runtime.c 56.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "py/parsenum.h"
#include "py/compile.h"
#include "py/objstr.h"
#include "py/objtuple.h"
#include "py/objlist.h"
#include "py/objmodule.h"
#include "py/objgenerator.h"
#include "py/smallint.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/stackctrl.h"
#include "py/gc.h"

#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif

const mp_obj_module_t mp_module___main__ = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&MP_STATE_VM(dict_main),
};

void mp_init(void) {
    qstr_init();

    // no pending exceptions to start with
    MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL;
    #if MICROPY_ENABLE_SCHEDULER
    MP_STATE_VM(sched_state) = MP_SCHED_IDLE;
    MP_STATE_VM(sched_sp) = 0;
    #endif

#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
    mp_init_emergency_exception_buf();
#endif

    #if MICROPY_KBD_EXCEPTION
    // initialise the exception object for raising KeyboardInterrupt
    MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt;
    MP_STATE_VM(mp_kbd_exception).traceback_alloc = 0;
    MP_STATE_VM(mp_kbd_exception).traceback_len = 0;
    MP_STATE_VM(mp_kbd_exception).traceback_data = NULL;
    MP_STATE_VM(mp_kbd_exception).args = (mp_obj_tuple_t*)&mp_const_empty_tuple_obj;
    #endif

    // call port specific initialization if any
#ifdef MICROPY_PORT_INIT_FUNC
    MICROPY_PORT_INIT_FUNC;
#endif

    #if MICROPY_ENABLE_COMPILER
    // optimization disabled by default
    MP_STATE_VM(mp_optimise_value) = 0;
    #endif

    // init global module dict
    mp_obj_dict_init(&MP_STATE_VM(mp_loaded_modules_dict), 3);

    // initialise the __main__ module
    mp_obj_dict_init(&MP_STATE_VM(dict_main), 1);
    mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));

    // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
    mp_locals_set(&MP_STATE_VM(dict_main));
    mp_globals_set(&MP_STATE_VM(dict_main));

    #if MICROPY_CAN_OVERRIDE_BUILTINS
    // start with no extensions to builtins
    MP_STATE_VM(mp_module_builtins_override_dict) = NULL;
    #endif

    #if MICROPY_PY_OS_DUPTERM
    for (size_t i = 0; i < MICROPY_PY_OS_DUPTERM; ++i) {
        MP_STATE_VM(dupterm_objs[i]) = MP_OBJ_NULL;
    }
    MP_STATE_VM(dupterm_arr_obj) = MP_OBJ_NULL;
    #endif

    #if MICROPY_FSUSERMOUNT
    // zero out the pointers to the user-mounted devices
    memset(MP_STATE_VM(fs_user_mount), 0, sizeof(MP_STATE_VM(fs_user_mount)));
    #endif

    #if MICROPY_VFS
    // initialise the VFS sub-system
    MP_STATE_VM(vfs_cur) = NULL;
    MP_STATE_VM(vfs_mount_table) = NULL;
    #endif

    #if MICROPY_PY_THREAD_GIL
    mp_thread_mutex_init(&MP_STATE_VM(gil_mutex));
    #endif

    MP_THREAD_GIL_ENTER();
}

void mp_deinit(void) {
    //mp_obj_dict_free(&dict_main);
    //mp_map_deinit(&MP_STATE_VM(mp_loaded_modules_map));

    // call port specific deinitialization if any
#ifdef MICROPY_PORT_INIT_FUNC
    MICROPY_PORT_DEINIT_FUNC;
#endif
}

mp_obj_t mp_load_name(qstr qst) {
    // logic: search locals, globals, builtins
    DEBUG_OP_printf("load name %s\n", qstr_str(qst));
    // If we're at the outer scope (locals == globals), dispatch to load_global right away
    if (mp_locals_get() != mp_globals_get()) {
        mp_map_elem_t *elem = mp_map_lookup(&mp_locals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
        if (elem != NULL) {
            return elem->value;
        }
    }
    return mp_load_global(qst);
}

mp_obj_t mp_load_global(qstr qst) {
    // logic: search globals, builtins
    DEBUG_OP_printf("load global %s\n", qstr_str(qst));
    mp_map_elem_t *elem = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
    if (elem == NULL) {
        #if MICROPY_CAN_OVERRIDE_BUILTINS
        if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
            // lookup in additional dynamic table of builtins first
            elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
            if (elem != NULL) {
                return elem->value;
            }
        }
        #endif
        elem = mp_map_lookup((mp_map_t*)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
        if (elem == NULL) {
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                mp_raise_msg(&mp_type_NameError, "name not defined");
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError,
                    "name '%q' is not defined", qst));
            }
        }
    }
    return elem->value;
}

mp_obj_t mp_load_build_class(void) {
    DEBUG_OP_printf("load_build_class\n");
    #if MICROPY_CAN_OVERRIDE_BUILTINS
    if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
        // lookup in additional dynamic table of builtins first
        mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
        if (elem != NULL) {
            return elem->value;
        }
    }
    #endif
    return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj);
}

void mp_store_name(qstr qst, mp_obj_t obj) {
    DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj);
    mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst), obj);
}

