nes_apu.c
31.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
/*
** Nofrendo (c) 1998-2000 Matthew Conte (matt@conte.com)
**
**
** This program is free software; you can redistribute it and/or
** modify it under the terms of version 2 of the GNU Library General
** Public License as published by the Free Software Foundation.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
** Library General Public License for more details. To obtain a
** copy of the GNU Library General Public License, write to the Free
** Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
** Any permitted reproduction of these routines, in whole or in part,
** must bear this legend.
**
**
** nes_apu.c
**
** NES APU emulation
** $Id: nes_apu.c,v 1.2 2001/04/27 14:37:11 neil Exp $
*/
#include <string.h>
#include <noftypes.h>
#include <log.h>
#include <nes_apu.h>
#include "nes6502.h"
#define APU_OVERSAMPLE
#define APU_VOLUME_DECAY(x) ((x) -= ((x) >> 7))
/* the following seem to be the correct (empirically determined)
** relative volumes between the sound channels
*/
#define APU_RECTANGLE_OUTPUT(channel) (apu.rectangle[channel].output_vol)
#define APU_TRIANGLE_OUTPUT (apu.triangle.output_vol + (apu.triangle.output_vol >> 2))
#define APU_NOISE_OUTPUT ((apu.noise.output_vol + apu.noise.output_vol + apu.noise.output_vol) >> 2)
#define APU_DMC_OUTPUT ((apu.dmc.output_vol + apu.dmc.output_vol + apu.dmc.output_vol) >> 2)
/* active APU */
static apu_t apu;
/* look up table madness */
static int32 decay_lut[16];
static int vbl_lut[32];
static int trilength_lut[128];
/* noise lookups for both modes */
#ifndef REALTIME_NOISE
static int8 noise_long_lut[APU_NOISE_32K];
static int8 noise_short_lut[APU_NOISE_93];
#endif /* !REALTIME_NOISE */
/* vblank length table used for rectangles, triangle, noise */
static const uint8 vbl_length[32] =
{
5, 127,
10, 1,
19, 2,
40, 3,
80, 4,
30, 5,
7, 6,
13, 7,
6, 8,
12, 9,
24, 10,
48, 11,
96, 12,
36, 13,
8, 14,
16, 15
};
/* frequency limit of rectangle channels */
static const int freq_limit[8] =
{
0x3FF, 0x555, 0x666, 0x71C, 0x787, 0x7C1, 0x7E0, 0x7F0
};
/* noise frequency lookup table */
static const int noise_freq[16] =
{
4, 8, 16, 32, 64, 96, 128, 160,
202, 254, 380, 508, 762, 1016, 2034, 4068
};
/* DMC transfer freqs */
const int dmc_clocks[16] =
{
428, 380, 340, 320, 286, 254, 226, 214,
190, 160, 142, 128, 106, 85, 72, 54
};
/* ratios of pos/neg pulse for rectangle waves */
static const int duty_flip[4] = { 2, 4, 8, 12 };
void apu_setcontext(apu_t *src_apu)
{
apu = *src_apu;
}
void apu_getcontext(apu_t *dest_apu)
{
*dest_apu = apu;
}
void apu_setchan(int chan, bool enabled)
{
if (enabled)
apu.mix_enable |= (1 << chan);
else
apu.mix_enable &= ~(1 << chan);
}
/* emulation of the 15-bit shift register the
** NES uses to generate pseudo-random series
** for the white noise channel
*/
#ifdef REALTIME_NOISE
INLINE int8 shift_register15(uint8 xor_tap)
{
static int sreg = 0x4000;
int bit0, tap, bit14;
bit0 = sreg & 1;
tap = (sreg & xor_tap) ? 1 : 0;
bit14 = (bit0 ^ tap);
sreg >>= 1;
sreg |= (bit14 << 14);
return (bit0 ^ 1);
}
#else /* !REALTIME_NOISE */
static void shift_register15(int8 *buf, int count)
{
static int sreg = 0x4000;
