sequence.cpp 14.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#include "sequence.h"
#include "sequence_store.h"
#include "cache_context.h"
#include "../../poincare/src/layout/string_layout.h"
#include "../../poincare/src/layout/baseline_relative_layout.h"
#include <string.h>
#include <cmath>

using namespace Shared;
using namespace Poincare;

namespace Sequence {

Sequence::Sequence(const char * text, KDColor color) :
  Function(text, color),
  m_type(Type::Explicit),
  m_firstInitialConditionText(),
  m_secondInitialConditionText(),
  m_firstInitialConditionExpression(nullptr),
  m_secondInitialConditionExpression(nullptr),
  m_firstInitialConditionLayout(nullptr),
  m_secondInitialConditionLayout(nullptr),
  m_nameLayout(nullptr),
  m_definitionName(nullptr),
  m_firstInitialConditionName(nullptr),
  m_secondInitialConditionName(nullptr),
  m_initialRank(0)
{
}

Sequence::~Sequence() {
  if (m_firstInitialConditionLayout != nullptr) {
    delete m_firstInitialConditionLayout;
    m_firstInitialConditionLayout = nullptr;
  }
  if (m_secondInitialConditionLayout != nullptr) {
    delete m_secondInitialConditionLayout;
    m_secondInitialConditionLayout = nullptr;
  }
  if (m_firstInitialConditionExpression != nullptr) {
    delete m_firstInitialConditionExpression;
    m_firstInitialConditionExpression = nullptr;
  }
  if (m_secondInitialConditionExpression != nullptr) {
    delete m_secondInitialConditionExpression;
    m_secondInitialConditionExpression = nullptr;
  }
  if (m_nameLayout != nullptr) {
    delete m_nameLayout;
    m_nameLayout = nullptr;
  }
  if (m_definitionName != nullptr) {
    delete m_definitionName;
    m_definitionName = nullptr;
  }
  if (m_firstInitialConditionName != nullptr) {
    delete m_firstInitialConditionName;
    m_firstInitialConditionName = nullptr;
  }
  if (m_secondInitialConditionName != nullptr) {
    delete m_secondInitialConditionName;
    m_secondInitialConditionName = nullptr;
  }
}

Sequence& Sequence::operator=(const Sequence& other) {
  /* We temporarely store other's required features to be able to access them
   * after setType (which erase all contents and index buffer) even in case of
   * self assignement */
  const char * contentText = other.text();
  const char * firstInitialText = other.m_firstInitialConditionText;
  const char * secondInitialText = other.m_secondInitialConditionText;
  Function::operator=(other);
  setType(other.m_type);
  setInitialRank(other.m_initialRank);
  setContent(contentText);
  setFirstInitialConditionContent(firstInitialText);
  setSecondInitialConditionContent(secondInitialText);
  return *this;
}

uint32_t Sequence::checksum() {
  char data[k_dataLengthInBytes/sizeof(char)] = {};
  strlcpy(data, text(), TextField::maxBufferSize());
  strlcpy(data+TextField::maxBufferSize(), firstInitialConditionText(), TextField::maxBufferSize());
  strlcpy(data+2*TextField::maxBufferSize(), secondInitialConditionText(), TextField::maxBufferSize());
  int * intAdress = (int *)(&data[3*TextField::maxBufferSize()]);
  *intAdress = m_initialRank;
  data[k_dataLengthInBytes-3] = (char)m_type;
  data[k_dataLengthInBytes-2] = name()!= nullptr ? name()[0] : 0;
  data[k_dataLengthInBytes-1] = (char)(isActive() ? 1 : 0);
  return Ion::crc32((uint32_t *)data, k_dataLengthInBytes/sizeof(uint32_t));
}

const char * Sequence::firstInitialConditionText() {
  return m_firstInitialConditionText;
}

const char * Sequence::secondInitialConditionText() {
  return m_secondInitialConditionText;
}

