_MUL|BPF_K:
	case BPF_ALU|BPF_DIV|BPF_K:
	case BPF_ALU|BPF_MOD|BPF_K:
	case BPF_ALU|BPF_AND|BPF_K:
	case BPF_ALU|BPF_OR|BPF_K:
	case BPF_ALU|BPF_XOR|BPF_K:
	case BPF_ALU|BPF_LSH|BPF_K:
	case BPF_ALU|BPF_RSH|BPF_K:
		op = BPF_OP(s->code);
		if (alter) {
			if (s->k == 0) {
				/* don't optimize away "sub #0"
				 * as it may be needed later to
				 * fixup the generated math code */
				if (op == BPF_ADD ||
				    op == BPF_LSH || op == BPF_RSH ||
				    op == BPF_OR || op == BPF_XOR) {
					s->code = NOP;
					break;
				}
				if (op == BPF_MUL || op == BPF_AND) {
					s->code = BPF_LD|BPF_IMM;
					val[A_ATOM] = K(s->k);
					break;
				}
			}
			if (opt_state->vmap[val[A_ATOM]].is_const) {
				fold_op(cstate, opt_state, s, val[A_ATOM], K(s->k));
				val[A_ATOM] = K(s->k);
				break;
			}
		}
		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
		break;

	case BPF_ALU|BPF_ADD|BPF_X:
	case BPF_ALU|BPF_SUB|BPF_X:
	case BPF_ALU|BPF_MUL|BPF_X:
	case BPF_ALU|BPF_DIV|BPF_X:
	case BPF_ALU|BPF_MOD|BPF_X:
	case BPF_ALU|BPF_AND|BPF_X:
	case BPF_ALU|BPF_OR|BPF_X:
	case BPF_ALU|BPF_XOR|BPF_X:
	case BPF_ALU|BPF_LSH|BPF_X:
	case BPF_ALU|BPF_RSH|BPF_X:
		op = BPF_OP(s->code);
		if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
			if (opt_state->vmap[val[A_ATOM]].is_const) {
				fold_op(cstate, opt_state, s, val[A_ATOM], val[X_ATOM]);
				val[A_ATOM] = K(s->k);
			}
			else {
				s->code = BPF_ALU|BPF_K|op;
				s->k = opt_state->vmap[val[X_ATOM]].const_val;
				opt_state->done = 0;
				val[A_ATOM] =
					F(opt_state, s->code, val[A_ATOM], K(s->k));
			}
			break;
		}
		/*
		 * Check if we're doing something to an accumulator
		 * that is 0, and simplify.  This may not seem like
		 * much of a simplification but it could open up further
		 * optimizations.
		 * XXX We could also check for mul by 1, etc.
		 */
		if (alter && opt_state->vmap[val[A_ATOM]].is_const
		    && opt_state->vmap[val[A_ATOM]].const_val == 0) {
			if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
				s->code = BPF_MISC|BPF_TXA;
				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
				break;
			}
			else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
				s->code = BPF_LD|BPF_IMM;
				s->k = 0;
				vstore(s, &val[A_ATOM], K(s->k), alter);
				break;
			}
			else if (op == BPF_NEG) {
				s->code = NOP;
				break;
			}
		}
		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
		break;

	case BPF_MISC|BPF_TXA:
		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
		break;

	case BPF_LD|BPF_MEM:
		v = val[s->k];
		if (alter && opt_state->vmap[v].is_const) {
			s->code = BPF_LD|BPF_IMM;
			s->k = opt_state->vmap[v].const_val;
			opt_state->done = 0;
		}
		vstore(s, &val[A_ATOM], v, alter);
		break;

	case BPF_MISC|BPF_TAX:
		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
		break;

	case BPF_LDX|BPF_MEM:
		v = val[s->k];
		if (alter && opt_state->vmap[v].is_const) {
			s->code = BPF_LDX|BPF_IMM;
			s->k = opt_state->vmap[v].const_val;
			opt_state->done = 0;
		}
		vstore(s, &val[X_ATOM], v, alter);
		break;

	case BPF_ST:
		vstore(s, &val[s->k], val[A_ATOM], alter);
		break;

	case BPF_STX:
		vstore(s, &val[s->k], val[X_ATOM], alter);
		break;
	}
}

static void
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
{
	register int atom;

	atom = atomuse(s);
	if (atom >= 0) {
		if (atom == AX_ATOM) {
			last[X_ATOM] = 0;
			last[A_ATOM] = 0;
		}
		else
			last[atom] = 0;
	}
	atom = atomdef(s);
	if (atom >= 0) {
		if (last[atom]) {
			opt_state->done = 0;
			last[atom]->code = NOP;
		}
		last[atom] = s;
	}
}