void mp_delete_name(qstr qst) {
    DEBUG_OP_printf("delete name %s\n", qstr_str(qst));
    // TODO convert KeyError to NameError if qst not found
    mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst));
}

void mp_store_global(qstr qst, mp_obj_t obj) {
    DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj);
    mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst), obj);
}

void mp_delete_global(qstr qst) {
    DEBUG_OP_printf("delete global %s\n", qstr_str(qst));
    // TODO convert KeyError to NameError if qst not found
    mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst));
}

mp_obj_t mp_unary_op(mp_unary_op_t op, mp_obj_t arg) {
    DEBUG_OP_printf("unary " UINT_FMT " %q %p\n", op, mp_unary_op_method_name[op], arg);

    if (op == MP_UNARY_OP_NOT) {
        // "not x" is the negative of whether "x" is true per Python semantics
        return mp_obj_new_bool(mp_obj_is_true(arg) == 0);
    } else if (MP_OBJ_IS_SMALL_INT(arg)) {
        mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
        switch (op) {
            case MP_UNARY_OP_BOOL:
                return mp_obj_new_bool(val != 0);
            case MP_UNARY_OP_HASH:
                return arg;
            case MP_UNARY_OP_POSITIVE:
                return arg;
            case MP_UNARY_OP_NEGATIVE:
                // check for overflow
                if (val == MP_SMALL_INT_MIN) {
                    return mp_obj_new_int(-val);
                } else {
                    return MP_OBJ_NEW_SMALL_INT(-val);
                }
            case MP_UNARY_OP_ABS:
                if (val >= 0) {
                    return arg;
                } else if (val == MP_SMALL_INT_MIN) {
                    // check for overflow
                    return mp_obj_new_int(-val);
                } else {
                    return MP_OBJ_NEW_SMALL_INT(-val);
                }
            default:
                assert(op == MP_UNARY_OP_INVERT);
                return MP_OBJ_NEW_SMALL_INT(~val);
        }
    } else if (op == MP_UNARY_OP_HASH && MP_OBJ_IS_STR_OR_BYTES(arg)) {
        // fast path for hashing str/bytes
        GET_STR_HASH(arg, h);
        if (h == 0) {
            GET_STR_DATA_LEN(arg, data, len);
            h = qstr_compute_hash(data, len);
        }
        return MP_OBJ_NEW_SMALL_INT(h);
    } else {
        mp_obj_type_t *type = mp_obj_get_type(arg);
        if (type->unary_op != NULL) {
            mp_obj_t result = type->unary_op(op, arg);
            if (result != MP_OBJ_NULL) {
                return result;
            }
        }
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            mp_raise_TypeError("unsupported type for operator");
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                "unsupported type for %q: '%s'",
                mp_unary_op_method_name[op], mp_obj_get_type_str(arg)));
        }
    }
}

mp_obj_t mp_binary_op(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) {
    DEBUG_OP_printf("binary " UINT_FMT " %q %p %p\n", op, mp_binary_op_method_name[op], lhs, rhs);

    // TODO correctly distinguish inplace operators for mutable objects
    // lookup logic that CPython uses for +=:
    //   check for implemented +=
    //   then check for implemented +
    //   then check for implemented seq.inplace_concat
    //   then check for implemented seq.concat
    //   then fail
    // note that list does not implement + or +=, so that inplace_concat is reached first for +=

    // deal with is
    if (op == MP_BINARY_OP_IS) {
        return mp_obj_new_bool(lhs == rhs);
    }

    // deal with == and != for all types
    if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
        if (mp_obj_equal(lhs, rhs)) {
            if (op == MP_BINARY_OP_EQUAL) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        } else {
            if (op == MP_BINARY_OP_EQUAL) {
                return mp_const_false;
            } else {
                return mp_const_true;
            }
        }
    }

    // deal with exception_match for all types
    if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
        // rhs must be issubclass(rhs, BaseException)
        if (mp_obj_is_exception_type(rhs)) {
            if (mp_obj_exception_match(lhs, rhs)) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_tuple)) {
            mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs);
            for (size_t i = 0; i < tuple->len; i++) {
                rhs = tuple->items[i];
                if (!mp_obj_is_exception_type(rhs)) {
                    goto unsupported_op;
                }
                if (mp_obj_exception_match(lhs, rhs)) {
                    return mp_const_true;
                }
            }
            return mp_const_false;
        }
        goto unsupported_op;
    }