Sequence::Type Sequence::type() {
  return m_type;
}

void Sequence::setType(Type type) {
  if (m_type == Type::Explicit) {
    setInitialRank(0);
  }
  m_type = type;
  tidy();
  /* Reset all contents */
  switch (m_type) {
    case Type::Explicit:
      setContent("");
      break;
    case Type::SingleRecurrence:
    {
      char ex[5] = "u(n)";
      ex[0] = name()[0];
      setContent(ex);
      break;
    }
    case Type::DoubleRecurrence:
    {
      char ex[12] = "u(n+1)+u(n)";
      ex[0] = name()[0];
      ex[7] = name()[0];
      setContent(ex);
      break;
    }
  }
  setFirstInitialConditionContent("");
  setSecondInitialConditionContent("");
}

void Sequence::setInitialRank(int rank) {
  m_initialRank = rank;
  if (m_firstInitialConditionName != nullptr) {
    delete m_firstInitialConditionName;
    m_firstInitialConditionName = nullptr;
  }
  if (m_secondInitialConditionName != nullptr) {
    delete m_secondInitialConditionName;
    m_secondInitialConditionName = nullptr;
  }
}

Poincare::Expression * Sequence::firstInitialConditionExpression(Context * context) const {
  if (m_firstInitialConditionExpression == nullptr) {
    m_firstInitialConditionExpression = Poincare::Expression::ParseAndSimplify(m_firstInitialConditionText, *context);
  }
  return m_firstInitialConditionExpression;
}

Poincare::Expression * Sequence::secondInitialConditionExpression(Context * context) const {
  if (m_secondInitialConditionExpression == nullptr) {
    m_secondInitialConditionExpression = Poincare::Expression::ParseAndSimplify(m_secondInitialConditionText, *context);
  }
  return m_secondInitialConditionExpression;
}

Poincare::ExpressionLayout * Sequence::firstInitialConditionLayout() {
  if (m_firstInitialConditionLayout == nullptr) {
    Expression * nonSimplifedExpression = Expression::parse(m_firstInitialConditionText);
    if (nonSimplifedExpression) {
      m_firstInitialConditionLayout = nonSimplifedExpression->createLayout(Expression::FloatDisplayMode::Decimal);
      delete nonSimplifedExpression;
    }
  }
  return m_firstInitialConditionLayout;
}

Poincare::ExpressionLayout * Sequence::secondInitialConditionLayout() {
  if (m_secondInitialConditionLayout == nullptr) {
    Expression * nonSimplifedExpression = Expression::parse(m_secondInitialConditionText);
    if (nonSimplifedExpression) {
      m_secondInitialConditionLayout = nonSimplifedExpression->createLayout(Expression::FloatDisplayMode::Decimal);
      delete nonSimplifedExpression;
    }
  }
  return m_secondInitialConditionLayout;
}

void Sequence::setContent(const char * c) {
  Function::setContent(c);
}

void Sequence::setFirstInitialConditionContent(const char * c) {
  strlcpy(m_firstInitialConditionText, c, sizeof(m_firstInitialConditionText));
  if (m_firstInitialConditionExpression != nullptr) {
    delete m_firstInitialConditionExpression;
    m_firstInitialConditionExpression = nullptr;
  }
  if (m_firstInitialConditionLayout != nullptr) {
    delete m_firstInitialConditionLayout;
    m_firstInitialConditionLayout = nullptr;
  }
}

void Sequence::setSecondInitialConditionContent(const char * c) {
  strlcpy(m_secondInitialConditionText, c, sizeof(m_secondInitialConditionText));
  if (m_secondInitialConditionExpression != nullptr) {
    delete m_secondInitialConditionExpression;
    m_secondInitialConditionExpression = nullptr;
  }
  if (m_secondInitialConditionLayout != nullptr) {
    delete m_secondInitialConditionLayout;
    m_secondInitialConditionLayout = nullptr;
  }
}

char Sequence::symbol() const {
  return 'n';
}

int Sequence::numberOfElements() {
  return (int)m_type + 1;
}

Poincare::ExpressionLayout * Sequence::nameLayout() {
  if (m_nameLayout == nullptr) {
    m_nameLayout = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n", 1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
  }
  return m_nameLayout;
}