static void
opt_deadstores(opt_state_t *opt_state, register struct block *b)
{
	register struct slist *s;
	register int atom;
	struct stmt *last[N_ATOMS];

	memset((char *)last, 0, sizeof last);

	for (s = b->stmts; s != 0; s = s->next)
		deadstmt(opt_state, &s->s, last);
	deadstmt(opt_state, &b->s, last);

	for (atom = 0; atom < N_ATOMS; ++atom)
		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
			last[atom]->code = NOP;
			opt_state->done = 0;
		}
}

static void
opt_blk(compiler_state_t *cstate, opt_state_t *opt_state,
    struct block *b, int do_stmts)
{
	struct slist *s;
	struct edge *p;
	int i;
	bpf_int32 aval, xval;

#if 0
	for (s = b->stmts; s && s->next; s = s->next)
		if (BPF_CLASS(s->s.code) == BPF_JMP) {
			do_stmts = 0;
			break;
		}
#endif

	/*
	 * Initialize the atom values.
	 */
	p = b->in_edges;
	if (p == 0) {
		/*
		 * We have no predecessors, so everything is undefined
		 * upon entry to this block.
		 */
		memset((char *)b->val, 0, sizeof(b->val));
	} else {
		/*
		 * Inherit values from our predecessors.
		 *
		 * First, get the values from the predecessor along the
		 * first edge leading to this node.
		 */
		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
		/*
		 * Now look at all the other nodes leading to this node.
		 * If, for the predecessor along that edge, a register
		 * has a different value from the one we have (i.e.,
		 * control paths are merging, and the merging paths
		 * assign different values to that register), give the
		 * register the undefined value of 0.
		 */
		while ((p = p->next) != NULL) {
			for (i = 0; i < N_ATOMS; ++i)
				if (b->val[i] != p->pred->val[i])
					b->val[i] = 0;
		}
	}
	aval = b->val[A_ATOM];
	xval = b->val[X_ATOM];
	for (s = b->stmts; s; s = s->next)
		opt_stmt(cstate, opt_state, &s->s, b->val, do_stmts);

	/*
	 * This is a special case: if we don't use anything from this
	 * block, and we load the accumulator or index register with a
	 * value that is already there, or if this block is a return,
	 * eliminate all the statements.
	 *
	 * XXX - what if it does a store?
	 *
	 * XXX - why does it matter whether we use anything from this
	 * block?  If the accumulator or index register doesn't change
	 * its value, isn't that OK even if we use that value?
	 *
	 * XXX - if we load the accumulator with a different value,
	 * and the block ends with a conditional branch, we obviously
	 * can't eliminate it, as the branch depends on that value.
	 * For the index register, the conditional branch only depends
	 * on the index register value if the test is against the index
	 * register value rather than a constant; if nothing uses the
	 * value we put into the index register, and we're not testing
	 * against the index register's value, and there aren't any
	 * other problems that would keep us from eliminating this
	 * block, can we eliminate it?
	 */
	if (do_stmts &&
	    ((b->out_use == 0 &&
	      aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
	      xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
	     BPF_CLASS(b->s.code) == BPF_RET)) {
		if (b->stmts != 0) {
			b->stmts = 0;
			opt_state->done = 0;
		}
	} else {
		opt_peep(opt_state, b);
		opt_deadstores(opt_state, b);
	}
	/*
	 * Set up values for branch optimizer.
	 */
	if (BPF_SRC(b->s.code) == BPF_K)
		b->oval = K(b->s.k);
	else
		b->oval = b->val[X_ATOM];
	b->et.code = b->s.code;
	b->ef.code = -b->s.code;
}

/*
 * Return true if any register that is used on exit from 'succ', has
 * an exit value that is different from the corresponding exit value
 * from 'b'.
 */
static int
use_conflict(struct block *b, struct block *succ)
{
	int atom;
	atomset use = succ->out_use;

	if (use == 0)
		return 0;

	for (atom = 0; atom < N_ATOMS; ++atom)
		if (ATOMELEM(use, atom))
			if (b->val[atom] != succ->val[atom])
				return 1;
	return 0;
}

static struct block *
fold_edge(struct block *child, struct edge *ep)
{
	int sense;
	int aval0, aval1, oval0, oval1;
	int code = ep->code;

	if (code < 0) {
		code = -code;
		sense = 0;
	} else
		sense = 1;

	if (child->s.code != code)
		return 0;

	aval0 = child->val[A_ATOM];
	oval0 = child->oval;
	aval1 = ep->pred->val[A_ATOM];
	oval1 = ep->pred->oval;

	if (aval0 != aval1)
		return 0;

	if (oval0 == oval1)
		/*
		 * The operands of the branch instructions are
		 * identical, so the result is true if a true
		 * branch was taken to get here, otherwise false.
		 */
		return sense ? JT(child) : JF(child);

