multiplication.cpp
29 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
#include <poincare/multiplication.h>
#include <poincare/addition.h>
#include <poincare/arithmetic.h>
#include <poincare/division.h>
#include <poincare/matrix.h>
#include <poincare/opposite.h>
#include <poincare/parenthesis.h>
#include <poincare/power.h>
#include <poincare/rational.h>
#include <poincare/simplification_root.h>
#include <poincare/subtraction.h>
#include <poincare/tangent.h>
#include <poincare/undefined.h>
#include <cmath>
#include <ion.h>
extern "C" {
#include <assert.h>
#include <stdlib.h>
}
namespace Poincare {
Expression::Type Multiplication::type() const {
return Expression::Type::Multiplication;
}
Expression * Multiplication::clone() const {
if (numberOfOperands() == 0) {
return new Multiplication();
}
return new Multiplication(operands(), numberOfOperands(), true);
}
int Multiplication::polynomialDegree(char symbolName) const {
int degree = 0;
for (int i = 0; i < numberOfOperands(); i++) {
int d = operand(i)->polynomialDegree(symbolName);
if (d < 0) {
return -1;
}
degree += d;
}
return degree;
}
int Multiplication::privateGetPolynomialCoefficients(char symbolName, Expression * coefficients[]) const {
int deg = polynomialDegree(symbolName);
if (deg < 0 || deg > k_maxPolynomialDegree) {
return -1;
}
// Initialization of coefficients
for (int i = 1; i <= deg; i++) {
coefficients[i] = new Rational(0);
}
coefficients[0] = new Rational(1);
Expression * intermediateCoefficients[k_maxNumberOfPolynomialCoefficients];
// Let's note result = a(0)+a(1)*X+a(2)*X^2+a(3)*x^3+..
for (int i = 0; i < numberOfOperands(); i++) {
// operand(i) = b(0)+b(1)*X+b(2)*X^2+b(3)*x^3+...
int degI = operand(i)->privateGetPolynomialCoefficients(symbolName, intermediateCoefficients);
assert(degI <= k_maxPolynomialDegree);
for (int j = deg; j > 0; j--) {
// new coefficients[j] = b(0)*a(j)+b(1)*a(j-1)+b(2)*a(j-2)+...
Addition * a = new Addition();
int jbis = j > degI ? degI : j;
for (int l = 0; l <= jbis ; l++) {
// Always copy the a and b coefficients are they are used multiple times
a->addOperand(new Multiplication(intermediateCoefficients[l], coefficients[j-l], true));
}
/* a(j) and b(j) are used only to compute coefficient at rank >= j, we
* can delete them as we compute new coefficient by decreasing ranks. */
delete coefficients[j];
if (j <= degI) { delete intermediateCoefficients[j]; };
coefficients[j] = a;
}
// new coefficients[0] = a(0)*b(0)
coefficients[0] = new Multiplication(coefficients[0], intermediateCoefficients[0], false);
}
return deg;
}
bool Multiplication::needParenthesisWithParent(const Expression * e) const {
Type types[] = {Type::Division, Type::Power, Type::Factorial};
return e->isOfType(types, 3);
}
ExpressionLayout * Multiplication::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
const char middleDotString[] = {Ion::Charset::MiddleDot, 0};
return LayoutEngine::createInfixLayout(this, floatDisplayMode, numberOfSignificantDigits, middleDotString);
}
int Multiplication::writeTextInBuffer(char * buffer, int bufferSize, PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
const char multiplicationString[] = {Ion::Charset::MultiplicationSign, 0};
return LayoutEngine::writeInfixExpressionTextInBuffer(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, multiplicationString);
}
Expression::Sign Multiplication::sign() const {
int sign = 1;
for (int i = 0; i < numberOfOperands(); i++) {
sign *= (int)operand(i)->sign();
}
return (Sign)sign;
}
Expression * Multiplication::setSign(Sign s, Context & context, AngleUnit angleUnit) {
assert(s == Sign::Positive);
for (int i = 0; i < numberOfOperands(); i++) {