Poincare::ExpressionLayout * Sequence::definitionName() {
  if (m_definitionName == nullptr) {
    if (m_type == Type::Explicit) {
      m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n ", 2, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
    }
    if (m_type == Type::SingleRecurrence) {
      m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n+1 ", 4, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
    }
    if (m_type == Type::DoubleRecurrence) {
      m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n+2 ", 4, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
    }
  }
  return m_definitionName;
}

Poincare::ExpressionLayout * Sequence::firstInitialConditionName() {
  char buffer[k_initialRankNumberOfDigits+1];
  Integer(m_initialRank).writeTextInBuffer(buffer, k_initialRankNumberOfDigits+1);
  if (m_firstInitialConditionName == nullptr) {
    if (m_type == Type::SingleRecurrence) {
      m_firstInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout(buffer, strlen(buffer), KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
    }
    if (m_type == Type::DoubleRecurrence) {
      m_firstInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout(buffer, strlen(buffer), KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
    }
  }
  return m_firstInitialConditionName;
}

Poincare::ExpressionLayout * Sequence::secondInitialConditionName() {
  char buffer[k_initialRankNumberOfDigits+1];
  Integer(m_initialRank+1).writeTextInBuffer(buffer, k_initialRankNumberOfDigits+1);
  if (m_secondInitialConditionName == nullptr) {
    if (m_type == Type::DoubleRecurrence) {
      m_secondInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout(buffer, strlen(buffer), KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);

    }
  }
  return m_secondInitialConditionName;
}

bool Sequence::isDefined() {
  switch (m_type) {
    case Type::Explicit:
      return strlen(text()) != 0;
    case Type::SingleRecurrence:
      return strlen(text()) != 0 && strlen(firstInitialConditionText()) != 0;
    default:
      return strlen(text()) != 0 && strlen(firstInitialConditionText()) != 0 && strlen(secondInitialConditionText()) != 0;
  }
}

bool Sequence::isEmpty() {
  switch (m_type) {
    case Type::Explicit:
      return Function::isEmpty();
    case Type::SingleRecurrence:
      return Function::isEmpty() && strlen(m_firstInitialConditionText) == 0;
    default:
      return Function::isEmpty() && strlen(m_firstInitialConditionText) == 0 && strlen(m_secondInitialConditionText) == 0;
  }
}

template<typename T>
T Sequence::templatedApproximateAtAbscissa(T x, SequenceContext * sqctx) const {
  T n = std::round(x);
  int sequenceIndex = name()[0] == SequenceStore::k_sequenceNames[0][0] ? 0 : 1;
  if (sqctx->iterateUntilRank<T>(n)) {
    return sqctx->valueOfSequenceAtPreviousRank<T>(sequenceIndex, 0);
  }
  return NAN;
}