int bit0, bit1, bit6, bit14;
if (count == APU_NOISE_93)
{
while (count--)
{
bit0 = sreg & 1;
bit6 = (sreg & 0x40) >> 6;
bit14 = (bit0 ^ bit6);
sreg >>= 1;
sreg |= (bit14 << 14);
*buf++ = bit0 ^ 1;
}
}
else /* 32K noise */
{
while (count--)
{
bit0 = sreg & 1;
bit1 = (sreg & 2) >> 1;
bit14 = (bit0 ^ bit1);
sreg >>= 1;
sreg |= (bit14 << 14);
*buf++ = bit0 ^ 1;
}
}
}
#endif /* !REALTIME_NOISE */
/* RECTANGLE WAVE
** ==============
** reg0: 0-3=volume, 4=envelope, 5=hold, 6-7=duty cycle
** reg1: 0-2=sweep shifts, 3=sweep inc/dec, 4-6=sweep length, 7=sweep on
** reg2: 8 bits of freq
** reg3: 0-2=high freq, 7-4=vbl length counter
*/
#ifdef APU_OVERSAMPLE
#define APU_MAKE_RECTANGLE(ch) \
static int32 apu_rectangle_##ch(void) \
{ \
int32 output, total; \
int num_times; \
\
APU_VOLUME_DECAY(apu.rectangle[ch].output_vol); \
\
if (false == apu.rectangle[ch].enabled || 0 == apu.rectangle[ch].vbl_length) \
return APU_RECTANGLE_OUTPUT(ch); \
\
/* vbl length counter */ \
if (false == apu.rectangle[ch].holdnote) \
apu.rectangle[ch].vbl_length--; \
\
/* envelope decay at a rate of (env_delay + 1) / 240 secs */ \
apu.rectangle[ch].env_phase -= 4; /* 240/60 */ \
while (apu.rectangle[ch].env_phase < 0) \
{ \
apu.rectangle[ch].env_phase += apu.rectangle[ch].env_delay; \
\
if (apu.rectangle[ch].holdnote) \
apu.rectangle[ch].env_vol = (apu.rectangle[ch].env_vol + 1) & 0x0F; \
else if (apu.rectangle[ch].env_vol < 0x0F) \
apu.rectangle[ch].env_vol++; \
} \
\
/* TODO: find true relation of freq_limit to register values */ \
if (apu.rectangle[ch].freq < 8 \
|| (false == apu.rectangle[ch].sweep_inc \
&& apu.rectangle[ch].freq > apu.rectangle[ch].freq_limit)) \
return APU_RECTANGLE_OUTPUT(ch); \
\
/* frequency sweeping at a rate of (sweep_delay + 1) / 120 secs */ \
if (apu.rectangle[ch].sweep_on && apu.rectangle[ch].sweep_shifts) \
{ \
apu.rectangle[ch].sweep_phase -= 2; /* 120/60 */ \
while (apu.rectangle[ch].sweep_phase < 0) \
{ \
apu.rectangle[ch].sweep_phase += apu.rectangle[ch].sweep_delay; \
\
if (apu.rectangle[ch].sweep_inc) /* ramp up */ \
{ \
if (0 == ch) \
apu.rectangle[ch].freq += ~(apu.rectangle[ch].freq >> apu.rectangle[ch].sweep_shifts); \
else \
apu.rectangle[ch].freq -= (apu.rectangle[ch].freq >> apu.rectangle[ch].sweep_shifts); \
} \
else /* ramp down */ \
{ \
apu.rectangle[ch].freq += (apu.rectangle[ch].freq >> apu.rectangle[ch].sweep_shifts); \
} \
} \
} \
\
apu.rectangle[ch].accum -= apu.cycle_rate; \
if (apu.rectangle[ch].accum >= 0) \
return APU_RECTANGLE_OUTPUT(ch); \
\
if (apu.rectangle[ch].fixed_envelope) \
output = apu.rectangle[ch].volume << 8; /* fixed volume */ \
else \
output = (apu.rectangle[ch].env_vol ^ 0x0F) << 8; \
\
num_times = total = 0; \
\
while (apu.rectangle[ch].accum < 0) \
{ \
apu.rectangle[ch].accum += apu.rectangle[ch].freq + 1; \
apu.rectangle[ch].adder = (apu.rectangle[ch].adder + 1) & 0x0F; \
\
if (apu.rectangle[ch].adder < apu.rectangle[ch].duty_flip) \
total += output; \
else \
total -= output; \
\
num_times++; \
} \
\
apu.rectangle[ch].output_vol = total / num_times; \
return APU_RECTANGLE_OUTPUT(ch); \
}
#else /* !APU_OVERSAMPLE */
#define APU_MAKE_RECTANGLE(ch) \
static int32 apu_rectangle_##ch(void) \
