multiplication.cpp 29 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
#include <poincare/multiplication.h>
#include <poincare/addition.h>
#include <poincare/arithmetic.h>
#include <poincare/division.h>
#include <poincare/matrix.h>
#include <poincare/opposite.h>
#include <poincare/parenthesis.h>
#include <poincare/power.h>
#include <poincare/rational.h>
#include <poincare/simplification_root.h>
#include <poincare/subtraction.h>
#include <poincare/tangent.h>
#include <poincare/undefined.h>
#include <cmath>
#include <ion.h>
extern "C" {
#include <assert.h>
#include <stdlib.h>
}

namespace Poincare {

Expression::Type Multiplication::type() const {
  return Expression::Type::Multiplication;
}

Expression * Multiplication::clone() const {
  if (numberOfOperands() == 0) {
    return new Multiplication();
  }
  return new Multiplication(operands(), numberOfOperands(), true);
}

int Multiplication::polynomialDegree(char symbolName) const {
  int degree = 0;
  for (int i = 0; i < numberOfOperands(); i++) {
    int d = operand(i)->polynomialDegree(symbolName);
    if (d < 0) {
      return -1;
    }
    degree += d;
  }
  return degree;
}

int Multiplication::privateGetPolynomialCoefficients(char symbolName, Expression * coefficients[]) const {
  int deg = polynomialDegree(symbolName);
  if (deg < 0 || deg > k_maxPolynomialDegree) {
    return -1;
  }
  // Initialization of coefficients
  for (int i = 1; i <= deg; i++) {
    coefficients[i] = new Rational(0);
  }
  coefficients[0] = new Rational(1);

  Expression * intermediateCoefficients[k_maxNumberOfPolynomialCoefficients];
  // Let's note result = a(0)+a(1)*X+a(2)*X^2+a(3)*x^3+..
  for (int i = 0; i < numberOfOperands(); i++) {
    // operand(i) = b(0)+b(1)*X+b(2)*X^2+b(3)*x^3+...
    int degI = operand(i)->privateGetPolynomialCoefficients(symbolName, intermediateCoefficients);
    assert(degI <= k_maxPolynomialDegree);
    for (int j = deg; j > 0; j--) {
      // new coefficients[j] = b(0)*a(j)+b(1)*a(j-1)+b(2)*a(j-2)+...
      Addition * a = new Addition();
      int jbis = j > degI ? degI : j;
      for (int l = 0; l <= jbis ; l++) {
        // Always copy the a and b coefficients are they are used multiple times
        a->addOperand(new Multiplication(intermediateCoefficients[l], coefficients[j-l], true));
      }
      /* a(j) and b(j) are used only to compute coefficient at rank >= j, we
       * can delete them as we compute new coefficient by decreasing ranks. */
      delete coefficients[j];
      if (j <= degI) { delete intermediateCoefficients[j]; };
      coefficients[j] = a;
    }
    // new coefficients[0] = a(0)*b(0)
    coefficients[0] = new Multiplication(coefficients[0], intermediateCoefficients[0], false);
  }
  return deg;
}

bool Multiplication::needParenthesisWithParent(const Expression * e) const {
  Type types[] = {Type::Division, Type::Power, Type::Factorial};
  return e->isOfType(types, 3);
}

ExpressionLayout * Multiplication::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
  const char middleDotString[] = {Ion::Charset::MiddleDot, 0};
  return LayoutEngine::createInfixLayout(this, floatDisplayMode, numberOfSignificantDigits, middleDotString);
}

int Multiplication::writeTextInBuffer(char * buffer, int bufferSize, PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
  const char multiplicationString[] = {Ion::Charset::MultiplicationSign, 0};
  return LayoutEngine::writeInfixExpressionTextInBuffer(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, multiplicationString);
}

Expression::Sign Multiplication::sign() const {
  int sign = 1;
  for (int i = 0; i < numberOfOperands(); i++) {
    sign *= (int)operand(i)->sign();
  }
  return (Sign)sign;
}