template<typename T>
T Sequence::approximateToNextRank(int n, SequenceContext * sqctx) const {
  if (n < m_initialRank || n < 0) {
    return NAN;
  }
  CacheContext<T> ctx = CacheContext<T>(sqctx);
  T un = sqctx->valueOfSequenceAtPreviousRank<T>(0, 0);
  T unm1 = sqctx->valueOfSequenceAtPreviousRank<T>(0, 1);
  T unm2 = sqctx->valueOfSequenceAtPreviousRank<T>(0, 2);
  T vn = sqctx->valueOfSequenceAtPreviousRank<T>(1, 0);
  T vnm1 = sqctx->valueOfSequenceAtPreviousRank<T>(1, 1);
  T vnm2 = sqctx->valueOfSequenceAtPreviousRank<T>(1, 2);
  Poincare::Symbol nSymbol(symbol());
  Poincare::Symbol vnSymbol(Symbol::SpecialSymbols::vn);
  Poincare::Symbol vn1Symbol(Symbol::SpecialSymbols::vn1);
  Poincare::Symbol unSymbol(Symbol::SpecialSymbols::un);
  Poincare::Symbol un1Symbol(Symbol::SpecialSymbols::un1);
  switch (m_type) {
    case Type::Explicit:
    {
      ctx.setValueForSymbol(un, &unSymbol);
      ctx.setValueForSymbol(vn, &vnSymbol);
      Poincare::Complex<T> e = Poincare::Complex<T>::Float(n);
      ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
      return expression(sqctx)->template approximateToScalar<T>(ctx);
    }
    case Type::SingleRecurrence:
    {
      if (n == m_initialRank) {
        return firstInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
      }
      ctx.setValueForSymbol(un, &un1Symbol);
      ctx.setValueForSymbol(unm1, &unSymbol);
      ctx.setValueForSymbol(vn, &vn1Symbol);
      ctx.setValueForSymbol(vnm1, &vnSymbol);
      Poincare::Complex<T> e = Poincare::Complex<T>::Float(n-1);
      ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
      return expression(sqctx)->template approximateToScalar<T>(ctx);
    }
    default:
    {
      if (n == m_initialRank) {
        return firstInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
      }
      if (n == m_initialRank+1) {
        return secondInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
      }
      ctx.setValueForSymbol(unm1, &un1Symbol);
      ctx.setValueForSymbol(unm2, &unSymbol);
      ctx.setValueForSymbol(vnm1, &vn1Symbol);
      ctx.setValueForSymbol(vnm2, &vnSymbol);
      Poincare::Complex<T> e = Poincare::Complex<T>::Float(n-2);
      ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
      return expression(sqctx)->template approximateToScalar<T>(ctx);
    }
  }
}

double Sequence::sumBetweenBounds(double start, double end, Context * context) const {
  double result = 0.0;
  if (end-start > k_maxNumberOfTermsInSum || start + 1.0 == start) {
    return NAN;
  }
  for (double i = std::round(start); i <= std::round(end); i = i + 1.0) {
    /* When |start| >> 1.0, start + 1.0 = start. In that case, quit the
     * infinite loop. */
    if (i == i-1.0 || i == i+1.0) {
      return NAN;
    }
    result += evaluateAtAbscissa(i, context);
  }
  return result;
}

void Sequence::tidy() {
  Function::tidy();
  if (m_firstInitialConditionLayout != nullptr) {
    delete m_firstInitialConditionLayout;
    m_firstInitialConditionLayout = nullptr;
  }
  if (m_secondInitialConditionLayout != nullptr) {
    delete m_secondInitialConditionLayout;
    m_secondInitialConditionLayout = nullptr;
  }
  if (m_firstInitialConditionExpression != nullptr) {
    delete m_firstInitialConditionExpression;
    m_firstInitialConditionExpression = nullptr;
  }
  if (m_secondInitialConditionExpression != nullptr) {
    delete m_secondInitialConditionExpression;
    m_secondInitialConditionExpression = nullptr;
  }
  if (m_nameLayout != nullptr) {
    delete m_nameLayout;
    m_nameLayout = nullptr;
  }
  if (m_definitionName != nullptr) {
    delete m_definitionName;
    m_definitionName = nullptr;
  }
  if (m_firstInitialConditionName != nullptr) {
    delete m_firstInitialConditionName;
    m_firstInitialConditionName = nullptr;
  }
  if (m_secondInitialConditionName != nullptr) {
    delete m_secondInitialConditionName;
    m_secondInitialConditionName = nullptr;
  }
}

template double Sequence::templatedApproximateAtAbscissa<double>(double, SequenceContext*) const;
template float Sequence::templatedApproximateAtAbscissa<float>(float, SequenceContext*) const;
template double Sequence::approximateToNextRank<double>(int, SequenceContext*) const;
template float Sequence::approximateToNextRank<float>(int, SequenceContext*) const;
}