if (operand(i)->sign() == Sign::Negative) {
editableOperand(i)->setSign(s, context, angleUnit);
}
}
return shallowReduce(context, angleUnit);
}
template<typename T>
std::complex<T> Multiplication::compute(const std::complex<T> c, const std::complex<T> d) {
return c*d;
}
template<typename T>
MatrixComplex<T> Multiplication::computeOnMatrices(const MatrixComplex<T> m, const MatrixComplex<T> n) {
if (m.numberOfColumns() != n.numberOfRows()) {
return MatrixComplex<T>::Undefined();
}
std::complex<T> * operands = new std::complex<T> [m.numberOfRows()*n.numberOfColumns()];
for (int i = 0; i < m.numberOfRows(); i++) {
for (int j = 0; j < n.numberOfColumns(); j++) {
std::complex<T> c(0.0);
for (int k = 0; k < m.numberOfColumns(); k++) {
c += m.complexOperand(i*m.numberOfColumns()+k)*n.complexOperand(k*n.numberOfColumns()+j);
}
operands[i*n.numberOfColumns()+j] = c;
}
}
MatrixComplex<T> result = MatrixComplex<T>(operands, m.numberOfRows(), n.numberOfColumns());
delete[] operands;
return result;
}
template<typename T>
void Multiplication::computeOnArrays(T * m, T * n, T * result, int mNumberOfColumns, int mNumberOfRows, int nNumberOfColumns) {
for (int i = 0; i < mNumberOfRows; i++) {
for (int j = 0; j < nNumberOfColumns; j++) {
T res = 0.0f;
for (int k = 0; k < mNumberOfColumns; k++) {
res+= m[i*mNumberOfColumns+k]*n[k*nNumberOfColumns+j];
}
result[i*nNumberOfColumns+j] = res;
}
}
}
bool Multiplication::HaveSameNonRationalFactors(const Expression * e1, const Expression * e2) {
int numberOfNonRationalFactors1 = e1->operand(0)->type() == Type::Rational ? e1->numberOfOperands()-1 : e1->numberOfOperands();
int numberOfNonRationalFactors2 = e2->operand(0)->type() == Type::Rational ? e2->numberOfOperands()-1 : e2->numberOfOperands();
if (numberOfNonRationalFactors1 != numberOfNonRationalFactors2) {
return false;
}
int firstNonRationalOperand1 = e1->operand(0)->type() == Type::Rational ? 1 : 0;
int firstNonRationalOperand2 = e2->operand(0)->type() == Type::Rational ? 1 : 0;
for (int i = 0; i < numberOfNonRationalFactors1; i++) {
if (!(e1->operand(firstNonRationalOperand1+i)->isIdenticalTo(e2->operand(firstNonRationalOperand2+i)))) {
return false;
}
}
return true;
}
static inline const Expression * Base(const Expression * e) {
if (e->type() == Expression::Type::Power) {
return e->operand(0);
}
return e;
}
Expression * Multiplication::shallowReduce(Context& context, AngleUnit angleUnit) {
return privateShallowReduce(context, angleUnit, true, true);
}
Expression * Multiplication::privateShallowReduce(Context & context, AngleUnit angleUnit, bool shouldExpand, bool canBeInterrupted) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
/* Step 1: Multiplication is associative, so let's start by merging children
* which also are multiplications themselves. */
mergeMultiplicationOperands();
/* Step 2: If any of the operand is zero, the multiplication result is zero */
for (int i = 0; i < numberOfOperands(); i++) {
const Expression * o = operand(i);
if (o->type() == Type::Rational && static_cast<const Rational *>(o)->isZero()) {
return replaceWith(new Rational(0), true);
}
}
// Step 3: Sort the operands
sortOperands(SimplificationOrder, canBeInterrupted);
#if MATRIX_EXACT_REDUCING
/* Step 3bis: get rid of matrix */
int n = 1;
int m = 1;
/* All operands have been simplified so if any operand contains a matrix, it
* is at the root node of the operand. Moreover, thanks to the simplification
* order, all matrix operands (if any) are the last operands. */
Expression * lastOperand = editableOperand(numberOfOperands()-1);
if (lastOperand->type() == Type::Matrix) {
Matrix * resultMatrix = static_cast<Matrix *>(lastOperand);
// Use the last matrix operand as the final matrix