	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
		/*
		 * At this point, we only know the comparison if we
		 * came down the true branch, and it was an equality
		 * comparison with a constant.
		 *
		 * I.e., if we came down the true branch, and the branch
		 * was an equality comparison with a constant, we know the
		 * accumulator contains that constant.  If we came down
		 * the false branch, or the comparison wasn't with a
		 * constant, we don't know what was in the accumulator.
		 *
		 * We rely on the fact that distinct constants have distinct
		 * value numbers.
		 */
		return JF(child);

	return 0;
}

static void
opt_j(opt_state_t *opt_state, struct edge *ep)
{
	register int i, k;
	register struct block *target;

	if (JT(ep->succ) == 0)
		return;

	if (JT(ep->succ) == JF(ep->succ)) {
		/*
		 * Common branch targets can be eliminated, provided
		 * there is no data dependency.
		 */
		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
			opt_state->done = 0;
			ep->succ = JT(ep->succ);
		}
	}
	/*
	 * For each edge dominator that matches the successor of this
	 * edge, promote the edge successor to the its grandchild.
	 *
	 * XXX We violate the set abstraction here in favor a reasonably
	 * efficient loop.
	 */
 top:
	for (i = 0; i < opt_state->edgewords; ++i) {
		register bpf_u_int32 x = ep->edom[i];

		while (x != 0) {
			k = lowest_set_bit(x);
			x &=~ (1 << k);
			k += i * BITS_PER_WORD;

			target = fold_edge(ep->succ, opt_state->edges[k]);
			/*
			 * Check that there is no data dependency between
			 * nodes that will be violated if we move the edge.
			 */
			if (target != 0 && !use_conflict(ep->pred, target)) {
				opt_state->done = 0;
				ep->succ = target;
				if (JT(target) != 0)
					/*
					 * Start over unless we hit a leaf.
					 */
					goto top;
				return;
			}
		}
	}
}


static void
or_pullup(opt_state_t *opt_state, struct block *b)
{
	int val, at_top;
	struct block *pull;
	struct block **diffp, **samep;
	struct edge *ep;

	ep = b->in_edges;
	if (ep == 0)
		return;

	/*
	 * Make sure each predecessor loads the same value.
	 * XXX why?
	 */
	val = ep->pred->val[A_ATOM];
	for (ep = ep->next; ep != 0; ep = ep->next)
		if (val != ep->pred->val[A_ATOM])
			return;

	if (JT(b->in_edges->pred) == b)
		diffp = &JT(b->in_edges->pred);
	else
		diffp = &JF(b->in_edges->pred);

	at_top = 1;
	for (;;) {
		if (*diffp == 0)
			return;

		if (JT(*diffp) != JT(b))
			return;

		if (!SET_MEMBER((*diffp)->dom, b->id))
			return;

		if ((*diffp)->val[A_ATOM] != val)
			break;

		diffp = &JF(*diffp);
		at_top = 0;
	}
	samep = &JF(*diffp);
	for (;;) {
		if (*samep == 0)
			return;

		if (JT(*samep) != JT(b))
			return;

		if (!SET_MEMBER((*samep)->dom, b->id))
			return;

		if ((*samep)->val[A_ATOM] == val)
			break;

		/* XXX Need to check that there are no data dependencies
		   between dp0 and dp1.  Currently, the code generator
		   will not produce such dependencies. */
		samep = &JF(*samep);
	}
#ifdef notdef
	/* XXX This doesn't cover everything. */
	for (i = 0; i < N_ATOMS; ++i)
		if ((*samep)->val[i] != pred->val[i])
			return;
#endif
	/* Pull up the node. */
	pull = *samep;
	*samep = JF(pull);
	JF(pull) = *diffp;

	/*
	 * At the top of the chain, each predecessor needs to point at the
	 * pulled up node.  Inside the chain, there is only one predecessor
	 * to worry about.
	 */
	if (at_top) {
		for (ep = b->in_edges; ep != 0; ep = ep->next) {
			if (JT(ep->pred) == b)
				JT(ep->pred) = pull;
			else
				JF(ep->pred) = pull;
		}
	}
	else
		*diffp = pull;

	opt_state->done = 0;
}

static void
and_pullup(opt_state_t *opt_state, struct block *b)
{
	int val, at_top;
	struct block *pull;
	struct block **diffp, **samep;
	struct edge *ep;

	ep = b->in_edges;
	if (ep == 0)
		return;