{ \
int32 output; \
\
APU_VOLUME_DECAY(apu.rectangle[ch].output_vol); \
\
if (false == apu.rectangle[ch].enabled || 0 == apu.rectangle[ch].vbl_length) \
return APU_RECTANGLE_OUTPUT(ch); \
\
/* vbl length counter */ \
if (false == apu.rectangle[ch].holdnote) \
apu.rectangle[ch].vbl_length--; \
\
/* envelope decay at a rate of (env_delay + 1) / 240 secs */ \
apu.rectangle[ch].env_phase -= 4; /* 240/60 */ \
while (apu.rectangle[ch].env_phase < 0) \
{ \
apu.rectangle[ch].env_phase += apu.rectangle[ch].env_delay; \
\
if (apu.rectangle[ch].holdnote) \
apu.rectangle[ch].env_vol = (apu.rectangle[ch].env_vol + 1) & 0x0F; \
else if (apu.rectangle[ch].env_vol < 0x0F) \
apu.rectangle[ch].env_vol++; \
} \
\
/* TODO: find true relation of freq_limit to register values */ \
if (apu.rectangle[ch].freq < 8 || (false == apu.rectangle[ch].sweep_inc && apu.rectangle[ch].freq > apu.rectangle[ch].freq_limit)) \
return APU_RECTANGLE_OUTPUT(ch); \
\
/* frequency sweeping at a rate of (sweep_delay + 1) / 120 secs */ \
if (apu.rectangle[ch].sweep_on && apu.rectangle[ch].sweep_shifts) \
{ \
apu.rectangle[ch].sweep_phase -= 2; /* 120/60 */ \
while (apu.rectangle[ch].sweep_phase < 0) \
{ \
apu.rectangle[ch].sweep_phase += apu.rectangle[ch].sweep_delay; \
\
if (apu.rectangle[ch].sweep_inc) /* ramp up */ \
{ \
if (0 == ch) \
apu.rectangle[ch].freq += ~(apu.rectangle[ch].freq >> apu.rectangle[ch].sweep_shifts); \
else \
apu.rectangle[ch].freq -= (apu.rectangle[ch].freq >> apu.rectangle[ch].sweep_shifts); \
} \
else /* ramp down */ \
{ \
apu.rectangle[ch].freq += (apu.rectangle[ch].freq >> apu.rectangle[ch].sweep_shifts); \
} \
} \
} \
\
apu.rectangle[ch].accum -= apu.cycle_rate; \
if (apu.rectangle[ch].accum >= 0) \
return APU_RECTANGLE_OUTPUT(ch); \
\
while (apu.rectangle[ch].accum < 0) \
{ \
apu.rectangle[ch].accum += (apu.rectangle[ch].freq + 1); \
apu.rectangle[ch].adder = (apu.rectangle[ch].adder + 1) & 0x0F; \
} \
\
if (apu.rectangle[ch].fixed_envelope) \
output = apu.rectangle[ch].volume << 8; /* fixed volume */ \
else \
output = (apu.rectangle[ch].env_vol ^ 0x0F) << 8; \
\
if (0 == apu.rectangle[ch].adder) \
apu.rectangle[ch].output_vol = output; \
else if (apu.rectangle[ch].adder == apu.rectangle[ch].duty_flip) \
apu.rectangle[ch].output_vol = -output; \
\
return APU_RECTANGLE_OUTPUT(ch); \
}
#endif /* !APU_OVERSAMPLE */
/* generate the functions */
APU_MAKE_RECTANGLE(0)
APU_MAKE_RECTANGLE(1)
/* TRIANGLE WAVE
** =============
** reg0: 7=holdnote, 6-0=linear length counter
** reg2: low 8 bits of frequency
** reg3: 7-3=length counter, 2-0=high 3 bits of frequency
*/
static int32 apu_triangle(void)
{
APU_VOLUME_DECAY(apu.triangle.output_vol);
if (false == apu.triangle.enabled || 0 == apu.triangle.vbl_length)
return APU_TRIANGLE_OUTPUT;
if (apu.triangle.counter_started)
{
if (apu.triangle.linear_length > 0)
apu.triangle.linear_length--;
if (apu.triangle.vbl_length && false == apu.triangle.holdnote)
apu.triangle.vbl_length--;
}
else if (false == apu.triangle.holdnote && apu.triangle.write_latency)
{
if (--apu.triangle.write_latency == 0)
apu.triangle.counter_started = true;
}
if (0 == apu.triangle.linear_length || apu.triangle.freq < 4) /* inaudible */