n = resultMatrix->numberOfRows();
m = resultMatrix->numberOfColumns();
/* Scan accross the multiplication operands to find any other matrix:
* (the last operand is the result matrix so we start at
* numberOfOperands()-2)*/
int k = numberOfOperands()-2;
while (k >= 0 && operand(k)->type() == Type::Matrix) {
Matrix * currentMatrix = static_cast<Matrix *>(editableOperand(k));
int on = currentMatrix->numberOfRows();
int om = currentMatrix->numberOfColumns();
if (om != n) {
return replaceWith(new Undefined(), true);
}
// Create the matrix resulting of the multiplication of the current matrix and the result matrix
/* resultMatrix
* i2= 0..m
* +-+-+-+-+-+
* | | | | | |
* +-+-+-+-+-+
* j=0..n | | | | | |
* +-+-+-+-+-+
* | | | | | |
* +-+-+-+-+-+
* currentMatrix
* j=0..om
* +---+---+---+ +-+-+-+-+-+
* | | | | | | | | | |
* +---+---+---+ +-+-+-+-+-+
*i1=0..on | | | | | |e| | | |
* +---+---+---+ +-+-+-+-+-+
* | | | | | | | | | |
* +---+---+---+ +-+-+-+-+-+
* */
Expression ** newMatrixOperands = new Expression * [on*m];
for (int e = 0; e < on*m; e++) {
newMatrixOperands[e] = new Addition();
int i2 = e%m;
int i1 = e/m;
for (int j = 0; j < n; j++) {
Expression * mult = new Multiplication(currentMatrix->editableOperand(j+om*i1), resultMatrix->editableOperand(j*m+i2), true);
static_cast<Addition *>(newMatrixOperands[e])->addOperand(mult);
mult->shallowReduce(context, angleUnit);
}
Reduce(&newMatrixOperands[e], context, angleUnit, false);
}
n = on;
removeOperand(currentMatrix, true);
resultMatrix = static_cast<Matrix *>(resultMatrix->replaceWith(new Matrix(newMatrixOperands, n, m, false), true));
k--;
}
removeOperand(resultMatrix, false);
// Distribute the remaining multiplication on matrix operands
for (int i = 0; i < n*m; i++) {
Multiplication * m = static_cast<Multiplication *>(clone());
Expression * entryI = resultMatrix->editableOperand(i);
resultMatrix->replaceOperand(entryI, m, false);
m->addOperand(entryI);
m->shallowReduce(context, angleUnit);
}
return replaceWith(resultMatrix, true)->shallowReduce(context, angleUnit);
}
#endif
/* Step 4: Gather like terms. For example, turn pi^2*pi^3 into pi^5. Thanks to
* the simplification order, such terms are guaranteed to be next to each
* other. */
int i = 0;
while (i < numberOfOperands()-1) {
Expression * oi = editableOperand(i);
Expression * oi1 = editableOperand(i+1);
if (TermsHaveIdenticalBase(oi, oi1)) {
bool shouldFactorizeBase = true;
if (TermHasRationalBase(oi)) {
/* Combining powers of a given rational isn't straightforward. Indeed,
* there are two cases we want to deal with:
* - 2*2^(1/2) or 2*2^pi, we want to keep as-is
* - 2^(1/2)*2^(3/2) we want to combine. */
shouldFactorizeBase = oi->type() == Type::Power && oi1->type() == Type::Power;
}
if (shouldFactorizeBase) {
factorizeBase(oi, oi1, context, angleUnit);
continue;
}
} else if (TermHasRationalBase(oi) && TermHasRationalBase(oi1) && TermsHaveIdenticalExponent(oi, oi1)) {
factorizeExponent(oi, oi1, context, angleUnit);
continue;
}
i++;
}
/* Step 5: We look for terms of form sin(x)^p*cos(x)^q with p, q rational of
*opposite signs. We replace them by either:
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
for (int i = 0; i < numberOfOperands(); i++) {
Expression * o1 = editableOperand(i);
if (Base(o1)->type() == Type::Sine && TermHasRationalExponent(o1)) {
const Expression * x = Base(o1)->operand(0);
/* Thanks to the SimplificationOrder, Cosine-base factors are after
* Sine-base factors */
for (int j = i+1; j < numberOfOperands(); j++) {
Expression * o2 = editableOperand(j);
if (Base(o2)->type() == Type::Cosine && TermHasRationalExponent(o2) && Base(o2)->operand(0)->isIdenticalTo(x)) {