	/*
	 * Make sure each predecessor loads the same value.
	 */
	val = ep->pred->val[A_ATOM];
	for (ep = ep->next; ep != 0; ep = ep->next)
		if (val != ep->pred->val[A_ATOM])
			return;

	if (JT(b->in_edges->pred) == b)
		diffp = &JT(b->in_edges->pred);
	else
		diffp = &JF(b->in_edges->pred);

	at_top = 1;
	for (;;) {
		if (*diffp == 0)
			return;

		if (JF(*diffp) != JF(b))
			return;

		if (!SET_MEMBER((*diffp)->dom, b->id))
			return;

		if ((*diffp)->val[A_ATOM] != val)
			break;

		diffp = &JT(*diffp);
		at_top = 0;
	}
	samep = &JT(*diffp);
	for (;;) {
		if (*samep == 0)
			return;

		if (JF(*samep) != JF(b))
			return;

		if (!SET_MEMBER((*samep)->dom, b->id))
			return;

		if ((*samep)->val[A_ATOM] == val)
			break;

		/* XXX Need to check that there are no data dependencies
		   between diffp and samep.  Currently, the code generator
		   will not produce such dependencies. */
		samep = &JT(*samep);
	}
#ifdef notdef
	/* XXX This doesn't cover everything. */
	for (i = 0; i < N_ATOMS; ++i)
		if ((*samep)->val[i] != pred->val[i])
			return;
#endif
	/* Pull up the node. */
	pull = *samep;
	*samep = JT(pull);
	JT(pull) = *diffp;

	/*
	 * At the top of the chain, each predecessor needs to point at the
	 * pulled up node.  Inside the chain, there is only one predecessor
	 * to worry about.
	 */
	if (at_top) {
		for (ep = b->in_edges; ep != 0; ep = ep->next) {
			if (JT(ep->pred) == b)
				JT(ep->pred) = pull;
			else
				JF(ep->pred) = pull;
		}
	}
	else
		*diffp = pull;

	opt_state->done = 0;
}

static void
opt_blks(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
    int do_stmts)
{
	int i, maxlevel;
	struct block *p;

	init_val(opt_state);
	maxlevel = ic->root->level;

	find_inedges(opt_state, ic->root);
	for (i = maxlevel; i >= 0; --i)
		for (p = opt_state->levels[i]; p; p = p->link)
			opt_blk(cstate, opt_state, p, do_stmts);

	if (do_stmts)
		/*
		 * No point trying to move branches; it can't possibly
		 * make a difference at this point.
		 */
		return;

	for (i = 1; i <= maxlevel; ++i) {
		for (p = opt_state->levels[i]; p; p = p->link) {
			opt_j(opt_state, &p->et);
			opt_j(opt_state, &p->ef);
		}
	}

	find_inedges(opt_state, ic->root);
	for (i = 1; i <= maxlevel; ++i) {
		for (p = opt_state->levels[i]; p; p = p->link) {
			or_pullup(opt_state, p);
			and_pullup(opt_state, p);
		}
	}
}

static inline void
link_inedge(struct edge *parent, struct block *child)
{
	parent->next = child->in_edges;
	child->in_edges = parent;
}

static void
find_inedges(opt_state_t *opt_state, struct block *root)
{
	int i;
	struct block *b;

	for (i = 0; i < opt_state->n_blocks; ++i)
		opt_state->blocks[i]->in_edges = 0;

	/*
	 * Traverse the graph, adding each edge to the predecessor
	 * list of its successors.  Skip the leaves (i.e. level 0).
	 */
	for (i = root->level; i > 0; --i) {
		for (b = opt_state->levels[i]; b != 0; b = b->link) {
			link_inedge(&b->et, JT(b));
			link_inedge(&b->ef, JF(b));
		}
	}
}

static void
opt_root(struct block **b)
{
	struct slist *tmp, *s;

	s = (*b)->stmts;
	(*b)->stmts = 0;
	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
		*b = JT(*b);

	tmp = (*b)->stmts;
	if (tmp != 0)
		sappend(s, tmp);
	(*b)->stmts = s;

	/*
	 * If the root node is a return, then there is no
	 * point executing any statements (since the bpf machine
	 * has no side effects).
	 */
	if (BPF_CLASS((*b)->s.code) == BPF_RET)
		(*b)->stmts = 0;
}

static void
opt_loop(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
    int do_stmts)
{

#ifdef BDEBUG
	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
		printf("opt_loop(root, %d) begin\n", do_stmts);
		opt_dump(cstate, ic);
	}
#endif
	do {
		opt_state->done = 1;
		find_levels(opt_state, ic);
		find_dom(opt_state, ic->root);
		find_closure(opt_state, ic->root);
		find_ud(opt_state, ic->root);
		find_edom(opt_state, ic->root);
		opt_blks(cstate, opt_state, ic, do_stmts);
#ifdef BDEBUG
		if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
			opt_dump(cstate, ic);
		}
#endif
	} while (!opt_state->done);
}