Expression * Multiplication::setSign(Sign s, Context & context, AngleUnit angleUnit) {
  assert(s == Sign::Positive);
  for (int i = 0; i < numberOfOperands(); i++) {
    if (operand(i)->sign() == Sign::Negative) {
      editableOperand(i)->setSign(s, context, angleUnit);
    }
  }
  return shallowReduce(context, angleUnit);
}

template<typename T>
std::complex<T> Multiplication::compute(const std::complex<T> c, const std::complex<T> d) {
  return c*d;
}

template<typename T>
MatrixComplex<T> Multiplication::computeOnMatrices(const MatrixComplex<T> m, const MatrixComplex<T> n) {
  if (m.numberOfColumns() != n.numberOfRows()) {
    return MatrixComplex<T>::Undefined();
  }
  std::complex<T> * operands = new std::complex<T> [m.numberOfRows()*n.numberOfColumns()];
  for (int i = 0; i < m.numberOfRows(); i++) {
    for (int j = 0; j < n.numberOfColumns(); j++) {
      std::complex<T> c(0.0);
      for (int k = 0; k < m.numberOfColumns(); k++) {
        c += m.complexOperand(i*m.numberOfColumns()+k)*n.complexOperand(k*n.numberOfColumns()+j);
      }
      operands[i*n.numberOfColumns()+j] = c;
    }
  }
  MatrixComplex<T> result = MatrixComplex<T>(operands, m.numberOfRows(), n.numberOfColumns());
  delete[] operands;
  return result;
}

template<typename T>
void Multiplication::computeOnArrays(T * m, T * n, T * result, int mNumberOfColumns, int mNumberOfRows, int nNumberOfColumns) {
  for (int i = 0; i < mNumberOfRows; i++) {
    for (int j = 0; j < nNumberOfColumns; j++) {
      T res = 0.0f;
      for (int k = 0; k < mNumberOfColumns; k++) {
        res+= m[i*mNumberOfColumns+k]*n[k*nNumberOfColumns+j];
      }
      result[i*nNumberOfColumns+j] = res;
    }
  }
}

bool Multiplication::HaveSameNonRationalFactors(const Expression * e1, const Expression * e2) {
  int numberOfNonRationalFactors1 = e1->operand(0)->type() == Type::Rational ? e1->numberOfOperands()-1 : e1->numberOfOperands();
  int numberOfNonRationalFactors2 = e2->operand(0)->type() == Type::Rational ? e2->numberOfOperands()-1 : e2->numberOfOperands();
  if (numberOfNonRationalFactors1 != numberOfNonRationalFactors2) {
    return false;
  }
  int firstNonRationalOperand1 = e1->operand(0)->type() == Type::Rational ? 1 : 0;
  int firstNonRationalOperand2 = e2->operand(0)->type() == Type::Rational ? 1 : 0;
  for (int i = 0; i < numberOfNonRationalFactors1; i++) {
    if (!(e1->operand(firstNonRationalOperand1+i)->isIdenticalTo(e2->operand(firstNonRationalOperand2+i)))) {
      return false;
    }
  }
  return true;
}

static inline const Expression * Base(const Expression * e) {
  if (e->type() == Expression::Type::Power) {
    return e->operand(0);
  }
  return e;
}

Expression * Multiplication::shallowReduce(Context& context, AngleUnit angleUnit) {
  return privateShallowReduce(context, angleUnit, true, true);
}

Expression * Multiplication::privateShallowReduce(Context & context, AngleUnit angleUnit, bool shouldExpand, bool canBeInterrupted) {
  Expression * e = Expression::shallowReduce(context, angleUnit);
  if (e != this) {
    return e;
  }
  /* Step 1: Multiplication is associative, so let's start by merging children
   * which also are multiplications themselves. */
  mergeMultiplicationOperands();

  /* Step 2: If any of the operand is zero, the multiplication result is zero */
  for (int i = 0; i < numberOfOperands(); i++) {
    const Expression * o = operand(i);
    if (o->type() == Type::Rational && static_cast<const Rational *>(o)->isZero()) {
      return replaceWith(new Rational(0), true);
    }
  }