return APU_TRIANGLE_OUTPUT;
apu.triangle.accum -= apu.cycle_rate; \
while (apu.triangle.accum < 0)
{
apu.triangle.accum += apu.triangle.freq;
apu.triangle.adder = (apu.triangle.adder + 1) & 0x1F;
if (apu.triangle.adder & 0x10)
apu.triangle.output_vol -= (2 << 8);
else
apu.triangle.output_vol += (2 << 8);
}
return APU_TRIANGLE_OUTPUT;
}
/* WHITE NOISE CHANNEL
** ===================
** reg0: 0-3=volume, 4=envelope, 5=hold
** reg2: 7=small(93 byte) sample,3-0=freq lookup
** reg3: 7-4=vbl length counter
*/
/* TODO: AAAAAAAAAAAAAAAAAAAAAAAA! #ifdef MADNESS! */
static int32 apu_noise(void)
{
int32 outvol;
#if defined(APU_OVERSAMPLE) && defined(REALTIME_NOISE)
#else /* !(APU_OVERSAMPLE && REALTIME_NOISE) */
int32 noise_bit;
#endif /* !(APU_OVERSAMPLE && REALTIME_NOISE) */
#ifdef APU_OVERSAMPLE
int num_times;
int32 total;
#endif /* APU_OVERSAMPLE */
APU_VOLUME_DECAY(apu.noise.output_vol);
if (false == apu.noise.enabled || 0 == apu.noise.vbl_length)
return APU_NOISE_OUTPUT;
/* vbl length counter */
if (false == apu.noise.holdnote)
apu.noise.vbl_length--;
/* envelope decay at a rate of (env_delay + 1) / 240 secs */
apu.noise.env_phase -= 4; /* 240/60 */
while (apu.noise.env_phase < 0)
{
apu.noise.env_phase += apu.noise.env_delay;
if (apu.noise.holdnote)
apu.noise.env_vol = (apu.noise.env_vol + 1) & 0x0F;
else if (apu.noise.env_vol < 0x0F)
apu.noise.env_vol++;
}
apu.noise.accum -= apu.cycle_rate;
if (apu.noise.accum >= 0)
return APU_NOISE_OUTPUT;
#ifdef APU_OVERSAMPLE
if (apu.noise.fixed_envelope)
outvol = apu.noise.volume << 8; /* fixed volume */
else
outvol = (apu.noise.env_vol ^ 0x0F) << 8;
num_times = total = 0;
#endif /* APU_OVERSAMPLE */
while (apu.noise.accum < 0)
{
apu.noise.accum += apu.noise.freq;
#ifdef REALTIME_NOISE
#ifdef APU_OVERSAMPLE
if (shift_register15(apu.noise.xor_tap))
total += outvol;
else
total -= outvol;
num_times++;
#else /* !APU_OVERSAMPLE */
noise_bit = shift_register15(apu.noise.xor_tap);
#endif /* !APU_OVERSAMPLE */
#else /* !REALTIME_NOISE */
apu.noise.cur_pos++;
if (apu.noise.short_sample)
{
if (APU_NOISE_93 == apu.noise.cur_pos)
apu.noise.cur_pos = 0;
}
else
{
if (APU_NOISE_32K == apu.noise.cur_pos)
apu.noise.cur_pos = 0;
}
#ifdef APU_OVERSAMPLE
if (apu.noise.short_sample)
noise_bit = noise_short_lut[apu.noise.cur_pos];
else
noise_bit = noise_long_lut[apu.noise.cur_pos];
if (noise_bit)
total += outvol;
else
total -= outvol;
num_times++;
#endif /* APU_OVERSAMPLE */
#endif /* !REALTIME_NOISE */
}
#ifdef APU_OVERSAMPLE
apu.noise.output_vol = total / num_times;
#else /* !APU_OVERSAMPLE */
if (apu.noise.fixed_envelope)
outvol = apu.noise.volume << 8; /* fixed volume */
else
outvol = (apu.noise.env_vol ^ 0x0F) << 8;
#ifndef REALTIME_NOISE
if (apu.noise.short_sample)
noise_bit = noise_short_lut[apu.noise.cur_pos];
else
noise_bit = noise_long_lut[apu.noise.cur_pos];
#endif /* !REALTIME_NOISE */
if (noise_bit)
apu.noise.output_vol = outvol;
else
apu.noise.output_vol = -outvol;
#endif /* !APU_OVERSAMPLE */
return APU_NOISE_OUTPUT;
}
INLINE void apu_dmcreload(void)
{
apu.dmc.address = apu.dmc.cached_addr;
apu.dmc.dma_length = apu.dmc.cached_dmalength;
apu.dmc.irq_occurred = false;
}
