round.cpp
2.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <poincare/round.h>
#include <poincare/undefined.h>
#include <poincare/rational.h>
#include <poincare/power.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type Round::type() const {
return Type::Round;
}
Expression * Round::clone() const {
Round * c = new Round(m_operands, true);
return c;
}
Expression * Round::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
if (operand(0)->type() == Type::Matrix || operand(1)->type() == Type::Matrix) {
return replaceWith(new Undefined(), true);
}
#endif
if (operand(0)->type() == Type::Rational && operand(1)->type() == Type::Rational) {
Rational * r1 = static_cast<Rational *>(editableOperand(0));
Rational * r2 = static_cast<Rational *>(editableOperand(1));
if (!r2->denominator().isOne()) {
return replaceWith(new Undefined(), true);
}
if (Power::RationalExponentShouldNotBeReduced(r2)) {
return this;
}
Rational err = Rational::Power(Rational(10), r2->numerator());
Rational mult = Rational::Multiplication(*r1, Rational(err));
IntegerDivision d = Integer::Division(mult.numerator(), mult.denominator());
Integer rounding = d.quotient;
if (Rational::NaturalOrder(Rational(d.remainder, mult.denominator()), Rational(1,2)) >= 0) {
rounding = Integer::Addition(rounding, Integer(1));
}
Rational result = Rational::Multiplication(rounding, Rational::Power(Rational(1,10), r2->numerator()));
return replaceWith(new Rational(result), true);
}
return this; // TODO: implement for rationals!
}
template<typename T>
Complex<T> * Round::templatedApproximate(Context& context, AngleUnit angleUnit) const {
Expression * f1Input = operand(0)->approximate<T>(context, angleUnit);
Expression * f2Input = operand(1)->approximate<T>(context, angleUnit);
T f1 = f1Input->type() == Type::Complex ? static_cast<Complex<T> *>(f1Input)->toScalar() : NAN;
T f2 = f2Input->type() == Type::Complex ? static_cast<Complex<T> *>(f2Input)->toScalar() : NAN;
delete f1Input;
delete f2Input;
if (std::isnan(f2) || f2 != std::round(f2)) {
return new Complex<T>(Complex<T>::Float(NAN));
}
T err = std::pow(10, std::floor(f2));
return new Complex<T>(Complex<T>::Float(std::round(f1*err)/err));
}
}