  // Step 3: Sort the operands
  sortOperands(SimplificationOrder, canBeInterrupted);

#if MATRIX_EXACT_REDUCING
  /* Step 3bis: get rid of matrix */
  int n = 1;
  int m = 1;
  /* All operands have been simplified so if any operand contains a matrix, it
   * is at the root node of the operand. Moreover, thanks to the simplification
   * order, all matrix operands (if any) are the last operands. */
  Expression * lastOperand = editableOperand(numberOfOperands()-1);
  if (lastOperand->type() == Type::Matrix) {
    Matrix * resultMatrix = static_cast<Matrix *>(lastOperand);
    // Use the last matrix operand as the final matrix
    n = resultMatrix->numberOfRows();
    m = resultMatrix->numberOfColumns();
    /* Scan accross the multiplication operands to find any other matrix:
     * (the last operand is the result matrix so we start at
     * numberOfOperands()-2)*/
    int k = numberOfOperands()-2;
    while (k >= 0 && operand(k)->type() == Type::Matrix) {
      Matrix * currentMatrix = static_cast<Matrix *>(editableOperand(k));
      int on = currentMatrix->numberOfRows();
      int om = currentMatrix->numberOfColumns();
      if (om != n) {
        return replaceWith(new Undefined(), true);
      }
      // Create the matrix resulting of the multiplication of the current matrix and the result matrix
     /*                        resultMatrix
      *                          i2= 0..m
      *                         +-+-+-+-+-+
      *                         | | | | | |
      *                         +-+-+-+-+-+
      *                  j=0..n | | | | | |
      *                         +-+-+-+-+-+
      *                         | | | | | |
      *                         +-+-+-+-+-+
      *        currentMatrix
      *           j=0..om
      *         +---+---+---+   +-+-+-+-+-+
      *         |   |   |   |   | | | | | |
      *         +---+---+---+   +-+-+-+-+-+
      *i1=0..on |   |   |   |   | |e| | | |
      *         +---+---+---+   +-+-+-+-+-+
      *         |   |   |   |   | | | | | |
      *         +---+---+---+   +-+-+-+-+-+
      * */
      Expression ** newMatrixOperands = new Expression * [on*m];
      for (int e = 0; e < on*m; e++) {
        newMatrixOperands[e] = new Addition();
        int i2 = e%m;
        int i1 = e/m;
        for (int j = 0; j < n; j++) {
          Expression * mult = new Multiplication(currentMatrix->editableOperand(j+om*i1), resultMatrix->editableOperand(j*m+i2), true);
          static_cast<Addition *>(newMatrixOperands[e])->addOperand(mult);
          mult->shallowReduce(context, angleUnit);
        }
        Reduce(&newMatrixOperands[e], context, angleUnit, false);
      }
      n = on;
      removeOperand(currentMatrix, true);
      resultMatrix = static_cast<Matrix *>(resultMatrix->replaceWith(new Matrix(newMatrixOperands, n, m, false), true));
      k--;
    }
    removeOperand(resultMatrix, false);
    // Distribute the remaining multiplication on matrix operands
    for (int i = 0; i < n*m; i++) {
      Multiplication * m = static_cast<Multiplication *>(clone());
      Expression * entryI = resultMatrix->editableOperand(i);
      resultMatrix->replaceOperand(entryI, m, false);
      m->addOperand(entryI);
      m->shallowReduce(context, angleUnit);
    }
    return replaceWith(resultMatrix, true)->shallowReduce(context, angleUnit);
  }
#endif

