qspi_loader.c
5.51 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include <stdlib.h>
#include "cdcacm.h"
#include <libopencm3/cm3/scb.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/quadspi.h>
#include "../flashrom/serprog.h"
#include "../flashrom/flash.h"
#define S_CMD_MAP ( \
(1 << S_CMD_NOP) | \
(1 << S_CMD_Q_IFACE) | \
(1 << S_CMD_Q_CMDMAP) | \
(1 << S_CMD_Q_PGMNAME) | \
(1 << S_CMD_Q_SERBUF) | \
(1 << S_CMD_Q_BUSTYPE) | \
(1 << S_CMD_SYNCNOP) | \
(1 << S_CMD_S_BUSTYPE) | \
(1 << S_CMD_O_SPIOP) | \
(1 << S_CMD_S_SPI_FREQ) \
)
static void cdcacm_to_spi(int len) {
if(len > 0) {
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_DLR = len - 1;
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_CCR &= ~(QUADSPI_CCR_FMODE_MASK << QUADSPI_CCR_FMODE_SHIFT);
for(int i=0;i<len;i++) {
QUADSPI_BYTE_DR = cdcacm_get_char();
}
while(QUADSPI_SR & QUADSPI_SR_BUSY);
}
}
static void spi_to_cdcacm_fast(int len) {
if(len > 0) {
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_DLR = len - 1;
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_CCR |= (1 & QUADSPI_CCR_FMODE_MASK) << QUADSPI_CCR_FMODE_SHIFT;
uint8_t buf[16];
for(int i=0;i<len/16;i++) {
for(int j=0;j<16;j++) {
buf[j]=QUADSPI_BYTE_DR;
}
cdcacm_put_buf(buf, 16);
}
for(int i=0;i<len%16;i++) {
cdcacm_put_char(QUADSPI_BYTE_DR);
}
while(QUADSPI_SR & QUADSPI_SR_BUSY);
}
}
static void setup_qspi(void) {
// GPIO Clock
rcc_periph_clock_enable(RCC_GPIOB);
rcc_periph_clock_enable(RCC_GPIOC);
rcc_periph_clock_enable(RCC_GPIOD);
// QSPI Clock
RCC_AHB3ENR |= RCC_AHB3RSTR_QSPIRST;
// GPIO Alternate Functions
gpio_mode_setup(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO2);
gpio_mode_setup(GPIOB, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO6); // Need to control #CS manually
gpio_mode_setup(GPIOC, GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, GPIO8); // #WR needs to be up
gpio_mode_setup(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO9);
gpio_mode_setup(GPIOD, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO12);
gpio_mode_setup(GPIOD, GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, GPIO13); // #HOLD needs to be up
gpio_set_af(GPIOB, GPIO_AF9, GPIO2);
gpio_set(GPIOB, GPIO6);
gpio_set_af(GPIOC, GPIO_AF10, GPIO8);
gpio_set_af(GPIOC, GPIO_AF9, GPIO9);
gpio_set_af(GPIOD, GPIO_AF9, GPIO12);
// QSPI Configuration
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_CCR |= ((1 & QUADSPI_CCR_DMODE_MASK) << QUADSPI_CCR_DMODE_SHIFT);
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_DCR |= ((0xff & QUADSPI_DCR_FSIZE_MASK) << QUADSPI_DCR_FSIZE_SHIFT);
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_CR |= ((14 & QUADSPI_CR_PRESCALE_MASK) << QUADSPI_CR_PRESCALE_SHIFT) | QUADSPI_CR_EN;
}
static void process_command(uint8_t command) {
uint32_t slen, rlen, freq, prescaler;
switch(command) {
case S_CMD_NOP:
cdcacm_put_char(S_ACK);
break;
case S_CMD_Q_IFACE:
cdcacm_put_char(S_ACK);
cdcacm_put_char(0x01);
cdcacm_put_char(0x00);
break;
case S_CMD_Q_CMDMAP:
cdcacm_put_char(S_ACK);
cdcacm_put_char(S_CMD_MAP & 0xff);
cdcacm_put_char((S_CMD_MAP >> 8) & 0xff);
cdcacm_put_char((S_CMD_MAP >> 16) & 0xff);
cdcacm_put_char((S_CMD_MAP >> 24) & 0xff);
for(int i=0;i<28;i++) {
cdcacm_put_char(0x00);
}
break;
case S_CMD_Q_PGMNAME:
cdcacm_put_char(S_ACK);
cdcacm_put_buf((uint8_t *) "zardam's serprog", 16);
break;
case S_CMD_Q_SERBUF:
cdcacm_put_char(S_ACK);
cdcacm_put_char(0x10);
cdcacm_put_char(0x00);
break;
case S_CMD_Q_BUSTYPE:
cdcacm_put_char(S_ACK);
cdcacm_put_char(BUS_SPI);
break;
case S_CMD_SYNCNOP:
cdcacm_put_char(S_NAK);
cdcacm_put_char(S_ACK);
break;
case S_CMD_O_SPIOP:
slen = (uint32_t) cdcacm_get_char();
slen |= (uint32_t) cdcacm_get_char() << 8;
slen |= (uint32_t) cdcacm_get_char() << 16;
rlen = (uint32_t) cdcacm_get_char();
rlen |= (uint32_t) cdcacm_get_char() << 8;
rlen |= (uint32_t) cdcacm_get_char() << 16;
cdcacm_put_char(S_ACK);
gpio_clear(GPIOB, GPIO6);
cdcacm_to_spi(slen);
spi_to_cdcacm_fast(rlen);
gpio_set(GPIOB, GPIO6);
break;
case S_CMD_S_BUSTYPE:
if(cdcacm_get_char() == BUS_SPI) {
cdcacm_put_char(S_ACK);
} else {
cdcacm_put_char(S_NAK);
}
break;
case S_CMD_S_SPI_FREQ:
cdcacm_put_char(S_ACK);
freq = (uint32_t) cdcacm_get_char();
freq |= (uint32_t) cdcacm_get_char() << 8;
freq |= (uint32_t) cdcacm_get_char() << 16;
freq |= (uint32_t) cdcacm_get_char() << 24;
prescaler = 120000000/freq-1;
if(prescaler > 255) prescaler = 255;
freq = 120000000/(prescaler+1);
while(QUADSPI_SR & QUADSPI_SR_BUSY);
QUADSPI_CR = (QUADSPI_CR & ~(QUADSPI_CR_PRESCALE_MASK << QUADSPI_CR_PRESCALE_SHIFT)) | ((prescaler & QUADSPI_CR_PRESCALE_MASK) << QUADSPI_CR_PRESCALE_SHIFT);
cdcacm_put_char(freq & 0xff);
cdcacm_put_char((freq >> 8) & 0xff);
cdcacm_put_char((freq >> 16) & 0xff);
cdcacm_put_char((freq >> 24) & 0xff);
break;
case 'q':
scb_reset_system();
break;
default:
cdcacm_put_char(S_NAK);
break;
}
}
int main(void)
{
// Relocate vector table as we run from SRAM
extern int vector_table;
SCB_VTOR = (uint32_t)&vector_table;
rcc_clock_setup_hse_3v3(&rcc_hse_25mhz_3v3[RCC_CLOCK_3V3_120MHZ]);
setup_qspi();
cdcacm_init();
while(1) {
process_command(cdcacm_get_char());
}
}