    if (MP_OBJ_IS_SMALL_INT(lhs)) {
        mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
        if (MP_OBJ_IS_SMALL_INT(rhs)) {
            mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
            // This is a binary operation: lhs_val op rhs_val
            // We need to be careful to handle overflow; see CERT INT32-C
            // Operations that can overflow:
            //      +       result always fits in mp_int_t, then handled by SMALL_INT check
            //      -       result always fits in mp_int_t, then handled by SMALL_INT check
            //      *       checked explicitly
            //      /       if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
            //      %       if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
            //      <<      checked explicitly
            switch (op) {
                case MP_BINARY_OP_OR:
                case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
                case MP_BINARY_OP_XOR:
                case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
                case MP_BINARY_OP_AND:
                case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
                case MP_BINARY_OP_LSHIFT:
                case MP_BINARY_OP_INPLACE_LSHIFT: {
                    if (rhs_val < 0) {
                        // negative shift not allowed
                        mp_raise_ValueError("negative shift count");
                    } else if (rhs_val >= (mp_int_t)BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
                        // left-shift will overflow, so use higher precision integer
                        lhs = mp_obj_new_int_from_ll(lhs_val);
                        goto generic_binary_op;
                    } else {
                        // use standard precision
                        lhs_val <<= rhs_val;
                    }
                    break;
                }
                case MP_BINARY_OP_RSHIFT:
                case MP_BINARY_OP_INPLACE_RSHIFT:
                    if (rhs_val < 0) {
                        // negative shift not allowed
                        mp_raise_ValueError("negative shift count");
                    } else {
                        // standard precision is enough for right-shift
                        if (rhs_val >= (mp_int_t)BITS_PER_WORD) {
                            // Shifting to big amounts is underfined behavior
                            // in C and is CPU-dependent; propagate sign bit.
                            rhs_val = BITS_PER_WORD - 1;
                        }
                        lhs_val >>= rhs_val;
                    }
                    break;
                case MP_BINARY_OP_ADD:
                case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
                case MP_BINARY_OP_SUBTRACT:
                case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
                case MP_BINARY_OP_MULTIPLY:
                case MP_BINARY_OP_INPLACE_MULTIPLY: {

                    // If long long type exists and is larger than mp_int_t, then
                    // we can use the following code to perform overflow-checked multiplication.
                    // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
                    #if 0
                    // compute result using long long precision
                    long long res = (long long)lhs_val * (long long)rhs_val;
                    if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
                        // result overflowed SMALL_INT, so return higher precision integer
                        return mp_obj_new_int_from_ll(res);
                    } else {
                        // use standard precision
                        lhs_val = (mp_int_t)res;
                    }
                    #endif

                    if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
                        // use higher precision
                        lhs = mp_obj_new_int_from_ll(lhs_val);
                        goto generic_binary_op;
                    } else {
                        // use standard precision
                        return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
                    }
                }
                case MP_BINARY_OP_FLOOR_DIVIDE:
                case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
                    break;

                #if MICROPY_PY_BUILTINS_FLOAT
                case MP_BINARY_OP_TRUE_DIVIDE:
                case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
                #endif

                case MP_BINARY_OP_MODULO:
                case MP_BINARY_OP_INPLACE_MODULO: {
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
                    break;
                }

                case MP_BINARY_OP_POWER:
                case MP_BINARY_OP_INPLACE_POWER:
                    if (rhs_val < 0) {
                        #if MICROPY_PY_BUILTINS_FLOAT
                        lhs = mp_obj_new_float(lhs_val);
                        goto generic_binary_op;
                        #else
                        mp_raise_ValueError("negative power with no float support");
                        #endif
                    } else {
                        mp_int_t ans = 1;
                        while (rhs_val > 0) {
                            if (rhs_val & 1) {
                                if (mp_small_int_mul_overflow(ans, lhs_val)) {
                                    goto power_overflow;
                                }
                                ans *= lhs_val;
                            }
                            if (rhs_val == 1) {
                                break;
                            }
                            rhs_val /= 2;
                            if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
                                goto power_overflow;
                            }
                            lhs_val *= lhs_val;
                        }
                        lhs_val = ans;
                    }
                    break;

                power_overflow:
                    // use higher precision
                    lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
                    goto generic_binary_op;

                case MP_BINARY_OP_DIVMOD: {
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    // to reduce stack usage we don't pass a temp array of the 2 items
                    mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
                    tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val));
                    tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val));
                    return MP_OBJ_FROM_PTR(tuple);
                }

                case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val);
                case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val);
                case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val);
                case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val);

                default:
                    goto unsupported_op;
            }
            // TODO: We just should make mp_obj_new_int() inline and use that
            if (MP_SMALL_INT_FITS(lhs_val)) {
                return MP_OBJ_NEW_SMALL_INT(lhs_val);
            } else {
                return mp_obj_new_int(lhs_val);
            }
#if MICROPY_PY_BUILTINS_FLOAT
        } else if (mp_obj_is_float(rhs)) {
            mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
            if (res == MP_OBJ_NULL) {
                goto unsupported_op;
            } else {
                return res;
            }
#if MICROPY_PY_BUILTINS_COMPLEX
        } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
            mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
            if (res == MP_OBJ_NULL) {
                goto unsupported_op;
            } else {
                return res;
            }
#endif
#endif
        }
    }

    // Convert MP_BINARY_OP_IN to MP_BINARY_OP_CONTAINS with swapped args.
    if (op == MP_BINARY_OP_IN) {
        op = MP_BINARY_OP_CONTAINS;
        mp_obj_t temp = lhs;
        lhs = rhs;
        rhs = temp;
    }

    // generic binary_op supplied by type
    mp_obj_type_t *type;
generic_binary_op:
    type = mp_obj_get_type(lhs);
    if (type->binary_op != NULL) {
        mp_obj_t result = type->binary_op(op, lhs, rhs);
        if (result != MP_OBJ_NULL) {
            return result;
        }
    }

#if MICROPY_PY_REVERSE_SPECIAL_METHODS
    if (op >= MP_BINARY_OP_OR && op <= MP_BINARY_OP_REVERSE_POWER) {
        mp_obj_t t = rhs;
        rhs = lhs;
        lhs = t;
        if (op <= MP_BINARY_OP_POWER) {
            op += MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
            goto generic_binary_op;
        }