  /* Step 4: Gather like terms. For example, turn pi^2*pi^3 into pi^5. Thanks to
   * the simplification order, such terms are guaranteed to be next to each
   * other. */
  int i = 0;
  while (i < numberOfOperands()-1) {
    Expression * oi = editableOperand(i);
    Expression * oi1 = editableOperand(i+1);
    if (TermsHaveIdenticalBase(oi, oi1)) {
      bool shouldFactorizeBase = true;
      if (TermHasRationalBase(oi)) {
        /* Combining powers of a given rational isn't straightforward. Indeed,
         * there are two cases we want to deal with:
         *  - 2*2^(1/2) or 2*2^pi, we want to keep as-is
         *  - 2^(1/2)*2^(3/2) we want to combine. */
        shouldFactorizeBase = oi->type() == Type::Power && oi1->type() == Type::Power;
      }
      if (shouldFactorizeBase) {
        factorizeBase(oi, oi1, context, angleUnit);
        continue;
      }
    } else if (TermHasRationalBase(oi) && TermHasRationalBase(oi1) && TermsHaveIdenticalExponent(oi, oi1)) {
      factorizeExponent(oi, oi1, context, angleUnit);
      continue;
    }
    i++;
  }

  /* Step 5: We look for terms of form sin(x)^p*cos(x)^q with p, q rational of
   *opposite signs. We replace them by either:
   * - tan(x)^p*cos(x)^(p+q) if |p|<|q|
   * - tan(x)^(-q)*sin(x)^(p+q) otherwise */
  for (int i = 0; i < numberOfOperands(); i++) {
    Expression * o1 = editableOperand(i);
    if (Base(o1)->type() == Type::Sine && TermHasRationalExponent(o1)) {
      const Expression * x = Base(o1)->operand(0);
      /* Thanks to the SimplificationOrder, Cosine-base factors are after
       * Sine-base factors */
      for (int j = i+1; j < numberOfOperands(); j++) {
        Expression * o2 = editableOperand(j);
        if (Base(o2)->type() == Type::Cosine && TermHasRationalExponent(o2) && Base(o2)->operand(0)->isIdenticalTo(x)) {
          factorizeSineAndCosine(o1, o2, context, angleUnit);
          break;
        }
      }
    }
  }
  /* Replacing sin/cos by tan factors may have mixed factors and factors are
   * guaranteed to be sorted (according ot SimplificationOrder) at the end of
   * shallowReduce */
  sortOperands(SimplificationOrder, true);

  /* Step 6: We remove rational operands that appeared in the middle of sorted
   * operands. It's important to do this after having factorized because
   * factorization can lead to new ones. Indeed:
   * pi^(-1)*pi-> 1
   * i*i -> -1
   * 2^(1/2)*2^(1/2) -> 2
   * sin(x)*cos(x) -> 1*tan(x)
   * Last, we remove the only rational operand if it is one and not the only
   * operand. */
  i = 1;
  while (i < numberOfOperands()) {
    Expression * o = editableOperand(i);
    if (o->type() == Type::Rational && static_cast<Rational *>(o)->isOne()) {
      removeOperand(o, true);
      continue;
    }
    if (o->type() == Type::Rational) {
      if (operand(0)->type() == Type::Rational) {
        Rational * o0 = static_cast<Rational *>(editableOperand(0));
        Rational m = Rational::Multiplication(*o0, *(static_cast<Rational *>(o)));
        replaceOperand(o0, new Rational(m), true);
        removeOperand(o, true);
      } else {
        removeOperand(o, false);
        addOperandAtIndex(o, 0);
      }
      continue;
    }
    i++;
  }
  if (operand(0)->type() == Type::Rational && static_cast<Rational *>(editableOperand(0))->isOne() && numberOfOperands() > 1) {
    removeOperand(editableOperand(0), true);
  }


  /* Step 7: Expand multiplication over addition operands if any. For example,
   * turn (a+b)*c into a*c + b*c. We do not want to do this step right now if
   * the parent is a multiplication to avoid missing factorization such as
   * (x+y)^(-1)*((a+b)*(x+y)).
   * Note: This step must be done after Step 4, otherwise we wouldn't be able to
   * reduce expressions such as (x+y)^(-1)*(x+y)(a+b). */
  if (shouldExpand && parent()->type() != Type::Multiplication) {
    for (int i=0; i<numberOfOperands(); i++) {
      if (operand(i)->type() == Type::Addition) {
        return distributeOnOperandAtIndex(i, context, angleUnit);
      }
    }
  }