/*
 * Optimize the filter code in its dag representation.
 */
void
bpf_optimize(compiler_state_t *cstate, struct icode *ic)
{
	opt_state_t opt_state;

	opt_init(cstate, &opt_state, ic);
	opt_loop(cstate, &opt_state, ic, 0);
	opt_loop(cstate, &opt_state, ic, 1);
	intern_blocks(&opt_state, ic);
#ifdef BDEBUG
	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
		printf("after intern_blocks()\n");
		opt_dump(cstate, ic);
	}
#endif
	opt_root(&ic->root);
#ifdef BDEBUG
	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
		printf("after opt_root()\n");
		opt_dump(cstate, ic);
	}
#endif
	opt_cleanup(&opt_state);
}

static void
make_marks(struct icode *ic, struct block *p)
{
	if (!isMarked(ic, p)) {
		Mark(ic, p);
		if (BPF_CLASS(p->s.code) != BPF_RET) {
			make_marks(ic, JT(p));
			make_marks(ic, JF(p));
		}
	}
}

/*
 * Mark code array such that isMarked(ic->cur_mark, i) is true
 * only for nodes that are alive.
 */
static void
mark_code(struct icode *ic)
{
	ic->cur_mark += 1;
	make_marks(ic, ic->root);
}

/*
 * True iff the two stmt lists load the same value from the packet into
 * the accumulator.
 */
static int
eq_slist(struct slist *x, struct slist *y)
{
	for (;;) {
		while (x && x->s.code == NOP)
			x = x->next;
		while (y && y->s.code == NOP)
			y = y->next;
		if (x == 0)
			return y == 0;
		if (y == 0)
			return x == 0;
		if (x->s.code != y->s.code || x->s.k != y->s.k)
			return 0;
		x = x->next;
		y = y->next;
	}
}

static inline int
eq_blk(struct block *b0, struct block *b1)
{
	if (b0->s.code == b1->s.code &&
	    b0->s.k == b1->s.k &&
	    b0->et.succ == b1->et.succ &&
	    b0->ef.succ == b1->ef.succ)
		return eq_slist(b0->stmts, b1->stmts);
	return 0;
}

static void
intern_blocks(opt_state_t *opt_state, struct icode *ic)
{
	struct block *p;
	int i, j;
	int done1; /* don't shadow global */
 top:
	done1 = 1;
	for (i = 0; i < opt_state->n_blocks; ++i)
		opt_state->blocks[i]->link = 0;

	mark_code(ic);

	for (i = opt_state->n_blocks - 1; --i >= 0; ) {
		if (!isMarked(ic, opt_state->blocks[i]))
			continue;
		for (j = i + 1; j < opt_state->n_blocks; ++j) {
			if (!isMarked(ic, opt_state->blocks[j]))
				continue;
			if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
				opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
					opt_state->blocks[j]->link : opt_state->blocks[j];
				break;
			}
		}
	}
	for (i = 0; i < opt_state->n_blocks; ++i) {
		p = opt_state->blocks[i];
		if (JT(p) == 0)
			continue;
		if (JT(p)->link) {
			done1 = 0;
			JT(p) = JT(p)->link;
		}
		if (JF(p)->link) {
			done1 = 0;
			JF(p) = JF(p)->link;
		}
	}
	if (!done1)
		goto top;
}

static void
opt_cleanup(opt_state_t *opt_state)
{
	free((void *)opt_state->vnode_base);
	free((void *)opt_state->vmap);
	free((void *)opt_state->edges);
	free((void *)opt_state->space);
	free((void *)opt_state->levels);
	free((void *)opt_state->blocks);
}

/*
 * Return the number of stmts in 's'.
 */
static u_int
slength(struct slist *s)
{
	u_int n = 0;

	for (; s; s = s->next)
		if (s->s.code != NOP)
			++n;
	return n;
}

/*
 * Return the number of nodes reachable by 'p'.
 * All nodes should be initially unmarked.
 */
static int
count_blocks(struct icode *ic, struct block *p)
{
	if (p == 0 || isMarked(ic, p))
		return 0;
	Mark(ic, p);
	return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
}

/*
 * Do a depth first search on the flow graph, numbering the
 * the basic blocks, and entering them into the 'blocks' array.`
 */
static void
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
{
	int n;

	if (p == 0 || isMarked(ic, p))
		return;