        // Convert __rop__ back to __op__ for error message
        op -= MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
    }
#endif

    if (op == MP_BINARY_OP_CONTAINS) {
        // If type didn't support containment then explicitly walk the iterator.
        // mp_getiter will raise the appropriate exception if lhs is not iterable.
        mp_obj_iter_buf_t iter_buf;
        mp_obj_t iter = mp_getiter(lhs, &iter_buf);
        mp_obj_t next;
        while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
            if (mp_obj_equal(next, rhs)) {
                return mp_const_true;
            }
        }
        return mp_const_false;
    }

unsupported_op:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_TypeError("unsupported type for operator");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
            "unsupported types for %q: '%s', '%s'",
            mp_binary_op_method_name[op], mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
    }

zero_division:
    mp_raise_msg(&mp_type_ZeroDivisionError, "division by zero");
}

mp_obj_t mp_call_function_0(mp_obj_t fun) {
    return mp_call_function_n_kw(fun, 0, 0, NULL);
}

mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
    return mp_call_function_n_kw(fun, 1, 0, &arg);
}

mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
    mp_obj_t args[2];
    args[0] = arg1;
    args[1] = arg2;
    return mp_call_function_n_kw(fun, 2, 0, args);
}

// args contains, eg: arg0  arg1  key0  value0  key1  value1
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // TODO improve this: fun object can specify its type and we parse here the arguments,
    // passing to the function arrays of fixed and keyword arguments

    DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);

    // get the type
    mp_obj_type_t *type = mp_obj_get_type(fun_in);

    // do the call
    if (type->call != NULL) {
        return type->call(fun_in, n_args, n_kw, args);
    }

    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_TypeError("object not callable");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
            "'%s' object is not callable", mp_obj_get_type_str(fun_in)));
    }
}

// args contains: fun  self/NULL  arg(0)  ...  arg(n_args-2)  arg(n_args-1)  kw_key(0)  kw_val(0)  ... kw_key(n_kw-1)  kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t mp_call_method_n_kw(size_t n_args, size_t n_kw, const mp_obj_t *args) {
    DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
    int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1;
    return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}

// This function only needs to be exposed externally when in stackless mode.
#if !MICROPY_STACKLESS
STATIC
#endif
void mp_call_prepare_args_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) {
    mp_obj_t fun = *args++;
    mp_obj_t self = MP_OBJ_NULL;
    if (have_self) {
        self = *args++; // may be MP_OBJ_NULL
    }
    uint n_args = n_args_n_kw & 0xff;
    uint n_kw = (n_args_n_kw >> 8) & 0xff;
    mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL
    mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL

    DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);

    // We need to create the following array of objects:
    //     args[0 .. n_args]  unpacked(pos_seq)  args[n_args .. n_args + 2 * n_kw]  unpacked(kw_dict)
    // TODO: optimize one day to avoid constructing new arg array? Will be hard.

    // The new args array
    mp_obj_t *args2;
    uint args2_alloc;
    uint args2_len = 0;

    // Try to get a hint for the size of the kw_dict
    uint kw_dict_len = 0;
    if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
        kw_dict_len = mp_obj_dict_len(kw_dict);
    }

    // Extract the pos_seq sequence to the new args array.
    // Note that it can be arbitrary iterator.
    if (pos_seq == MP_OBJ_NULL) {
        // no sequence

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
        args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed pos args
        mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
        args2_len += n_args;

    } else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) {
        // optimise the case of a tuple and list

        // get the items
        size_t len;
        mp_obj_t *items;
        mp_obj_get_array(pos_seq, &len, &items);

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
        args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed and variable position args
        mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
        args2_len += n_args + len;

    } else {
        // generic iterator

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
        args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed position args
        mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
        args2_len += n_args;

        // extract the variable position args from the iterator
        mp_obj_iter_buf_t iter_buf;
        mp_obj_t iterable = mp_getiter(pos_seq, &iter_buf);
        mp_obj_t item;
        while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            if (args2_len >= args2_alloc) {
                args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), args2_alloc * 2 * sizeof(mp_obj_t));
                args2_alloc *= 2;
            }
            args2[args2_len++] = item;
        }
    }

    // The size of the args2 array now is the number of positional args.
    uint pos_args_len = args2_len;

    // Copy the fixed kw args.
    mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
    args2_len += 2 * n_kw;

    // Extract (key,value) pairs from kw_dict dictionary and append to args2.
    // Note that it can be arbitrary iterator.
    if (kw_dict == MP_OBJ_NULL) {
        // pass
    } else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
        // dictionary
        mp_map_t *map = mp_obj_dict_get_map(kw_dict);
        assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
        for (size_t i = 0; i < map->alloc; i++) {
            if (MP_MAP_SLOT_IS_FILLED(map, i)) {
                // the key must be a qstr, so intern it if it's a string
                mp_obj_t key = map->table[i].key;
                if (!MP_OBJ_IS_QSTR(key)) {
                    key = mp_obj_str_intern_checked(key);
                }
                args2[args2_len++] = key;
                args2[args2_len++] = map->table[i].value;
            }
        }
    } else {
        // generic mapping:
        // - call keys() to get an iterable of all keys in the mapping
        // - call __getitem__ for each key to get the corresponding value