  // Step 8: Let's remove the multiplication altogether if it has one operand
  Expression * result = squashUnaryHierarchy();

  return result;
}

void Multiplication::mergeMultiplicationOperands() {
  // Multiplication is associative: a*(b*c)->a*b*c
  int i = 0;
  int initialNumberOfOperands = numberOfOperands();
  while (i < initialNumberOfOperands) {
    Expression * o = editableOperand(i);
    if (o->type() == Type::Multiplication) {
      mergeOperands(static_cast<Multiplication *>(o)); // TODO: ensure that matrix operands are not swapped to implement MATRIX_EXACT_REDUCING
      continue;
    }
    i++;
  }
}

void Multiplication::factorizeSineAndCosine(Expression * o1, Expression * o2, Context & context, AngleUnit angleUnit) {
  assert(o1->parent() == this && o2->parent() == this);
  /* This function turn sin(x)^p * cos(x)^q into either:
   * - tan(x)^p*cos(x)^(p+q) if |p|<|q|
   * - tan(x)^(-q)*sin(x)^(p+q) otherwise */
  const Expression * x = Base(o1)->operand(0);
  Rational p = o1->type() == Type::Power ? *(static_cast<Rational *>(o1->editableOperand(1))) : Rational(1);
  Rational q = o2->type() == Type::Power ? *(static_cast<Rational *>(o2->editableOperand(1))) : Rational(1);
  /* If p and q have the same sign, we cannot replace them by a tangent */
  if ((int)p.sign()*(int)q.sign() > 0) {
    return;
  }
  Rational sumPQ = Rational::Addition(p, q);
  Rational absP = p;
  absP.setSign(Sign::Positive);
  Rational absQ = q;
  absQ.setSign(Sign::Positive);
  Expression * tan = new Tangent(x, true);
  if (Rational::NaturalOrder(absP, absQ) < 0) {
    if (o1->type() == Type::Power) {
      o1->replaceOperand(o1->operand(0), tan, true);
    } else {
      replaceOperand(o1, tan, true);
      o1 = tan;
    }
    o1->shallowReduce(context, angleUnit);
    if (o2->type() == Type::Power) {
      o2->replaceOperand(o2->operand(1), new Rational(sumPQ), true);
    } else {
      Expression * newO2 = new Power(o2, new Rational(sumPQ), false);
      replaceOperand(o2, newO2, false);
      o2 = newO2;
    }
    o2->shallowReduce(context, angleUnit);
  } else {
    if (o2->type() == Type::Power) {
      o2->replaceOperand(o2->operand(1), new Rational(Rational::Multiplication(q, Rational(-1))), true);
      o2->replaceOperand(o2->operand(0), tan, true);
    } else {
      Expression * newO2 = new Power(tan, new Rational(-1), false);
      replaceOperand(o2, newO2, true);
      o2 = newO2;
    }
    o2->shallowReduce(context, angleUnit);
    if (o1->type() == Type::Power) {
      o1->replaceOperand(o1->operand(1), new Rational(sumPQ), true);
    } else {
      Expression * newO1 = new Power(o1, new Rational(sumPQ), false);
      replaceOperand(o1, newO1, false);
      o1 = newO1;
    }
    o1->shallowReduce(context, angleUnit);
  }
}

void Multiplication::factorizeBase(Expression * e1, Expression * e2, Context & context, AngleUnit angleUnit) {
  /* This function factorizes two operands which have a common base. For example
   * if this is Multiplication(pi^2, pi^3), then pi^2 and pi^3 could be merged
   * and this turned into Multiplication(pi^5). */
  assert(TermsHaveIdenticalBase(e1, e2));

  // Step 1: Find the new exponent
  Expression * s = new Addition(CreateExponent(e1), CreateExponent(e2), false);

  // Step 2: Get rid of one of the operands
  removeOperand(e2, true);

  // Step 3: Use the new exponent
  Power * p = nullptr;
  if (e1->type() == Type::Power) {
    // If e1 is a power, replace the initial exponent with the new one
    e1->replaceOperand(e1->operand(1), s, true);
    p = static_cast<Power *>(e1);
  } else {
    // Otherwise, create a new Power node
    p = new Power(e1, s, false);
    replaceOperand(e1, p, false);
  }

