hyperbolic_arc_sine.cpp
1.43 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <poincare/hyperbolic_arc_sine.h>
#include <poincare/simplification_engine.h>
#include <poincare/trigonometry.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type HyperbolicArcSine::type() const {
return Type::HyperbolicArcSine;
}
Expression * HyperbolicArcSine::clone() const {
HyperbolicArcSine * a = new HyperbolicArcSine(m_operands, true);
return a;
}
Expression * HyperbolicArcSine::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
Expression * op = editableOperand(0);
if (op->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
return this;
}
template<typename T>
std::complex<T> HyperbolicArcSine::computeOnComplex(const std::complex<T> c, AngleUnit angleUnit) {
std::complex<T> result = std::asinh(c);
/* asinh has a branch cut on ]-inf*i, -i[U]i, +inf*i[: it is then multivalued
* on this cut. We followed the convention chosen by the lib c++ of llvm on
* ]+i+0, +i*inf+0[ (warning: atanh takes the other side of the cut values on
* ]+i-0, +i*inf+0[) and choose the values on ]-inf*i, -i[ to comply with
* asinh(-x) = -asinh(x). */
if (c.real() == 0 && c.imag() < 1) {
result.real(-result.real()); // other side of the cut
}
return Trigonometry::RoundToMeaningfulDigits(result);
}
}