factorizeSineAndCosine(o1, o2, context, angleUnit);
break;
}
}
}
}
/* Replacing sin/cos by tan factors may have mixed factors and factors are
* guaranteed to be sorted (according ot SimplificationOrder) at the end of
* shallowReduce */
sortOperands(SimplificationOrder, true);
/* Step 6: We remove rational operands that appeared in the middle of sorted
* operands. It's important to do this after having factorized because
* factorization can lead to new ones. Indeed:
* pi^(-1)*pi-> 1
* i*i -> -1
* 2^(1/2)*2^(1/2) -> 2
* sin(x)*cos(x) -> 1*tan(x)
* Last, we remove the only rational operand if it is one and not the only
* operand. */
i = 1;
while (i < numberOfOperands()) {
Expression * o = editableOperand(i);
if (o->type() == Type::Rational && static_cast<Rational *>(o)->isOne()) {
removeOperand(o, true);
continue;
}
if (o->type() == Type::Rational) {
if (operand(0)->type() == Type::Rational) {
Rational * o0 = static_cast<Rational *>(editableOperand(0));
Rational m = Rational::Multiplication(*o0, *(static_cast<Rational *>(o)));
replaceOperand(o0, new Rational(m), true);
removeOperand(o, true);
} else {
removeOperand(o, false);
addOperandAtIndex(o, 0);
}
continue;
}
i++;
}
if (operand(0)->type() == Type::Rational && static_cast<Rational *>(editableOperand(0))->isOne() && numberOfOperands() > 1) {
removeOperand(editableOperand(0), true);
}
/* Step 7: Expand multiplication over addition operands if any. For example,
* turn (a+b)*c into a*c + b*c. We do not want to do this step right now if
* the parent is a multiplication to avoid missing factorization such as
* (x+y)^(-1)*((a+b)*(x+y)).
* Note: This step must be done after Step 4, otherwise we wouldn't be able to
* reduce expressions such as (x+y)^(-1)*(x+y)(a+b). */
if (shouldExpand && parent()->type() != Type::Multiplication) {
for (int i=0; i<numberOfOperands(); i++) {
if (operand(i)->type() == Type::Addition) {
return distributeOnOperandAtIndex(i, context, angleUnit);
}
}
}
// Step 8: Let's remove the multiplication altogether if it has one operand
Expression * result = squashUnaryHierarchy();
return result;
}
void Multiplication::mergeMultiplicationOperands() {
// Multiplication is associative: a*(b*c)->a*b*c
int i = 0;
int initialNumberOfOperands = numberOfOperands();
while (i < initialNumberOfOperands) {
Expression * o = editableOperand(i);
if (o->type() == Type::Multiplication) {
mergeOperands(static_cast<Multiplication *>(o)); // TODO: ensure that matrix operands are not swapped to implement MATRIX_EXACT_REDUCING
continue;
}
i++;
}
}
void Multiplication::factorizeSineAndCosine(Expression * o1, Expression * o2, Context & context, AngleUnit angleUnit) {
assert(o1->parent() == this && o2->parent() == this);
/* This function turn sin(x)^p * cos(x)^q into either:
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
const Expression * x = Base(o1)->operand(0);
Rational p = o1->type() == Type::Power ? *(static_cast<Rational *>(o1->editableOperand(1))) : Rational(1);
Rational q = o2->type() == Type::Power ? *(static_cast<Rational *>(o2->editableOperand(1))) : Rational(1);
/* If p and q have the same sign, we cannot replace them by a tangent */
if ((int)p.sign()*(int)q.sign() > 0) {
return;
}
Rational sumPQ = Rational::Addition(p, q);
Rational absP = p;
absP.setSign(Sign::Positive);
Rational absQ = q;
absQ.setSign(Sign::Positive);
Expression * tan = new Tangent(x, true);
if (Rational::NaturalOrder(absP, absQ) < 0) {
if (o1->type() == Type::Power) {
o1->replaceOperand(o1->operand(0), tan, true);
} else {
replaceOperand(o1, tan, true);
o1 = tan;
}
o1->shallowReduce(context, angleUnit);
if (o2->type() == Type::Power) {