  // Step 4: Reduce the new power
  s->shallowReduce(context, angleUnit); // pi^2*pi^3 -> pi^(2+3) -> pi^5
  Expression * reducedP = p->shallowReduce(context, angleUnit); // pi^2*pi^-2 -> pi^0 -> 1
  /* Step 5: Reducing the new power might have turned it into a multiplication,
   * ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
   * node with this. */
  if (reducedP->type() == Type::Multiplication) {
    mergeMultiplicationOperands();
  }
}

void Multiplication::factorizeExponent(Expression * e1, Expression * e2, Context & context, AngleUnit angleUnit) {
  /* This function factorizes operands which share a common exponent. For
   * example, it turns Multiplication(2^x,3^x) into Multiplication(6^x). */
  assert(e1->parent() == this && e2->parent() == this);

  const Expression * base1 = e1->operand(0)->clone();
  const Expression * base2 = e2->operand(0);
  e2->detachOperand(base2);
  Expression * m = new Multiplication(base1, base2, false);
  removeOperand(e2, true);
  e1->replaceOperand(e1->operand(0), m, true);

  m->shallowReduce(context, angleUnit); // 2^x*3^x -> (2*3)^x -> 6^x
  Expression * reducedE1 = e1->shallowReduce(context, angleUnit); // 2^x*(1/2)^x -> (2*1/2)^x -> 1
  /* Reducing the new power might have turned it into a multiplication,
   * ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
   * node with this. */
  if (reducedE1->type() == Type::Multiplication) {
    mergeMultiplicationOperands();
  }
}

Expression * Multiplication::distributeOnOperandAtIndex(int i, Context & context, AngleUnit angleUnit) {
  // This function turns a*(b+c) into a*b + a*c
  // We avoid deleting and creating a new addition
  Addition * a = static_cast<Addition *>(editableOperand(i));
  removeOperand(a, false);
  for (int j = 0; j < a->numberOfOperands(); j++) {
    Multiplication * m = static_cast<Multiplication *>(clone());
    Expression * termJ = a->editableOperand(j);
    a->replaceOperand(termJ, m, false);
    m->addOperand(termJ);
    m->shallowReduce(context, angleUnit); // pi^(-1)*(pi + x) -> pi^(-1)*pi + pi^(-1)*x -> 1 + pi^(-1)*x
  }
  replaceWith(a, true);
  return a->shallowReduce(context, angleUnit); // Order terms, put under a common denominator if needed
}

const Expression * Multiplication::CreateExponent(Expression * e) {
  return e->type() == Type::Power ? e->operand(1)->clone() : new Rational(1);
}

bool Multiplication::TermsHaveIdenticalBase(const Expression * e1, const Expression * e2) {
  return Base(e1)->isIdenticalTo(Base(e2));
}

bool Multiplication::TermsHaveIdenticalExponent(const Expression * e1, const Expression * e2) {
  /* Note: We will return false for e1=2 and e2=Pi, even though one could argue
   * that these have the same exponent whose value is 1. */
  return e1->type() == Type::Power && e2->type() == Type::Power && (e1->operand(1)->isIdenticalTo(e2->operand(1)));
}

bool Multiplication::TermHasRationalBase(const Expression * e) {
  return Base(e)->type() == Type::Rational;
}

bool Multiplication::TermHasRationalExponent(const Expression * e) {
  if (e->type() != Type::Power) {
    return true;
  }
  if (e->operand(1)->type() == Type::Rational) {
    return true;
  }
  return false;
}

Expression * Multiplication::shallowBeautify(Context & context, AngleUnit angleUnit) {
  /* Beautifying a Multiplication consists in several possible operations:
   * - Add Opposite ((-3)*x -> -(3*x), useful when printing fractions)
   * - Adding parenthesis if needed (a*(b+c) is not a*b+c)
   * - Creating a Division if there's either a term with a power of -1 (a.b^(-1)
   *   shall become a/b) or a non-integer rational term (3/2*a -> (3*a)/2). */