	Mark(ic, p);
	n = opt_state->n_blocks++;
	p->id = n;
	opt_state->blocks[n] = p;

	number_blks_r(opt_state, ic, JT(p));
	number_blks_r(opt_state, ic, JF(p));
}

/*
 * Return the number of stmts in the flowgraph reachable by 'p'.
 * The nodes should be unmarked before calling.
 *
 * Note that "stmts" means "instructions", and that this includes
 *
 *	side-effect statements in 'p' (slength(p->stmts));
 *
 *	statements in the true branch from 'p' (count_stmts(JT(p)));
 *
 *	statements in the false branch from 'p' (count_stmts(JF(p)));
 *
 *	the conditional jump itself (1);
 *
 *	an extra long jump if the true branch requires it (p->longjt);
 *
 *	an extra long jump if the false branch requires it (p->longjf).
 */
static u_int
count_stmts(struct icode *ic, struct block *p)
{
	u_int n;

	if (p == 0 || isMarked(ic, p))
		return 0;
	Mark(ic, p);
	n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
}

/*
 * Allocate memory.  All allocation is done before optimization
 * is begun.  A linear bound on the size of all data structures is computed
 * from the total number of blocks and/or statements.
 */
static void
opt_init(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic)
{
	bpf_u_int32 *p;
	int i, n, max_stmts;

	/*
	 * First, count the blocks, so we can malloc an array to map
	 * block number to block.  Then, put the blocks into the array.
	 */
	unMarkAll(ic);
	n = count_blocks(ic, ic->root);
	opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
	if (opt_state->blocks == NULL)
		bpf_error(cstate, "malloc");
	unMarkAll(ic);
	opt_state->n_blocks = 0;
	number_blks_r(opt_state, ic, ic->root);

	opt_state->n_edges = 2 * opt_state->n_blocks;
	opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
	if (opt_state->edges == NULL)
		bpf_error(cstate, "malloc");

	/*
	 * The number of levels is bounded by the number of nodes.
	 */
	opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
	if (opt_state->levels == NULL)
		bpf_error(cstate, "malloc");

	opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1;
	opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1;

	/* XXX */
	opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space)
				 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space));
	if (opt_state->space == NULL)
		bpf_error(cstate, "malloc");
	p = opt_state->space;
	opt_state->all_dom_sets = p;
	for (i = 0; i < n; ++i) {
		opt_state->blocks[i]->dom = p;
		p += opt_state->nodewords;
	}
	opt_state->all_closure_sets = p;
	for (i = 0; i < n; ++i) {
		opt_state->blocks[i]->closure = p;
		p += opt_state->nodewords;
	}
	opt_state->all_edge_sets = p;
	for (i = 0; i < n; ++i) {
		register struct block *b = opt_state->blocks[i];

		b->et.edom = p;
		p += opt_state->edgewords;
		b->ef.edom = p;
		p += opt_state->edgewords;
		b->et.id = i;
		opt_state->edges[i] = &b->et;
		b->ef.id = opt_state->n_blocks + i;
		opt_state->edges[opt_state->n_blocks + i] = &b->ef;
		b->et.pred = b;
		b->ef.pred = b;
	}
	max_stmts = 0;
	for (i = 0; i < n; ++i)
		max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
	/*
	 * We allocate at most 3 value numbers per statement,
	 * so this is an upper bound on the number of valnodes
	 * we'll need.
	 */
	opt_state->maxval = 3 * max_stmts;
	opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
	opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
	if (opt_state->vmap == NULL || opt_state->vnode_base == NULL)
		bpf_error(cstate, "malloc");
}

/*
 * This is only used when supporting optimizer debugging.  It is
 * global state, so do *not* do more than one compile in parallel
 * and expect it to provide meaningful information.
 */
#ifdef BDEBUG
int bids[NBIDS];
#endif

/*
 * Returns true if successful.  Returns false if a branch has
 * an offset that is too large.  If so, we have marked that
 * branch so that on a subsequent iteration, it will be treated
 * properly.
 */
static int
convert_code_r(compiler_state_t *cstate, conv_state_t *conv_state,
    struct icode *ic, struct block *p)
{
	struct bpf_insn *dst;
	struct slist *src;
	u_int slen;
	u_int off;
	u_int extrajmps;	/* number of extra jumps inserted */
	struct slist **offset = NULL;

	if (p == 0 || isMarked(ic, p))
		return (1);
	Mark(ic, p);

	if (convert_code_r(cstate, conv_state, ic, JF(p)) == 0)
		return (0);
	if (convert_code_r(cstate, conv_state, ic, JT(p)) == 0)
		return (0);

	slen = slength(p->stmts);
	dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
		/* inflate length by any extra jumps */

	p->offset = (int)(dst - conv_state->fstart);

	/* generate offset[] for convenience  */
	if (slen) {
		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
		if (!offset) {
			bpf_error(cstate, "not enough core");
			/*NOTREACHED*/
		}
	}
	src = p->stmts;
	for (off = 0; off < slen && src; off++) {
#if 0
		printf("off=%d src=%x\n", off, src);
#endif
		offset[off] = src;
		src = src->next;
	}

	off = 0;
	for (src = p->stmts; src; src = src->next) {
		if (src->s.code == NOP)
			continue;
		dst->code = (u_short)src->s.code;
		dst->k = src->s.k;

