equation_store.cpp
15.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#include "equation_store.h"
#include "../shared/poincare_helpers.h"
#include <limits.h>
using namespace Poincare;
using namespace Shared;
namespace Solver {
EquationStore::EquationStore() :
m_type(Type::LinearSystem),
m_numberOfSolutions(0),
m_exactSolutionExactLayouts{},
m_exactSolutionApproximateLayouts{}
{
}
EquationStore::~EquationStore() {
tidySolution();
}
Equation * EquationStore::emptyModel() {
static Equation e;
return &e;
}
void EquationStore::setModelAtIndex(Shared::ExpressionModel * e, int i) {
m_equations[i] = *(static_cast<Equation *>(e));;
}
void EquationStore::tidy() {
ExpressionModelStore::tidy();
tidySolution();
}
Poincare::ExpressionLayout * EquationStore::exactSolutionLayoutAtIndex(int i, bool exactLayout) {
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable)));
if (exactLayout) {
return m_exactSolutionExactLayouts[i];
} else {
return m_exactSolutionApproximateLayouts[i];
}
}
double EquationStore::intervalBound(int index) const {
assert(m_type == Type::Monovariable && index >= 0 && index < 2);
return m_intervalApproximateSolutions[index];
}
void EquationStore::setIntervalBound(int index, double value) {
assert(m_type == Type::Monovariable && index >= 0 && index < 2);
m_intervalApproximateSolutions[index] = value;
if (m_intervalApproximateSolutions[0] > m_intervalApproximateSolutions[1]) {
if (index == 0) {
m_intervalApproximateSolutions[1] = m_intervalApproximateSolutions[0]+1;
} else {
m_intervalApproximateSolutions[0] = m_intervalApproximateSolutions[1]-1;
}
}
}
double EquationStore::approximateSolutionAtIndex(int i) {
assert(m_type == Type::Monovariable && i >= 0 && i < m_numberOfSolutions);
return m_approximateSolutions[i];
}
bool EquationStore::haveMoreApproximationSolutions(Context * context) {
if (m_numberOfSolutions < k_maxNumberOfEquations) {
return false;
}
double step = (m_intervalApproximateSolutions[1]-m_intervalApproximateSolutions[0])*k_precision;
return !std::isnan(definedModelAtIndex(0)->standardForm(context)->nextRoot(m_variables[0], m_approximateSolutions[m_numberOfSolutions-1], step, m_intervalApproximateSolutions[1], *context, Preferences::sharedPreferences()->angleUnit()));
}
void EquationStore::approximateSolve(Poincare::Context * context) {
assert(m_variables[0] != 0 && m_variables[1] == 0);
assert(m_type == Type::Monovariable);
m_numberOfSolutions = 0;
double start = m_intervalApproximateSolutions[0];
double step = (m_intervalApproximateSolutions[1]-m_intervalApproximateSolutions[0])*k_precision;
for (int i = 0; i < k_maxNumberOfApproximateSolutions; i++) {
m_approximateSolutions[i] = definedModelAtIndex(0)->standardForm(context)->nextRoot(m_variables[0], start, step, m_intervalApproximateSolutions[1], *context, Preferences::sharedPreferences()->angleUnit());
if (std::isnan(m_approximateSolutions[i])) {
break;
} else {
start = m_approximateSolutions[i];
m_numberOfSolutions++;
}
}
}
EquationStore::Error EquationStore::exactSolve(Poincare::Context * context) {
tidySolution();
/* 0- Get unknown variables */
m_variables[0] = 0;
int numberOfVariables = 0;
for (int i = 0; i < numberOfDefinedModels(); i++) {
if (definedModelAtIndex(i)->standardForm(context) == nullptr) {
return Error::EquationUndefined;
}
numberOfVariables = definedModelAtIndex(i)->standardForm(context)->getVariables(Symbol::isVariableSymbol, m_variables);
if (numberOfVariables < 0) {
return Error::TooManyVariables;
}
}
/* 1- Linear System? */
/* Create matrix coefficients and vector constants as:
* coefficients*(x y z ...) = constants */
Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables];
Expression * constants[k_maxNumberOfEquations];
bool isLinear = true; // Invalid the linear system if one equation is non-linear
for (int i = 0; i < numberOfDefinedModels(); i++) {
isLinear = isLinear && definedModelAtIndex(i)->standardForm(context)->getLinearCoefficients(m_variables, coefficients[i], &constants[i], *context, Preferences::sharedPreferences()->angleUnit());
// Clean allocated memory if the system is not linear
if (!isLinear) {
for (int j = 0; j < i; j++) {
for (int k = 0; k < numberOfVariables; k++) {
delete coefficients[j][k];
}
delete constants[j];
}
if (numberOfDefinedModels() > 1 || numberOfVariables > 1) {
return Error::NonLinearSystem;
} else {
break;
}
}
}
/* Initialize result */
Expression * exactSolutions[k_maxNumberOfExactSolutions];
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
exactSolutions[i] = nullptr;
}
EquationStore::Error error;
if (isLinear) {
m_type = Type::LinearSystem;
error = resolveLinearSystem(exactSolutions, coefficients, constants, context);
} else {
/* 2- Polynomial & Monovariable? */
assert(numberOfVariables == 1 && numberOfDefinedModels() == 1);
char x = m_variables[0];
Expression * polynomialCoefficients[Expression::k_maxNumberOfPolynomialCoefficients];
int degree = definedModelAtIndex(0)->standardForm(context)->getPolynomialCoefficients(x, polynomialCoefficients, *context, Preferences::sharedPreferences()->angleUnit());
if (degree == 2) {
/* Polynomial degree <= 2*/
m_type = Type::PolynomialMonovariable;
error = oneDimensialPolynomialSolve(exactSolutions, polynomialCoefficients, degree, context);
} else {
/* 3- Monovariable non-polynomial or polynomial with degree > 2 */
m_type = Type::Monovariable;
m_intervalApproximateSolutions[0] = -10;
m_intervalApproximateSolutions[1] = 10;
return Error::RequireApproximateSolution;
}
}
/* Turn the results in layouts */
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
if (exactSolutions[i]) {
m_exactSolutionExactLayouts[i] = PoincareHelpers::CreateLayout(exactSolutions[i]);
Expression * approximate = PoincareHelpers::Approximate<double>(exactSolutions[i], *context);
m_exactSolutionApproximateLayouts[i] = PoincareHelpers::CreateLayout(approximate);
/* Check for identity between exact and approximate layouts */
char exactBuffer[Shared::ExpressionModel::k_expressionBufferSize];
char approximateBuffer[Shared::ExpressionModel::k_expressionBufferSize];
m_exactSolutionExactLayouts[i]->writeTextInBuffer(exactBuffer, Shared::ExpressionModel::k_expressionBufferSize);
m_exactSolutionApproximateLayouts[i]->writeTextInBuffer(approximateBuffer, Shared::ExpressionModel::k_expressionBufferSize);
m_exactSolutionIdentity[i] = strcmp(exactBuffer, approximateBuffer) == 0;
/* Check for equality between exact and approximate layouts */
if (!m_exactSolutionIdentity[i]) {
m_exactSolutionEquality[i] = exactSolutions[i]->isEqualToItsApproximationLayout(approximate, Shared::ExpressionModel::k_expressionBufferSize, Preferences::sharedPreferences()->angleUnit(), Preferences::sharedPreferences()->displayMode(), Preferences::sharedPreferences()->numberOfSignificantDigits(), *context);
}
delete approximate;
delete exactSolutions[i];
}
}
return error;
}
EquationStore::Error EquationStore::resolveLinearSystem(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables], Expression * constants[k_maxNumberOfEquations], Context * context) {