  // Step 1: Turn -n*A into -(n*A)
  if (operand(0)->type() == Type::Rational && operand(0)->sign() == Sign::Negative) {
    if (static_cast<const Rational *>(operand(0))->isMinusOne()) {
      removeOperand(editableOperand(0), true);
    } else {
      editableOperand(0)->setSign(Sign::Positive, context, angleUnit);
    }
    Expression * e = squashUnaryHierarchy();
    Opposite * o = new Opposite(e, true);
    e->replaceWith(o, true);
    o->editableOperand(0)->shallowBeautify(context, angleUnit);
    return o;
  }

  /* Step 2: Merge negative powers: a*b^(-1)*c^(-pi)*d = a*(b*c^pi)^(-1)
   * This also turns 2/3*a into 2*a*3^(-1) */
  Expression * e = mergeNegativePower(context, angleUnit);
  if (e->type() == Type::Power) {
    return e->shallowBeautify(context, angleUnit);
  }
  assert(e == this);

  // Step 3: Add Parenthesis if needed
  for (int i = 0; i < numberOfOperands(); i++) {
    const Expression * o = operand(i);
    if (o->type() == Type::Addition ) {
      Parenthesis * p = new Parenthesis(o, false);
      replaceOperand(o, p, false);
    }
  }

  // Step 4: Create a Division if needed
  for (int i = 0; i < numberOfOperands(); i++) {
    if (!(operand(i)->type() == Type::Power && operand(i)->operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(i)->operand(1))->isMinusOne())) {
      continue;
    }

    // Let's remove the denominator-to-be from this
    Power * p = static_cast<Power *>(editableOperand(i));
    Expression * denominatorOperand = p->editableOperand(0);
    p->detachOperand(denominatorOperand);
    removeOperand(p, true);

    Expression * numeratorOperand = shallowReduce(context, angleUnit);
    // Delete parenthesis unnecessary on numerator
    if (numeratorOperand->type() == Type::Parenthesis) {
      numeratorOperand = numeratorOperand->replaceWith(numeratorOperand->editableOperand(0), true);
    }
    Expression * originalParent = numeratorOperand->parent();
    Division * d = new Division(numeratorOperand, denominatorOperand, false);
    originalParent->replaceOperand(numeratorOperand, d, false);
    return d->shallowBeautify(context, angleUnit);
  }

  return this;
}

Expression * Multiplication::cloneDenominator(Context & context, AngleUnit angleUnit) const {
  // Merge negative power: a*b^-1*c^(-Pi)*d = a*(b*c^Pi)^-1
  // WARNING: we do not want to change the expression but to create a new one.
  SimplificationRoot root(clone());
  Expression * e = ((Multiplication *)root.operand(0))->mergeNegativePower(context, angleUnit);
  Expression * result = nullptr;
  if (e->type() == Type::Power) {
    result = static_cast<Power *>(e)->cloneDenominator(context, angleUnit);
  } else {
    assert(e->type() == Type::Multiplication);
    for (int i = 0; i < e->numberOfOperands(); i++) {
      // a*b^(-1)*... -> a*.../b
      if (e->operand(i)->type() == Type::Power && e->operand(i)->operand(1)->type() == Type::Rational && static_cast<const Rational *>(e->operand(i)->operand(1))->isMinusOne()) {
        Power * p = static_cast<Power *>(e->editableOperand(i));
        result = p->editableOperand(0);
        p->detachOperand((result));
      }
    }
  }
  root.detachOperand(e);
  delete e;
  return result;
}