o2->replaceOperand(o2->operand(1), new Rational(sumPQ), true);
} else {
Expression * newO2 = new Power(o2, new Rational(sumPQ), false);
replaceOperand(o2, newO2, false);
o2 = newO2;
}
o2->shallowReduce(context, angleUnit);
} else {
if (o2->type() == Type::Power) {
o2->replaceOperand(o2->operand(1), new Rational(Rational::Multiplication(q, Rational(-1))), true);
o2->replaceOperand(o2->operand(0), tan, true);
} else {
Expression * newO2 = new Power(tan, new Rational(-1), false);
replaceOperand(o2, newO2, true);
o2 = newO2;
}
o2->shallowReduce(context, angleUnit);
if (o1->type() == Type::Power) {
o1->replaceOperand(o1->operand(1), new Rational(sumPQ), true);
} else {
Expression * newO1 = new Power(o1, new Rational(sumPQ), false);
replaceOperand(o1, newO1, false);
o1 = newO1;
}
o1->shallowReduce(context, angleUnit);
}
}
void Multiplication::factorizeBase(Expression * e1, Expression * e2, Context & context, AngleUnit angleUnit) {
/* This function factorizes two operands which have a common base. For example
* if this is Multiplication(pi^2, pi^3), then pi^2 and pi^3 could be merged
* and this turned into Multiplication(pi^5). */
assert(TermsHaveIdenticalBase(e1, e2));
// Step 1: Find the new exponent
Expression * s = new Addition(CreateExponent(e1), CreateExponent(e2), false);
// Step 2: Get rid of one of the operands
removeOperand(e2, true);
// Step 3: Use the new exponent
Power * p = nullptr;
if (e1->type() == Type::Power) {
// If e1 is a power, replace the initial exponent with the new one
e1->replaceOperand(e1->operand(1), s, true);
p = static_cast<Power *>(e1);
} else {
// Otherwise, create a new Power node
p = new Power(e1, s, false);
replaceOperand(e1, p, false);
}
// Step 4: Reduce the new power
s->shallowReduce(context, angleUnit); // pi^2*pi^3 -> pi^(2+3) -> pi^5
Expression * reducedP = p->shallowReduce(context, angleUnit); // pi^2*pi^-2 -> pi^0 -> 1
/* Step 5: Reducing the new power might have turned it into a multiplication,
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
* node with this. */
if (reducedP->type() == Type::Multiplication) {
mergeMultiplicationOperands();
}
}
void Multiplication::factorizeExponent(Expression * e1, Expression * e2, Context & context, AngleUnit angleUnit) {
/* This function factorizes operands which share a common exponent. For
* example, it turns Multiplication(2^x,3^x) into Multiplication(6^x). */
assert(e1->parent() == this && e2->parent() == this);
const Expression * base1 = e1->operand(0)->clone();
const Expression * base2 = e2->operand(0);
e2->detachOperand(base2);
Expression * m = new Multiplication(base1, base2, false);
removeOperand(e2, true);
e1->replaceOperand(e1->operand(0), m, true);
m->shallowReduce(context, angleUnit); // 2^x*3^x -> (2*3)^x -> 6^x
Expression * reducedE1 = e1->shallowReduce(context, angleUnit); // 2^x*(1/2)^x -> (2*1/2)^x -> 1
/* Reducing the new power might have turned it into a multiplication,
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
* node with this. */
if (reducedE1->type() == Type::Multiplication) {
mergeMultiplicationOperands();
}
}
Expression * Multiplication::distributeOnOperandAtIndex(int i, Context & context, AngleUnit angleUnit) {
// This function turns a*(b+c) into a*b + a*c
// We avoid deleting and creating a new addition
Addition * a = static_cast<Addition *>(editableOperand(i));
removeOperand(a, false);
for (int j = 0; j < a->numberOfOperands(); j++) {
Multiplication * m = static_cast<Multiplication *>(clone());
Expression * termJ = a->editableOperand(j);
a->replaceOperand(termJ, m, false);
m->addOperand(termJ);
m->shallowReduce(context, angleUnit); // pi^(-1)*(pi + x) -> pi^(-1)*pi + pi^(-1)*x -> 1 + pi^(-1)*x
}
replaceWith(a, true);