		/* fill block-local relative jump */
		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
#if 0
			if (src->s.jt || src->s.jf) {
				bpf_error(cstate, "illegal jmp destination");
				/*NOTREACHED*/
			}
#endif
			goto filled;
		}
		if (off == slen - 2)	/*???*/
			goto filled;

	    {
		u_int i;
		int jt, jf;
		const char ljerr[] = "%s for block-local relative jump: off=%d";

#if 0
		printf("code=%x off=%d %x %x\n", src->s.code,
			off, src->s.jt, src->s.jf);
#endif

		if (!src->s.jt || !src->s.jf) {
			bpf_error(cstate, ljerr, "no jmp destination", off);
			/*NOTREACHED*/
		}

		jt = jf = 0;
		for (i = 0; i < slen; i++) {
			if (offset[i] == src->s.jt) {
				if (jt) {
					bpf_error(cstate, ljerr, "multiple matches", off);
					/*NOTREACHED*/
				}

				if (i - off - 1 >= 256) {
					bpf_error(cstate, ljerr, "out-of-range jump", off);
					/*NOTREACHED*/
				}
				dst->jt = (u_char)(i - off - 1);
				jt++;
			}
			if (offset[i] == src->s.jf) {
				if (jf) {
					bpf_error(cstate, ljerr, "multiple matches", off);
					/*NOTREACHED*/
				}
				if (i - off - 1 >= 256) {
					bpf_error(cstate, ljerr, "out-of-range jump", off);
					/*NOTREACHED*/
				}
				dst->jf = (u_char)(i - off - 1);
				jf++;
			}
		}
		if (!jt || !jf) {
			bpf_error(cstate, ljerr, "no destination found", off);
			/*NOTREACHED*/
		}
	    }
filled:
		++dst;
		++off;
	}
	if (offset)
		free(offset);

#ifdef BDEBUG
	if (dst - conv_state->fstart < NBIDS)
		bids[dst - conv_state->fstart] = p->id + 1;
#endif
	dst->code = (u_short)p->s.code;
	dst->k = p->s.k;
	if (JT(p)) {
		extrajmps = 0;
		off = JT(p)->offset - (p->offset + slen) - 1;
		if (off >= 256) {
		    /* offset too large for branch, must add a jump */
		    if (p->longjt == 0) {
		    	/* mark this instruction and retry */
			p->longjt++;
			return(0);
		    }
		    /* branch if T to following jump */
		    if (extrajmps >= 256) {
			bpf_error(cstate, "too many extra jumps");
			/*NOTREACHED*/
		    }
		    dst->jt = (u_char)extrajmps;
		    extrajmps++;
		    dst[extrajmps].code = BPF_JMP|BPF_JA;
		    dst[extrajmps].k = off - extrajmps;
		}
		else
		    dst->jt = (u_char)off;
		off = JF(p)->offset - (p->offset + slen) - 1;
		if (off >= 256) {
		    /* offset too large for branch, must add a jump */
		    if (p->longjf == 0) {
		    	/* mark this instruction and retry */
			p->longjf++;
			return(0);
		    }
		    /* branch if F to following jump */
		    /* if two jumps are inserted, F goes to second one */
		    if (extrajmps >= 256) {
			bpf_error(cstate, "too many extra jumps");
			/*NOTREACHED*/
		    }
		    dst->jf = (u_char)extrajmps;
		    extrajmps++;
		    dst[extrajmps].code = BPF_JMP|BPF_JA;
		    dst[extrajmps].k = off - extrajmps;
		}
		else
		    dst->jf = (u_char)off;
	}
	return (1);
}


/*
 * Convert flowgraph intermediate representation to the
 * BPF array representation.  Set *lenp to the number of instructions.
 *
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
 * not* do free(fp) before returning fp; doing so would make no sense,
 * as the BPF array pointed to by the return value of icode_to_fcode()
 * must be valid - it's being returned for use in a bpf_program structure.
 *
 * If it appears that icode_to_fcode() is leaking, the problem is that
 * the program using pcap_compile() is failing to free the memory in
 * the BPF program when it's done - the leak is in the program, not in
 * the routine that happens to be allocating the memory.  (By analogy, if
 * a program calls fopen() without ever calling fclose() on the FILE *,
 * it will leak the FILE structure; the leak is not in fopen(), it's in
 * the program.)  Change the program to use pcap_freecode() when it's
 * done with the filter program.  See the pcap man page.
 */
struct bpf_insn *
icode_to_fcode(compiler_state_t *cstate, struct icode *ic,
    struct block *root, u_int *lenp)
{
	u_int n;
	struct bpf_insn *fp;
	conv_state_t conv_state;