        // get the keys iterable
        mp_obj_t dest[3];
        mp_load_method(kw_dict, MP_QSTR_keys, dest);
        mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest), NULL);

        mp_obj_t key;
        while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            // expand size of args array if needed
            if (args2_len + 1 >= args2_alloc) {
                uint new_alloc = args2_alloc * 2;
                if (new_alloc < 4) {
                    new_alloc = 4;
                }
                args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), new_alloc * sizeof(mp_obj_t));
                args2_alloc = new_alloc;
            }

            // the key must be a qstr, so intern it if it's a string
            if (!MP_OBJ_IS_QSTR(key)) {
                key = mp_obj_str_intern_checked(key);
            }

            // get the value corresponding to the key
            mp_load_method(kw_dict, MP_QSTR___getitem__, dest);
            dest[2] = key;
            mp_obj_t value = mp_call_method_n_kw(1, 0, dest);

            // store the key/value pair in the argument array
            args2[args2_len++] = key;
            args2[args2_len++] = value;
        }
    }

    out_args->fun = fun;
    out_args->args = args2;
    out_args->n_args = pos_args_len;
    out_args->n_kw = (args2_len - pos_args_len) / 2;
    out_args->n_alloc = args2_alloc;
}

mp_obj_t mp_call_method_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args) {
    mp_call_args_t out_args;
    mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args);

    mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args);
    mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t));

    return res;
}

// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_sequence(mp_obj_t seq_in, size_t num, mp_obj_t *items) {
    size_t seq_len;
    if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
        mp_obj_t *seq_items;
        mp_obj_get_array(seq_in, &seq_len, &seq_items);
        if (seq_len < num) {
            goto too_short;
        } else if (seq_len > num) {
            goto too_long;
        }
        for (size_t i = 0; i < num; i++) {
            items[i] = seq_items[num - 1 - i];
        }
    } else {
        mp_obj_iter_buf_t iter_buf;
        mp_obj_t iterable = mp_getiter(seq_in, &iter_buf);

        for (seq_len = 0; seq_len < num; seq_len++) {
            mp_obj_t el = mp_iternext(iterable);
            if (el == MP_OBJ_STOP_ITERATION) {
                goto too_short;
            }
            items[num - 1 - seq_len] = el;
        }
        if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
            goto too_long;
        }
    }
    return;

too_short:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_ValueError("wrong number of values to unpack");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
            "need more than %d values to unpack", (int)seq_len));
    }
too_long:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_ValueError("wrong number of values to unpack");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
            "too many values to unpack (expected %d)", (int)num));
    }
}

// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_ex(mp_obj_t seq_in, size_t num_in, mp_obj_t *items) {
    size_t num_left = num_in & 0xff;
    size_t num_right = (num_in >> 8) & 0xff;
    DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
    size_t seq_len;
    if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
        mp_obj_t *seq_items;
        mp_obj_get_array(seq_in, &seq_len, &seq_items);
        if (seq_len < num_left + num_right) {
            goto too_short;
        }
        for (size_t i = 0; i < num_right; i++) {
            items[i] = seq_items[seq_len - 1 - i];
        }
        items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
        for (size_t i = 0; i < num_left; i++) {
            items[num_right + 1 + i] = seq_items[num_left - 1 - i];
        }
    } else {
        // Generic iterable; this gets a bit messy: we unpack known left length to the
        // items destination array, then the rest to a dynamically created list.  Once the
        // iterable is exhausted, we take from this list for the right part of the items.
        // TODO Improve to waste less memory in the dynamically created list.
        mp_obj_t iterable = mp_getiter(seq_in, NULL);
        mp_obj_t item;
        for (seq_len = 0; seq_len < num_left; seq_len++) {
            item = mp_iternext(iterable);
            if (item == MP_OBJ_STOP_ITERATION) {
                goto too_short;
            }
            items[num_left + num_right + 1 - 1 - seq_len] = item;
        }
        mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL));
        while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item);
        }
        if (rest->len < num_right) {
            goto too_short;
        }
        items[num_right] = MP_OBJ_FROM_PTR(rest);
        for (size_t i = 0; i < num_right; i++) {
            items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
        }
        mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right);
    }
    return;

too_short:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_ValueError("wrong number of values to unpack");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
            "need more than %d values to unpack", (int)seq_len));
    }
}

mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
    DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
    // use load_method
    mp_obj_t dest[2];
    mp_load_method(base, attr, dest);
    if (dest[1] == MP_OBJ_NULL) {
        // load_method returned just a normal attribute
        return dest[0];
    } else {
        // load_method returned a method, so build a bound method object
        return mp_obj_new_bound_meth(dest[0], dest[1]);
    }
}

#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG

// The following "checked fun" type is local to the mp_convert_member_lookup
// function, and serves to check that the first argument to a builtin function
// has the correct type.

typedef struct _mp_obj_checked_fun_t {
    mp_obj_base_t base;
    const mp_obj_type_t *type;
    mp_obj_t fun;
} mp_obj_checked_fun_t;

STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in);
    if (n_args > 0) {
        const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]);
        if (arg0_type != self->type) {
            if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) {
                mp_raise_TypeError("argument has wrong type");
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                    "argument should be a '%q' not a '%q'", self->type->name, arg0_type->name));
            }
        }
    }
    return mp_call_function_n_kw(self->fun, n_args, n_kw, args);
}

STATIC const mp_obj_type_t mp_type_checked_fun = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = checked_fun_call,
};

STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) {
    mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t);
    o->base.type = &mp_type_checked_fun;
    o->type = type;
    o->fun = fun;
    return MP_OBJ_FROM_PTR(o);
}

#endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG

// Given a member that was extracted from an instance, convert it correctly
// and put the result in the dest[] array for a possible method call.
// Conversion means dealing with static/class methods, callables, and values.
// see http://docs.python.org/3/howto/descriptor.html
void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) {
    if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
        // return just the function
        dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
    } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
        // return a bound method, with self being the type of this object
        // this type should be the type of the original instance, not the base
        // type (which is what is passed in the 'type' argument to this function)
        if (self != MP_OBJ_NULL) {
            type = mp_obj_get_type(self);
        }
        dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
        dest[1] = MP_OBJ_FROM_PTR(type);
    } else if (MP_OBJ_IS_TYPE(member, &mp_type_type)) {
        // Don't try to bind types (even though they're callable)
        dest[0] = member;
    } else if (MP_OBJ_IS_FUN(member)
        || (MP_OBJ_IS_OBJ(member)
            && (((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_closure
                || ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_generator))) {
        // only functions, closures and generators objects can be bound to self
        #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
        const mp_obj_type_t *m_type = ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type;
        if (self == MP_OBJ_NULL
            && (m_type == &mp_type_fun_builtin_0
                || m_type == &mp_type_fun_builtin_1
                || m_type == &mp_type_fun_builtin_2
                || m_type == &mp_type_fun_builtin_3
                || m_type == &mp_type_fun_builtin_var)) {
            // we extracted a builtin method without a first argument, so we must
            // wrap this function in a type checker
            dest[0] = mp_obj_new_checked_fun(type, member);
        } else
        #endif
        {
            // return a bound method, with self being this object
            dest[0] = member;
            dest[1] = self;
        }
    } else {
        // class member is a value, so just return that value
        dest[0] = member;
    }
}

// no attribute found, returns:     dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>,    dest[1] == <self>
void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
    // clear output to indicate no attribute/method found yet
    dest[0] = MP_OBJ_NULL;
    dest[1] = MP_OBJ_NULL;

    // get the type
    mp_obj_type_t *type = mp_obj_get_type(obj);

    // look for built-in names
    if (0) {
#if MICROPY_CPYTHON_COMPAT
    } else if (attr == MP_QSTR___class__) {
        // a.__class__ is equivalent to type(a)
        dest[0] = MP_OBJ_FROM_PTR(type);
#endif

    } else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
        dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj);
        dest[1] = obj;

    } else if (type->attr != NULL) {
        // this type can do its own load, so call it
        type->attr(obj, attr, dest);

    } else if (type->locals_dict != NULL) {
        // generic method lookup
        // this is a lookup in the object (ie not class or type)
        assert(type->locals_dict->base.type == &mp_type_dict); // MicroPython restriction, for now
        mp_map_t *locals_map = &type->locals_dict->map;
        mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
        if (elem != NULL) {
            mp_convert_member_lookup(obj, type, elem->value, dest);
        }
    }
}

void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
    DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));

    mp_load_method_maybe(base, attr, dest);

    if (dest[0] == MP_OBJ_NULL) {
        // no attribute/method called attr
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            mp_raise_msg(&mp_type_AttributeError, "no such attribute");
        } else {
            // following CPython, we give a more detailed error message for type objects
            if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                    "type object '%q' has no attribute '%q'",
                    ((mp_obj_type_t*)MP_OBJ_TO_PTR(base))->name, attr));
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                    "'%s' object has no attribute '%q'",
                    mp_obj_get_type_str(base), attr));
            }
        }
    }
}

// Acts like mp_load_method_maybe but catches AttributeError, and all other exceptions if requested
void mp_load_method_protected(mp_obj_t obj, qstr attr, mp_obj_t *dest, bool catch_all_exc) {
    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        mp_load_method_maybe(obj, attr, dest);
        nlr_pop();
    } else {
        if (!catch_all_exc
            && !mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type),
                MP_OBJ_FROM_PTR(&mp_type_AttributeError))) {
            // Re-raise the exception
            nlr_raise(MP_OBJ_FROM_PTR(nlr.ret_val));
        }
    }
}

void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
    DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
    mp_obj_type_t *type = mp_obj_get_type(base);
    if (type->attr != NULL) {
        mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value};
        type->attr(base, attr, dest);
        if (dest[0] == MP_OBJ_NULL) {
            // success
            return;
        }
    }
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_msg(&mp_type_AttributeError, "no such attribute");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
            "'%s' object has no attribute '%q'",
            mp_obj_get_type_str(base), attr));
    }
}

mp_obj_t mp_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
    assert(o_in);
    mp_obj_type_t *type = mp_obj_get_type(o_in);