/* DELTA MODULATION CHANNEL
** =========================
** reg0: 7=irq gen, 6=looping, 3-0=pointer to clock table
** reg1: output dc level, 6 bits unsigned
** reg2: 8 bits of 64-byte aligned address offset : $C000 + (value * 64)
** reg3: length, (value * 16) + 1
*/
static int32 apu_dmc(void)
{
int delta_bit;
APU_VOLUME_DECAY(apu.dmc.output_vol);
/* only process when channel is alive */
if (apu.dmc.dma_length)
{
apu.dmc.accum -= apu.cycle_rate;
while (apu.dmc.accum < 0)
{
apu.dmc.accum += apu.dmc.freq;
delta_bit = (apu.dmc.dma_length & 7) ^ 7;
if (7 == delta_bit)
{
apu.dmc.cur_byte = nes6502_getbyte(apu.dmc.address);
/* steal a cycle from CPU*/
nes6502_burn(1);
/* prevent wraparound */
if (0xFFFF == apu.dmc.address)
apu.dmc.address = 0x8000;
else
apu.dmc.address++;
}
if (--apu.dmc.dma_length == 0)
{
/* if loop bit set, we're cool to retrigger sample */
if (apu.dmc.looping)
{
apu_dmcreload();
}
else
{
/* check to see if we should generate an irq */
if (apu.dmc.irq_gen)
{
apu.dmc.irq_occurred = true;
if (apu.irq_callback)
apu.irq_callback();
}
/* bodge for timestamp queue */
apu.dmc.enabled = false;
break;
}
}
/* positive delta */
if (apu.dmc.cur_byte & (1 << delta_bit))
{
if (apu.dmc.regs[1] < 0x7D)
{
apu.dmc.regs[1] += 2;
apu.dmc.output_vol += (2 << 8);
}
}
/* negative delta */
else
{
if (apu.dmc.regs[1] > 1)
{
apu.dmc.regs[1] -= 2;
apu.dmc.output_vol -= (2 << 8);
}
}
}
}
return APU_DMC_OUTPUT;
}
void apu_write(uint32 address, uint8 value)
{
int chan;
switch (address)
{
/* rectangles */
case APU_WRA0:
case APU_WRB0:
chan = (address & 4) >> 2;
apu.rectangle[chan].regs[0] = value;
apu.rectangle[chan].volume = value & 0x0F;
apu.rectangle[chan].env_delay = decay_lut[value & 0x0F];
apu.rectangle[chan].holdnote = (value & 0x20) ? true : false;
apu.rectangle[chan].fixed_envelope = (value & 0x10) ? true : false;
apu.rectangle[chan].duty_flip = duty_flip[value >> 6];
break;
case APU_WRA1:
case APU_WRB1:
chan = (address & 4) >> 2;
apu.rectangle[chan].regs[1] = value;
apu.rectangle[chan].sweep_on = (value & 0x80) ? true : false;
apu.rectangle[chan].sweep_shifts = value & 7;
apu.rectangle[chan].sweep_delay = decay_lut[(value >> 4) & 7];
apu.rectangle[chan].sweep_inc = (value & 0x08) ? true : false;
apu.rectangle[chan].freq_limit = freq_limit[value & 7];
break;
case APU_WRA2:
case APU_WRB2:
chan = (address & 4) >> 2;
apu.rectangle[chan].regs[2] = value;
apu.rectangle[chan].freq = (apu.rectangle[chan].freq & ~0xFF) | value;
break;
case APU_WRA3:
case APU_WRB3:
chan = (address & 4) >> 2;
apu.rectangle[chan].regs[3] = value;
apu.rectangle[chan].vbl_length = vbl_lut[value >> 3];
apu.rectangle[chan].env_vol = 0;
apu.rectangle[chan].freq = ((value & 7) << 8) | (apu.rectangle[chan].freq & 0xFF);
apu.rectangle[chan].adder = 0;
break;
/* triangle */
case APU_WRC0:
apu.triangle.regs[0] = value;
apu.triangle.holdnote = (value & 0x80) ? true : false;
if (false == apu.triangle.counter_started && apu.triangle.vbl_length)
apu.triangle.linear_length = trilength_lut[value & 0x7F];
break;
case APU_WRC2:
apu.triangle.regs[1] = value;
apu.triangle.freq = (((apu.triangle.regs[2] & 7) << 8) + value) + 1;
break;
case APU_WRC3:
apu.triangle.regs[2] = value;