Expression * Multiplication::mergeNegativePower(Context & context, AngleUnit angleUnit) {
  Multiplication * m = new Multiplication();
  // Special case for rational p/q: if q != 1, q should be at denominator
  if (operand(0)->type() == Type::Rational && !static_cast<const Rational *>(operand(0))->denominator().isOne()) {
    Rational * r = static_cast<Rational *>(editableOperand(0));
    m->addOperand(new Rational(r->denominator()));
    if (r->numerator().isOne()) {
      removeOperand(r, true);
    } else {
      replaceOperand(r, new Rational(r->numerator()), true);
    }
  }
  int i = 0;
  while (i < numberOfOperands()) {
    if (operand(i)->type() == Type::Power && operand(i)->operand(1)->sign() == Sign::Negative) {
      Expression * e = editableOperand(i);
      e->editableOperand(1)->setSign(Sign::Positive, context, angleUnit);
      removeOperand(e, false);
      m->addOperand(e);
      e->shallowReduce(context, angleUnit);
    } else {
      i++;
    }
  }
  if (m->numberOfOperands() == 0) {
    delete m;
    return this;
  }
  Power * p = new Power(m, new Rational(-1), false);
  m->sortOperands(SimplificationOrder, true);
  m->squashUnaryHierarchy();
  addOperand(p);
  sortOperands(SimplificationOrder, true);
  return squashUnaryHierarchy();
}

void Multiplication::addMissingFactors(Expression * factor, Context & context, AngleUnit angleUnit) {
  if (factor->type() == Type::Multiplication) {
    for (int j = 0; j < factor->numberOfOperands(); j++) {
      addMissingFactors(factor->editableOperand(j), context, angleUnit);
    }
    return;
  }
  /* Special case when factor is a Rational: if 'this' has already a rational
   * operand, we replace it by its LCM with factor ; otherwise, we simply add
   * factor as an operand. */
  if (numberOfOperands() > 0 && operand(0)->type() == Type::Rational && factor->type() == Type::Rational) {
    Rational * f = static_cast<Rational *>(factor);
    Rational * o = static_cast<Rational *>(editableOperand(0));
    assert(f->denominator().isOne());
    assert(o->denominator().isOne());
    Integer i = f->numerator();
    Integer j = o->numerator();
    return replaceOperand(o, new Rational(Arithmetic::LCM(&i, &j)));
  }
  if (factor->type() != Type::Rational) {
    /* If factor is not a rational, we merge it with the operand of identical
     * base if any. Otherwise, we add it as an new operand. */
    for (int i = 0; i < numberOfOperands(); i++) {
      if (TermsHaveIdenticalBase(operand(i), factor)) {
        Expression * sub = new Subtraction(CreateExponent(editableOperand(i)), CreateExponent(factor), false);
        Reduce((Expression **)&sub, context, angleUnit);
        if (sub->sign() == Sign::Negative) { // index[0] < index[1]
          if (factor->type() == Type::Power) {
            factor->replaceOperand(factor->editableOperand(1), new Opposite(sub, true), true);
          } else {
            factor = new Power(factor, new Opposite(sub, true), false);
          }
          factor->editableOperand(1)->shallowReduce(context, angleUnit);
          factorizeBase(editableOperand(i), factor, context, angleUnit);
          editableOperand(i)->shallowReduce(context, angleUnit);
        } else if (sub->sign() == Sign::Unknown) {
          factorizeBase(editableOperand(i), factor, context, angleUnit);
          editableOperand(i)->shallowReduce(context, angleUnit);
        } else {}
        delete sub;
        /* Reducing the new operand i can lead to creating a new multiplication
         * (ie 2^(1+2*3^(1/2)) -> 2*2^(2*3^(1/2)). We thus have to get rid of
         * nested multiplication: */
        mergeMultiplicationOperands();
        return;
      }
    }
  }
  addOperand(factor->clone());
  sortOperands(SimplificationOrder, false);
}

template MatrixComplex<float> Multiplication::computeOnComplexAndMatrix<float>(std::complex<float> const, const MatrixComplex<float>);
template MatrixComplex<double> Multiplication::computeOnComplexAndMatrix<double>(std::complex<double> const, const MatrixComplex<double>);
template std::complex<float> Multiplication::compute<float>(const std::complex<float>, const std::complex<float>);
template std::complex<double> Multiplication::compute<double>(const std::complex<double>, const std::complex<double>);
template void Multiplication::computeOnArrays<double>(double * m, double * n, double * result, int mNumberOfColumns, int mNumberOfRows, int nNumberOfColumns);

}