return a->shallowReduce(context, angleUnit); // Order terms, put under a common denominator if needed
}
const Expression * Multiplication::CreateExponent(Expression * e) {
return e->type() == Type::Power ? e->operand(1)->clone() : new Rational(1);
}
bool Multiplication::TermsHaveIdenticalBase(const Expression * e1, const Expression * e2) {
return Base(e1)->isIdenticalTo(Base(e2));
}
bool Multiplication::TermsHaveIdenticalExponent(const Expression * e1, const Expression * e2) {
/* Note: We will return false for e1=2 and e2=Pi, even though one could argue
* that these have the same exponent whose value is 1. */
return e1->type() == Type::Power && e2->type() == Type::Power && (e1->operand(1)->isIdenticalTo(e2->operand(1)));
}
bool Multiplication::TermHasRationalBase(const Expression * e) {
return Base(e)->type() == Type::Rational;
}
bool Multiplication::TermHasRationalExponent(const Expression * e) {
if (e->type() != Type::Power) {
return true;
}
if (e->operand(1)->type() == Type::Rational) {
return true;
}
return false;
}
Expression * Multiplication::shallowBeautify(Context & context, AngleUnit angleUnit) {
/* Beautifying a Multiplication consists in several possible operations:
* - Add Opposite ((-3)*x -> -(3*x), useful when printing fractions)
* - Adding parenthesis if needed (a*(b+c) is not a*b+c)
* - Creating a Division if there's either a term with a power of -1 (a.b^(-1)
* shall become a/b) or a non-integer rational term (3/2*a -> (3*a)/2). */
// Step 1: Turn -n*A into -(n*A)
if (operand(0)->type() == Type::Rational && operand(0)->sign() == Sign::Negative) {
if (static_cast<const Rational *>(operand(0))->isMinusOne()) {
removeOperand(editableOperand(0), true);
} else {
editableOperand(0)->setSign(Sign::Positive, context, angleUnit);
}
Expression * e = squashUnaryHierarchy();
Opposite * o = new Opposite(e, true);
e->replaceWith(o, true);
o->editableOperand(0)->shallowBeautify(context, angleUnit);
return o;
}
/* Step 2: Merge negative powers: a*b^(-1)*c^(-pi)*d = a*(b*c^pi)^(-1)
* This also turns 2/3*a into 2*a*3^(-1) */
Expression * e = mergeNegativePower(context, angleUnit);
if (e->type() == Type::Power) {
return e->shallowBeautify(context, angleUnit);
}
assert(e == this);
// Step 3: Add Parenthesis if needed
for (int i = 0; i < numberOfOperands(); i++) {
const Expression * o = operand(i);
if (o->type() == Type::Addition ) {
Parenthesis * p = new Parenthesis(o, false);
replaceOperand(o, p, false);
}
}
// Step 4: Create a Division if needed
for (int i = 0; i < numberOfOperands(); i++) {
if (!(operand(i)->type() == Type::Power && operand(i)->operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(i)->operand(1))->isMinusOne())) {
continue;
}
// Let's remove the denominator-to-be from this
Power * p = static_cast<Power *>(editableOperand(i));
Expression * denominatorOperand = p->editableOperand(0);
p->detachOperand(denominatorOperand);
removeOperand(p, true);
Expression * numeratorOperand = shallowReduce(context, angleUnit);
// Delete parenthesis unnecessary on numerator
if (numeratorOperand->type() == Type::Parenthesis) {
numeratorOperand = numeratorOperand->replaceWith(numeratorOperand->editableOperand(0), true);
}
Expression * originalParent = numeratorOperand->parent();
Division * d = new Division(numeratorOperand, denominatorOperand, false);
originalParent->replaceOperand(numeratorOperand, d, false);
return d->shallowBeautify(context, angleUnit);
}
return this;
}
Expression * Multiplication::cloneDenominator(Context & context, AngleUnit angleUnit) const {
// Merge negative power: a*b^-1*c^(-Pi)*d = a*(b*c^Pi)^-1
// WARNING: we do not want to change the expression but to create a new one.