/* this is somewhat of a hack. there appears to be some latency on
** the Real Thing between when trireg0 is written to and when the
** linear length counter actually begins its countdown. we want to
** prevent the case where the program writes to the freq regs first,
** then to reg 0, and the counter accidentally starts running because
** of the sound queue's timestamp processing.
**
** set latency to a couple hundred cycles -- should be plenty of time
** for the 6502 code to do a couple of table dereferences and load up
** the other triregs
*/
apu.triangle.write_latency = (int) (228 / apu.cycle_rate);
apu.triangle.freq = (((value & 7) << 8) + apu.triangle.regs[1]) + 1;
apu.triangle.vbl_length = vbl_lut[value >> 3];
apu.triangle.counter_started = false;
apu.triangle.linear_length = trilength_lut[apu.triangle.regs[0] & 0x7F];
break;
/* noise */
case APU_WRD0:
apu.noise.regs[0] = value;
apu.noise.env_delay = decay_lut[value & 0x0F];
apu.noise.holdnote = (value & 0x20) ? true : false;
apu.noise.fixed_envelope = (value & 0x10) ? true : false;
apu.noise.volume = value & 0x0F;
break;
case APU_WRD2:
apu.noise.regs[1] = value;
apu.noise.freq = noise_freq[value & 0x0F];
#ifdef REALTIME_NOISE
apu.noise.xor_tap = (value & 0x80) ? 0x40: 0x02;
#else /* !REALTIME_NOISE */
/* detect transition from long->short sample */
if ((value & 0x80) && false == apu.noise.short_sample)
{
/* recalculate short noise buffer */
shift_register15(noise_short_lut, APU_NOISE_93);
apu.noise.cur_pos = 0;
}
apu.noise.short_sample = (value & 0x80) ? true : false;
#endif /* !REALTIME_NOISE */
break;
case APU_WRD3:
apu.noise.regs[2] = value;
apu.noise.vbl_length = vbl_lut[value >> 3];
apu.noise.env_vol = 0; /* reset envelope */
break;
/* DMC */
case APU_WRE0:
apu.dmc.regs[0] = value;
apu.dmc.freq = dmc_clocks[value & 0x0F];
apu.dmc.looping = (value & 0x40) ? true : false;
if (value & 0x80)
{
apu.dmc.irq_gen = true;
}
else
{
apu.dmc.irq_gen = false;
apu.dmc.irq_occurred = false;
}
break;
case APU_WRE1: /* 7-bit DAC */
/* add the _delta_ between written value and
** current output level of the volume reg
*/
value &= 0x7F; /* bit 7 ignored */
apu.dmc.output_vol += ((value - apu.dmc.regs[1]) << 8);
apu.dmc.regs[1] = value;
break;
case APU_WRE2:
apu.dmc.regs[2] = value;
apu.dmc.cached_addr = 0xC000 + (uint16) (value << 6);
break;
case APU_WRE3:
apu.dmc.regs[3] = value;
apu.dmc.cached_dmalength = ((value << 4) + 1) << 3;
break;
case APU_SMASK:
/* bodge for timestamp queue */
apu.dmc.enabled = (value & 0x10) ? true : false;
apu.enable_reg = value;
for (chan = 0; chan < 2; chan++)
{
if (value & (1 << chan))
{
apu.rectangle[chan].enabled = true;
}
else
{
apu.rectangle[chan].enabled = false;
apu.rectangle[chan].vbl_length = 0;
}
}
if (value & 0x04)
{
apu.triangle.enabled = true;
}
else
{
apu.triangle.enabled = false;
apu.triangle.vbl_length = 0;
apu.triangle.linear_length = 0;
apu.triangle.counter_started = false;
apu.triangle.write_latency = 0;
}
if (value & 0x08)
{
apu.noise.enabled = true;
}
else
{
apu.noise.enabled = false;
apu.noise.vbl_length = 0;
}
if (value & 0x10)
{
if (0 == apu.dmc.dma_length)
apu_dmcreload();
}
else
{
apu.dmc.dma_length = 0;
}
apu.dmc.irq_occurred = false;
break;
/* unused, but they get hit in some mem-clear loops */
case 0x4009:
case 0x400D:
break;
default:
break;
}
}
/* Read from $4000-$4017 */
uint8 apu_read(uint32 address)
{
uint8 value;
switch (address)
{
case APU_SMASK:
value = 0;
/* Return 1 in 0-5 bit pos if a channel is playing */
if (apu.rectangle[0].enabled && apu.rectangle[0].vbl_length)
value |= 0x01;
if (apu.rectangle[1].enabled && apu.rectangle[1].vbl_length)
value |= 0x02;
if (apu.triangle.enabled && apu.triangle.vbl_length)
value |= 0x04;
if (apu.noise.enabled && apu.noise.vbl_length)
value |= 0x08;
/* bodge for timestamp queue */
if (apu.dmc.enabled)