	/*
	 * Loop doing convert_code_r() until no branches remain
	 * with too-large offsets.
	 */
	for (;;) {
	    unMarkAll(ic);
	    n = *lenp = count_stmts(ic, root);

	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
	    if (fp == NULL)
		    bpf_error(cstate, "malloc");
	    memset((char *)fp, 0, sizeof(*fp) * n);
	    conv_state.fstart = fp;
	    conv_state.ftail = fp + n;

	    unMarkAll(ic);
	    if (convert_code_r(cstate, &conv_state, ic, root))
		break;
	    free(fp);
	}

	return fp;
}

/*
 * Make a copy of a BPF program and put it in the "fcode" member of
 * a "pcap_t".
 *
 * If we fail to allocate memory for the copy, fill in the "errbuf"
 * member of the "pcap_t" with an error message, and return -1;
 * otherwise, return 0.
 */
int
install_bpf_program(pcap_t *p, struct bpf_program *fp)
{
	size_t prog_size;

	/*
	 * Validate the program.
	 */
	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
		pcap_snprintf(p->errbuf, sizeof(p->errbuf),
			"BPF program is not valid");
		return (-1);
	}

	/*
	 * Free up any already installed program.
	 */
	pcap_freecode(&p->fcode);

	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
	p->fcode.bf_len = fp->bf_len;
	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
	if (p->fcode.bf_insns == NULL) {
		pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
		    errno, "malloc");
		return (-1);
	}
	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
	return (0);
}

#ifdef BDEBUG
static void
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
    FILE *out)
{
	int icount, noffset;
	int i;

	if (block == NULL || isMarked(ic, block))
		return;
	Mark(ic, block);

	icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
	noffset = min(block->offset + icount, (int)prog->bf_len);

	fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
	for (i = block->offset; i < noffset; i++) {
		fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
	}
	fprintf(out, "\" tooltip=\"");
	for (i = 0; i < BPF_MEMWORDS; i++)
		if (block->val[i] != VAL_UNKNOWN)
			fprintf(out, "val[%d]=%d ", i, block->val[i]);
	fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
	fprintf(out, "val[X]=%d", block->val[X_ATOM]);
	fprintf(out, "\"");
	if (JT(block) == NULL)
		fprintf(out, ", peripheries=2");
	fprintf(out, "];\n");

	dot_dump_node(ic, JT(block), prog, out);
	dot_dump_node(ic, JF(block), prog, out);
}

static void
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
{
	if (block == NULL || isMarked(ic, block))
		return;
	Mark(ic, block);

	if (JT(block)) {
		fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
				block->id, JT(block)->id);
		fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
			   block->id, JF(block)->id);
	}
	dot_dump_edge(ic, JT(block), out);
	dot_dump_edge(ic, JF(block), out);
}

/* Output the block CFG using graphviz/DOT language
 * In the CFG, block's code, value index for each registers at EXIT,
 * and the jump relationship is show.
 *
 * example DOT for BPF `ip src host 1.1.1.1' is:
    digraph BPF {
    	block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2	jf 5" tooltip="val[A]=0 val[X]=0"];
    	block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4	jf 5" tooltip="val[A]=0 val[X]=0"];
    	block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
    	block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
    	"block0":se -> "block1":n [label="T"];
    	"block0":sw -> "block3":n [label="F"];
    	"block1":se -> "block2":n [label="T"];
    	"block1":sw -> "block3":n [label="F"];
    }
 *
 *  After install graphviz on http://www.graphviz.org/, save it as bpf.dot
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
 */
static void
dot_dump(compiler_state_t *cstate, struct icode *ic)
{
	struct bpf_program f;
	FILE *out = stdout;

	memset(bids, 0, sizeof bids);
	f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);

	fprintf(out, "digraph BPF {\n");
	unMarkAll(ic);
	dot_dump_node(ic, ic->root, &f, out);
	unMarkAll(ic);
	dot_dump_edge(ic, ic->root, out);
	fprintf(out, "}\n");

	free((char *)f.bf_insns);
}

static void
plain_dump(compiler_state_t *cstate, struct icode *ic)
{
	struct bpf_program f;

	memset(bids, 0, sizeof bids);
	f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);
	bpf_dump(&f, 1);
	putchar('\n');
	free((char *)f.bf_insns);
}

static void
opt_dump(compiler_state_t *cstate, struct icode *ic)
{
	/*
	 * If the CFG, in DOT format, is requested, output it rather than
	 * the code that would be generated from that graph.
	 */
	if (pcap_print_dot_graph)
		dot_dump(cstate, ic);
	else
		plain_dump(cstate, ic);
}
#endif