Expression::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit();
int n = strlen(m_variables); // n unknown variables
int m = numberOfDefinedModels(); // m equations
/* Create the matrix (A | b) for the equation Ax=b */
const Expression ** operandsAb = new const Expression * [(n+1)*m];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
operandsAb[i*(n+1)+j] = coefficients[i][j];
}
operandsAb[i*(n+1)+n] = constants[i];
}
Matrix * Ab = new Matrix(operandsAb, m, n+1, false);
delete [] operandsAb;
// Compute the rank of (A | b)
int rankAb = Ab->rank(*context, angleUnit, true);
// Initialize the number of solutions
m_numberOfSolutions = INT_MAX;
/* If the matrix has one null row except the last column, the system is
* inconsistent (equivalent to 0 = x with x non-null */
for (int j = m-1; j >= 0; j--) {
bool rowWithNullCoefficients = true;
for (int i = 0; i < n; i++) {
if (!Ab->matrixOperand(j, i)->isRationalZero()) {
rowWithNullCoefficients = false;
break;
}
}
if (rowWithNullCoefficients && !Ab->matrixOperand(j, n)->isRationalZero()) {
m_numberOfSolutions = 0;
}
}
if (m_numberOfSolutions > 0) {
// if rank(A | b) < n, the system has an infinite number of solutions
if (rankAb == n && n > 0) {
// Otherwise, the system has n solutions which correspond to the last column
m_numberOfSolutions = n;
for (int i = 0; i < m_numberOfSolutions; i++) {
Expression * sol = Ab->matrixOperand(i,n);
exactSolutions[i] = sol;
Ab->detachOperand(sol);
PoincareHelpers::Simplify(&exactSolutions[i], *context);
}
}
}
delete Ab;
return Error::NoError;
}
EquationStore::Error EquationStore::oneDimensialPolynomialSolve(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[Expression::k_maxNumberOfPolynomialCoefficients], int degree, Context * context) {
/* Equation ax^2+bx+c = 0 */
assert(degree == 2);
// Compute 4ac
Expression * deltaSubOperand[3] = {new Rational(4), coefficients[0]->clone(), coefficients[2]->clone()};
// Compute delta = b*b-4ac
Expression * delta = new Subtraction(new Power(coefficients[1]->clone(), new Rational(2), false), new Multiplication(deltaSubOperand, 3, false), false);
PoincareHelpers::Simplify(&delta, *context);
if (delta->isRationalZero()) {
// if delta = 0, x0=x1= -b/(2a)
exactSolutions[0] = new Division(new Opposite(coefficients[1], false), new Multiplication(new Rational(2), coefficients[2], false), false);
m_numberOfSolutions = 1;
} else {
// x0 = (-b-sqrt(delta))/(2a)
exactSolutions[0] = new Division(new Subtraction(new Opposite(coefficients[1]->clone(), false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2]->clone(), false), false);
// x1 = (-b+sqrt(delta))/(2a)
exactSolutions[1] = new Division(new Addition(new Opposite(coefficients[1], false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2], false), false);
m_numberOfSolutions = 2;
}
exactSolutions[m_numberOfSolutions] = delta;
delete coefficients[0];
for (int i = 0; i < m_numberOfSolutions; i++) {
PoincareHelpers::Simplify(&exactSolutions[i], *context);
}
return Error::NoError;
#if 0
if (degree == 3) {
Expression * a = coefficients[3];
Expression * b = coefficients[2];
Expression * c = coefficients[1];
Expression * d = coefficients[0];
// Delta = b^2*c^2+18abcd-27a^2*d^2-4ac^3-4db^3
Expression * mult0Operands[2] = {new Power(b->clone(), new Rational(2), false), new Power(c->clone(), new Rational(2), false)};
Expression * mult1Operands[5] = {new Rational(18), a->clone(), b->clone(), c->clone(), d->clone()};
Expression * mult2Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), new Power(d->clone(), new Rational(2), false)};