SimplificationRoot root(clone());
Expression * e = ((Multiplication *)root.operand(0))->mergeNegativePower(context, angleUnit);
Expression * result = nullptr;
if (e->type() == Type::Power) {
result = static_cast<Power *>(e)->cloneDenominator(context, angleUnit);
} else {
assert(e->type() == Type::Multiplication);
for (int i = 0; i < e->numberOfOperands(); i++) {
// a*b^(-1)*... -> a*.../b
if (e->operand(i)->type() == Type::Power && e->operand(i)->operand(1)->type() == Type::Rational && static_cast<const Rational *>(e->operand(i)->operand(1))->isMinusOne()) {
Power * p = static_cast<Power *>(e->editableOperand(i));
result = p->editableOperand(0);
p->detachOperand((result));
}
}
}
root.detachOperand(e);
delete e;
return result;
}
Expression * Multiplication::mergeNegativePower(Context & context, AngleUnit angleUnit) {
Multiplication * m = new Multiplication();
// Special case for rational p/q: if q != 1, q should be at denominator
if (operand(0)->type() == Type::Rational && !static_cast<const Rational *>(operand(0))->denominator().isOne()) {
Rational * r = static_cast<Rational *>(editableOperand(0));
m->addOperand(new Rational(r->denominator()));
if (r->numerator().isOne()) {
removeOperand(r, true);
} else {
replaceOperand(r, new Rational(r->numerator()), true);
}
}
int i = 0;
while (i < numberOfOperands()) {
if (operand(i)->type() == Type::Power && operand(i)->operand(1)->sign() == Sign::Negative) {
Expression * e = editableOperand(i);
e->editableOperand(1)->setSign(Sign::Positive, context, angleUnit);
removeOperand(e, false);
m->addOperand(e);
e->shallowReduce(context, angleUnit);
} else {
i++;
}
}
if (m->numberOfOperands() == 0) {
delete m;
return this;
}
Power * p = new Power(m, new Rational(-1), false);
m->sortOperands(SimplificationOrder, true);
m->squashUnaryHierarchy();
addOperand(p);
sortOperands(SimplificationOrder, true);
return squashUnaryHierarchy();
}
void Multiplication::addMissingFactors(Expression * factor, Context & context, AngleUnit angleUnit) {
if (factor->type() == Type::Multiplication) {
for (int j = 0; j < factor->numberOfOperands(); j++) {
addMissingFactors(factor->editableOperand(j), context, angleUnit);
}
return;
}
/* Special case when factor is a Rational: if 'this' has already a rational
* operand, we replace it by its LCM with factor ; otherwise, we simply add
* factor as an operand. */
if (numberOfOperands() > 0 && operand(0)->type() == Type::Rational && factor->type() == Type::Rational) {
Rational * f = static_cast<Rational *>(factor);
Rational * o = static_cast<Rational *>(editableOperand(0));
assert(f->denominator().isOne());
assert(o->denominator().isOne());
Integer i = f->numerator();
Integer j = o->numerator();
return replaceOperand(o, new Rational(Arithmetic::LCM(&i, &j)));
}
if (factor->type() != Type::Rational) {
/* If factor is not a rational, we merge it with the operand of identical
* base if any. Otherwise, we add it as an new operand. */
for (int i = 0; i < numberOfOperands(); i++) {
if (TermsHaveIdenticalBase(operand(i), factor)) {
Expression * sub = new Subtraction(CreateExponent(editableOperand(i)), CreateExponent(factor), false);
Reduce((Expression **)&sub, context, angleUnit);
if (sub->sign() == Sign::Negative) { // index[0] < index[1]
if (factor->type() == Type::Power) {
factor->replaceOperand(factor->editableOperand(1), new Opposite(sub, true), true);
} else {
factor = new Power(factor, new Opposite(sub, true), false);
}
factor->editableOperand(1)->shallowReduce(context, angleUnit);
factorizeBase(editableOperand(i), factor, context, angleUnit);
editableOperand(i)->shallowReduce(context, angleUnit);
} else if (sub->sign() == Sign::Unknown) {
factorizeBase(editableOperand(i), factor, context, angleUnit);
editableOperand(i)->shallowReduce(context, angleUnit);
} else {}
delete sub;
/* Reducing the new operand i can lead to creating a new multiplication
* (ie 2^(1+2*3^(1/2)) -> 2*2^(2*3^(1/2)). We thus have to get rid of
* nested multiplication: */
mergeMultiplicationOperands();
return;
}
}
}
addOperand(factor->clone());
sortOperands(SimplificationOrder, false);
}
template MatrixComplex<float> Multiplication::computeOnComplexAndMatrix<float>(std::complex<float> const, const MatrixComplex<float>);
template MatrixComplex<double> Multiplication::computeOnComplexAndMatrix<double>(std::complex<double> const, const MatrixComplex<double>);
template std::complex<float> Multiplication::compute<float>(const std::complex<float>, const std::complex<float>);
template std::complex<double> Multiplication::compute<double>(const std::complex<double>, const std::complex<double>);
template void Multiplication::computeOnArrays<double>(double * m, double * n, double * result, int mNumberOfColumns, int mNumberOfRows, int nNumberOfColumns);
}