    // Check for native getiter which is the identity.  We handle this case explicitly
    // so we don't unnecessarily allocate any RAM for the iter_buf, which won't be used.
    if (type->getiter == mp_identity_getiter) {
        return o_in;
    }

    // if caller did not provide a buffer then allocate one on the heap
    if (iter_buf == NULL) {
        iter_buf = m_new_obj(mp_obj_iter_buf_t);
    }

    // check for native getiter (corresponds to __iter__)
    if (type->getiter != NULL) {
        mp_obj_t iter = type->getiter(o_in, iter_buf);
        if (iter != MP_OBJ_NULL) {
            return iter;
        }
    }

    // check for __getitem__
    mp_obj_t dest[2];
    mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
    if (dest[0] != MP_OBJ_NULL) {
        // __getitem__ exists, create and return an iterator
        return mp_obj_new_getitem_iter(dest, iter_buf);
    }

    // object not iterable
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_TypeError("object not iterable");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
            "'%s' object is not iterable", mp_obj_get_type_str(o_in)));
    }
}

// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
// may also raise StopIteration()
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->iternext != NULL) {
        return type->iternext(o_in);
    } else {
        // check for __next__ method
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __next__ exists, call it and return its result
            return mp_call_method_n_kw(0, 0, dest);
        } else {
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                mp_raise_TypeError("object not an iterator");
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                    "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
            }
        }
    }
}

// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
// may raise other exceptions
mp_obj_t mp_iternext(mp_obj_t o_in) {
    MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->iternext != NULL) {
        return type->iternext(o_in);
    } else {
        // check for __next__ method
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __next__ exists, call it and return its result
            nlr_buf_t nlr;
            if (nlr_push(&nlr) == 0) {
                mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
                nlr_pop();
                return ret;
            } else {
                if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
                    return MP_OBJ_STOP_ITERATION;
                } else {
                    nlr_jump(nlr.ret_val);
                }
            }
        } else {
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                mp_raise_TypeError("object not an iterator");
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                    "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
            }
        }
    }
}

// TODO: Unclear what to do with StopIterarion exception here.
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
    assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
    mp_obj_type_t *type = mp_obj_get_type(self_in);

    if (type == &mp_type_gen_instance) {
        return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
    }

    if (type->iternext != NULL && send_value == mp_const_none) {
        mp_obj_t ret = type->iternext(self_in);
        *ret_val = ret;
        if (ret != MP_OBJ_STOP_ITERATION) {
            return MP_VM_RETURN_YIELD;
        } else {
            // Emulate raise StopIteration()
            // Special case, handled in vm.c
            return MP_VM_RETURN_NORMAL;
        }
    }

    mp_obj_t dest[3]; // Reserve slot for send() arg

    // Python instance iterator protocol
    if (send_value == mp_const_none) {
        mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            nlr_buf_t nlr;
            if (nlr_push(&nlr) == 0) {
                *ret_val = mp_call_method_n_kw(0, 0, dest);
                nlr_pop();
                return MP_VM_RETURN_YIELD;
            } else {
                *ret_val = MP_OBJ_FROM_PTR(nlr.ret_val);
                return MP_VM_RETURN_EXCEPTION;
            }
        }
    }

    // Either python instance generator protocol, or native object
    // generator protocol.
    if (send_value != MP_OBJ_NULL) {
        mp_load_method(self_in, MP_QSTR_send, dest);
        dest[2] = send_value;
        // TODO: This should have exception wrapping like __next__ case
        // above. Not done right away to think how to optimize native
        // generators better, see:
        // https://github.com/micropython/micropython/issues/2628
        *ret_val = mp_call_method_n_kw(1, 0, dest);
        return MP_VM_RETURN_YIELD;
    }

    assert(throw_value != MP_OBJ_NULL);
    {
        if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) {
            mp_load_method_maybe(self_in, MP_QSTR_close, dest);
            if (dest[0] != MP_OBJ_NULL) {
                // TODO: Exceptions raised in close() are not propagated,
                // printed to sys.stderr
                *ret_val = mp_call_method_n_kw(0, 0, dest);
                // We assume one can't "yield" from close()
                return MP_VM_RETURN_NORMAL;
            }
        } else {
            mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
            if (dest[0] != MP_OBJ_NULL) {
                dest[2] = throw_value;
                *ret_val = mp_call_method_n_kw(1, 0, dest);
                // If .throw() method returned, we assume it's value to yield
                // - any exception would be thrown with nlr_raise().
                return MP_VM_RETURN_YIELD;
            }
        }
        // If there's nowhere to throw exception into, then we assume that object
        // is just incapable to handle it, so any exception thrown into it
        // will be propagated up. This behavior is approved by test_pep380.py
        // test_delegation_of_close_to_non_generator(),
        //  test_delegating_throw_to_non_generator()
        *ret_val = mp_make_raise_obj(throw_value);
        return MP_VM_RETURN_EXCEPTION;
    }
}

mp_obj_t mp_make_raise_obj(mp_obj_t o) {
    DEBUG_printf("raise %p\n", o);
    if (mp_obj_is_exception_type(o)) {
        // o is an exception type (it is derived from BaseException (or is BaseException))
        // create and return a new exception instance by calling o
        // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
        // could have const instances in ROM which we return here instead
        return mp_call_function_n_kw(o, 0, 0, NULL);
    } else if (mp_obj_is_exception_instance(o)) {
        // o is an instance of an exception, so use it as the exception
        return o;
    } else {
        // o cannot be used as an exception, so return a type error (which will be raised by the caller)
        return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
    }
}

mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
    DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level));