value |= 0x10;
if (apu.dmc.irq_occurred)
value |= 0x80;
if (apu.irqclear_callback)
value |= apu.irqclear_callback();
break;
default:
value = (address >> 8); /* heavy capacitance on data bus */
break;
}
return value;
}
#define CLIP_OUTPUT16(out) \
{ \
/*out <<= 1;*/ \
if (out > 0x7FFF) \
out = 0x7FFF; \
else if (out < -0x8000) \
out = -0x8000; \
}
void apu_process(void *buffer, int num_samples)
{
static int32 prev_sample = 0;
int16 *buf16;
uint8 *buf8;
if (NULL != buffer)
{
/* bleh */
apu.buffer = buffer;
buf16 = (int16 *) buffer;
buf8 = (uint8 *) buffer;
while (num_samples--)
{
int32 next_sample, accum = 0;
if (apu.mix_enable & 0x01)
accum += apu_rectangle_0();
if (apu.mix_enable & 0x02)
accum += apu_rectangle_1();
if (apu.mix_enable & 0x04)
accum += apu_triangle();
if (apu.mix_enable & 0x08)
accum += apu_noise();
if (apu.mix_enable & 0x10)
accum += apu_dmc();
if (apu.ext && (apu.mix_enable & 0x20))
accum += apu.ext->process();
/* do any filtering */
if (APU_FILTER_NONE != apu.filter_type)
{
next_sample = accum;
if (APU_FILTER_LOWPASS == apu.filter_type)
{
accum += prev_sample;
accum >>= 1;
}
else
accum = (accum + accum + accum + prev_sample) >> 2;
prev_sample = next_sample;
}
/* do clipping */
CLIP_OUTPUT16(accum);
/* signed 16-bit output, unsigned 8-bit */
if (16 == apu.sample_bits)
*buf16++ = (int16) accum;
else
*buf8++ = (accum >> 8) ^ 0x80;
}
}
}
/* set the filter type */
void apu_setfilter(int filter_type)
{
apu.filter_type = filter_type;
}
void apu_reset(void)
{
uint32 address;
/* initialize all channel members */
for (address = 0x4000; address <= 0x4013; address++)
apu_write(address, 0);
apu_write(0x4015, 0);
if (apu.ext && NULL != apu.ext->reset)
apu.ext->reset();
}
void apu_build_luts(int num_samples)
{
int i;
/* lut used for enveloping and frequency sweeps */
for (i = 0; i < 16; i++)
decay_lut[i] = num_samples * (i + 1);
/* used for note length, based on vblanks and size of audio buffer */
for (i = 0; i < 32; i++)
vbl_lut[i] = vbl_length[i] * num_samples;
/* triangle wave channel's linear length table */
for (i = 0; i < 128; i++)
trilength_lut[i] = (int) (0.25 * i * num_samples);
#ifndef REALTIME_NOISE
/* generate noise samples */
shift_register15(noise_long_lut, APU_NOISE_32K);
shift_register15(noise_short_lut, APU_NOISE_93);
#endif /* !REALTIME_NOISE */
}
void apu_setparams(double base_freq, int sample_rate, int refresh_rate, int sample_bits)
{
apu.sample_rate = sample_rate;
apu.refresh_rate = refresh_rate;
apu.sample_bits = sample_bits;
apu.num_samples = sample_rate / refresh_rate;
if (0 == base_freq)
apu.base_freq = APU_BASEFREQ;
else
apu.base_freq = base_freq;
apu.cycle_rate = (float) (apu.base_freq / sample_rate);
/* build various lookup tables for apu */
apu_build_luts(apu.num_samples);
apu_reset();
}
/* Initializes emulated sound hardware, creates waveforms/voices */
apu_t *apu_create(double base_freq, int sample_rate, int refresh_rate, int sample_bits)
{
apu_t *temp_apu;
int channel;
temp_apu = malloc(sizeof(apu_t));
if (NULL == temp_apu)
return NULL;
memset(temp_apu, 0, sizeof(apu_t));
/* set the update routine */
temp_apu->process = apu_process;
temp_apu->ext = NULL;
/* clear the callbacks */
temp_apu->irq_callback = NULL;
temp_apu->irqclear_callback = NULL;
apu_setcontext(temp_apu);
apu_setparams(base_freq, sample_rate, refresh_rate, sample_bits);
for (channel = 0; channel < 6; channel++)
apu_setchan(channel, true);
apu_setfilter(APU_FILTER_WEIGHTED);
apu_getcontext(temp_apu);
return temp_apu;
}
void apu_destroy(apu_t **src_apu)
{
if (*src_apu)
{
if ((*src_apu)->ext && NULL != (*src_apu)->ext->shutdown)
(*src_apu)->ext->shutdown();
free(*src_apu);
*src_apu = NULL;
}
}
void apu_setext(apu_t *src_apu, apuext_t *ext)
{
ASSERT(src_apu);
src_apu->ext = ext;
/* initialize it */
if (src_apu->ext && NULL != src_apu->ext->init)