    // build args array
    mp_obj_t args[5];
    args[0] = MP_OBJ_NEW_QSTR(name);
    args[1] = mp_const_none; // TODO should be globals
    args[2] = mp_const_none; // TODO should be locals
    args[3] = fromlist;
    args[4] = level; // must be 0; we don't yet support other values

    // TODO lookup __import__ and call that instead of going straight to builtin implementation
    return mp_builtin___import__(5, args);
}

mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
    DEBUG_printf("import from %p %s\n", module, qstr_str(name));

    mp_obj_t dest[2];

    mp_load_method_maybe(module, name, dest);

    if (dest[1] != MP_OBJ_NULL) {
        // Hopefully we can't import bound method from an object
import_error:
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "cannot import name %q", name));
    }

    if (dest[0] != MP_OBJ_NULL) {
        return dest[0];
    }

    #if MICROPY_ENABLE_EXTERNAL_IMPORT

    // See if it's a package, then can try FS import
    if (!mp_obj_is_package(module)) {
        goto import_error;
    }

    mp_load_method_maybe(module, MP_QSTR___name__, dest);
    size_t pkg_name_len;
    const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);

    const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
    char *dot_name = mp_local_alloc(dot_name_len);
    memcpy(dot_name, pkg_name, pkg_name_len);
    dot_name[pkg_name_len] = '.';
    memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
    qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);
    mp_local_free(dot_name);

    mp_obj_t args[5];
    args[0] = MP_OBJ_NEW_QSTR(dot_name_q);
    args[1] = mp_const_none; // TODO should be globals
    args[2] = mp_const_none; // TODO should be locals
    args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module
    args[4] = MP_OBJ_NEW_SMALL_INT(0);

    // TODO lookup __import__ and call that instead of going straight to builtin implementation
    return mp_builtin___import__(5, args);

    #else

    // Package import not supported with external imports disabled
    goto import_error;

    #endif
}

void mp_import_all(mp_obj_t module) {
    DEBUG_printf("import all %p\n", module);

    // TODO: Support __all__
    mp_map_t *map = mp_obj_dict_get_map(MP_OBJ_FROM_PTR(mp_obj_module_get_globals(module)));
    for (size_t i = 0; i < map->alloc; i++) {
        if (MP_MAP_SLOT_IS_FILLED(map, i)) {
            qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key);
            if (*qstr_str(name) != '_') {
                mp_store_name(name, map->table[i].value);
            }
        }
    }
}

#if MICROPY_ENABLE_COMPILER

// this is implemented in this file so it can optimise access to locals/globals
mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
    // save context
    mp_obj_dict_t *volatile old_globals = mp_globals_get();
    mp_obj_dict_t *volatile old_locals = mp_locals_get();

    // set new context
    mp_globals_set(globals);
    mp_locals_set(locals);

    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        qstr source_name = lex->source_name;
        mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind);
        mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, false);

        mp_obj_t ret;
        if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
            // for compile only, return value is the module function
            ret = module_fun;
        } else {
            // execute module function and get return value
            ret = mp_call_function_0(module_fun);
        }

        // finish nlr block, restore context and return value
        nlr_pop();
        mp_globals_set(old_globals);
        mp_locals_set(old_locals);
        return ret;
    } else {
        // exception; restore context and re-raise same exception
        mp_globals_set(old_globals);
        mp_locals_set(old_locals);
        nlr_jump(nlr.ret_val);
    }
}

#endif // MICROPY_ENABLE_COMPILER

NORETURN void m_malloc_fail(size_t num_bytes) {
    DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes);
    #if MICROPY_ENABLE_GC
    if (gc_is_locked()) {
        mp_raise_msg(&mp_type_MemoryError, "memory allocation failed, heap is locked");
    }
    #endif
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError,
        "memory allocation failed, allocating %u bytes", (uint)num_bytes));
}

NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const char *msg) {
    if (msg == NULL) {
        nlr_raise(mp_obj_new_exception(exc_type));
    } else {
        nlr_raise(mp_obj_new_exception_msg(exc_type, msg));
    }
}

NORETURN void mp_raise_ValueError(const char *msg) {
    mp_raise_msg(&mp_type_ValueError, msg);
}

NORETURN void mp_raise_TypeError(const char *msg) {
    mp_raise_msg(&mp_type_TypeError, msg);
}

NORETURN void mp_raise_OSError(int errno_) {
    nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_)));
}

NORETURN void mp_raise_NotImplementedError(const char *msg) {
    mp_raise_msg(&mp_type_NotImplementedError, msg);
}

#if MICROPY_STACK_CHECK || MICROPY_ENABLE_PYSTACK
NORETURN void mp_raise_recursion_depth(void) {
    nlr_raise(mp_obj_new_exception_arg1(&mp_type_RuntimeError,
        MP_OBJ_NEW_QSTR(MP_QSTR_maximum_space_recursion_space_depth_space_exceeded)));
}
#endif