src_apu->ext->init();
}
/*
** $Log: nes_apu.c,v $
** Revision 1.2 2001/04/27 14:37:11 neil
** wheeee
**
** Revision 1.1 2001/04/27 12:54:40 neil
** blah
**
** Revision 1.1.1.1 2001/04/27 07:03:54 neil
** initial
**
** Revision 1.6 2000/12/08 02:36:14 matt
** bye bye apu queue (for now)
**
** Revision 1.5 2000/11/27 19:33:53 matt
** no special treatment for nsf
**
** Revision 1.4 2000/11/25 20:29:17 matt
** weighted filter is now default
**
** Revision 1.3 2000/11/21 13:28:19 matt
** take care to zero allocated mem
**
** Revision 1.2 2000/10/28 15:20:59 matt
** irq callbacks in nes_apu
**
** Revision 1.1 2000/10/24 12:19:59 matt
** changed directory structure
**
** Revision 1.44 2000/10/23 17:53:06 matt
** set ptr to NULL after freeing
**
** Revision 1.43 2000/10/17 11:56:42 matt
** selectable apu base frequency
**
** Revision 1.42 2000/10/13 12:16:01 matt
** macro-ized the stuff that should be removed
**
** Revision 1.41 2000/10/10 13:58:18 matt
** stroustrup squeezing his way in the door
**
** Revision 1.40 2000/10/03 11:56:20 matt
** better support for optional sound ext routines
**
** Revision 1.39 2000/09/27 12:26:03 matt
** changed sound accumulators back to floats
**
** Revision 1.38 2000/09/18 02:12:55 matt
** more optimizations
**
** Revision 1.37 2000/09/15 13:38:40 matt
** changes for optimized apu core
**
** Revision 1.36 2000/09/15 04:58:07 matt
** simplifying and optimizing APU core
**
** Revision 1.35 2000/09/07 21:57:14 matt
** api change
**
** Revision 1.34 2000/08/16 05:01:01 matt
** small buglet fixed
**
** Revision 1.33 2000/08/15 12:38:04 matt
** removed debug output
**
** Revision 1.32 2000/08/15 12:36:51 matt
** calling apu_process with buffer=NULL causes silent emulation of APU
**
** Revision 1.31 2000/08/11 02:27:21 matt
** general cleanups, plus apu_setparams routine
**
** Revision 1.30 2000/07/31 04:32:52 matt
** fragsize problem fixed, perhaps
**
** Revision 1.29 2000/07/30 04:32:59 matt
** no more apu_getcyclerate hack
**
** Revision 1.28 2000/07/28 03:15:46 matt
** accuracy changes for rectangle frequency sweeps
**
** Revision 1.27 2000/07/27 02:49:50 matt
** eccentricity in sweeping hardware now emulated correctly
**
** Revision 1.26 2000/07/25 02:25:14 matt
** safer apu_destroy
**
** Revision 1.25 2000/07/23 15:10:54 matt
** hacks for win32
**
** Revision 1.24 2000/07/17 01:52:31 matt
** made sure last line of all source files is a newline
**
** Revision 1.23 2000/07/10 19:24:55 matt
** irqs are not supported in NSF playing mode
**
** Revision 1.22 2000/07/10 13:54:32 matt
** using generic nes_irq() now
**
** Revision 1.21 2000/07/10 05:29:34 matt
** moved joypad/oam dma from apu to ppu
**
** Revision 1.20 2000/07/09 03:49:31 matt
** apu irqs now draw an irq line (bleh)
**
** Revision 1.19 2000/07/04 04:53:26 matt
** minor changes, sound amplification
**
** Revision 1.18 2000/07/03 02:18:53 matt
** much better external module exporting
**
** Revision 1.17 2000/06/26 11:01:55 matt
** made triangle a tad quieter
**
** Revision 1.16 2000/06/26 05:10:33 matt
** fixed cycle rate generation accuracy
**
** Revision 1.15 2000/06/26 05:00:37 matt
** cleanups
**
** Revision 1.14 2000/06/23 11:06:24 matt
** more faithful mixing of channels
**
** Revision 1.13 2000/06/23 03:29:27 matt
** cleaned up external sound inteface
**
** Revision 1.12 2000/06/20 00:08:39 matt
** bugfix to rectangle wave
**
** Revision 1.11 2000/06/13 13:48:58 matt
** fixed triangle write latency for fixed point apu cycle rate
**
** Revision 1.10 2000/06/12 01:14:36 matt
** minor change to clipping extents
**
** Revision 1.9 2000/06/09 20:00:56 matt
** fixed noise hiccup in NSF player mode
**
** Revision 1.8 2000/06/09 16:49:02 matt
** removed all floating point from sound generation
**
** Revision 1.7 2000/06/09 15:12:28 matt
** initial revision
**
*/