Expression * mult3Operands[3] = {new Rational(-4), a->clone(), new Power(c->clone(), new Rational(3), false)};
Expression * mult4Operands[3] = {new Rational(-4), d->clone(), new Power(b->clone(), new Rational(3), false)};
Expression * add0Operands[5] = {new Multiplication(mult0Operands, 2, false), new Multiplication(mult1Operands, 5, false), new Multiplication(mult2Operands, 3, false), new Multiplication(mult3Operands, 3, false), new Multiplication(mult4Operands, 3, false)};
Expression * delta = new Addition(add0Operands, 5, false);
PoincareHelpers::Simplify(&delta, *context);
// Delta0 = b^2-3ac
Expression * mult5Operands[3] = {new Rational(3), a->clone(), c->clone()};
Expression * delta0 = new Subtraction(new Power(b->clone(), new Rational(2), false), new Multiplication(mult5Operands, 3, false), false);
Reduce(&delta0, *context);
if (delta->isRationalZero()) {
if (delta0->isRationalZero()) {
// delta0 = 0 && delta = 0 --> x0 = -b/(3a)
delete delta0;
m_exactSolutions[0] = new Opposite(new Division(b, new Multiplication(new Rational(3), a, false), false), false);
m_numberOfSolutions = 1;
delete c;
delete d;
} else {
// delta = 0 --> x0 = (9ad-bc)/(2delta0)
// --> x1 = (4abc-9a^2d-b^3)/(a*delta0)
Expression * mult6Operands[3] = {new Rational(9), a, d};
m_exactSolutions[0] = new Division(new Subtraction(new Multiplication(mult6Operands, 3, false), new Multiplication(b, c, false), false), new Multiplication(new Rational(2), delta0, false), false);
Expression * mult7Operands[4] = {new Rational(4), a->clone(), b->clone(), c->clone()};
Expression * mult8Operands[3] = {new Rational(-9), new Power(a->clone(), new Rational(2), false), d->clone()};
Expression * add1Operands[3] = {new Multiplication(mult7Operands, 4, false), new Multiplication(mult8Operands,3, false), new Opposite(new Power(b->clone(), new Rational(3), false), false)};
m_exactSolutions[1] = new Division(new Addition(add1Operands, 3, false), new Multiplication(a->clone(), delta0, false), false);
m_numberOfSolutions = 2;
}
} else {
// delta1 = 2b^3-9abc+27a^2*d
Expression * mult9Operands[4] = {new Rational(-9), a, b, c};
Expression * mult10Operands[3] = {new Rational(27), new Power(a->clone(), new Rational(2), false), d};
Expression * add2Operands[3] = {new Multiplication(new Rational(2), new Power(b->clone(), new Rational(3), false), false), new Multiplication(mult9Operands, 4, false), new Multiplication(mult10Operands, 3, false)};
Expression * delta1 = new Addition(add2Operands, 3, false);
// C = Root((delta1+sqrt(-27a^2*delta))/2, 3)
Expression * mult11Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), (*delta)->clone()};
Expression * c = new Power(new Division(new Addition(delta1, new SquareRoot(new Multiplication(mult11Operands, 3, false), false), false), new Rational(2), false), new Rational(1,3), false);
Expression * unary3roots[2] = {new Addition(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false), new Subtraction(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false)};
// x_k = -1/(3a)*(b+C*z+delta0/(zC)) with z = unary cube root
for (int k = 0; k < 3; k++) {
Expression * ccopy = c;
Expression * delta0copy = delta0;
if (k < 2) {
ccopy = new Multiplication(c->clone(), unary3roots[k], false);
delta0copy = delta0->clone();
}
Expression * add3Operands[3] = {b->clone(), ccopy, new Division(delta0copy, ccopy->clone(), false)};
m_exactSolutions[k] = new Multiplication(new Division(new Rational(-1), new Multiplication(new Rational(3), a->clone(), false), false), new Addition(add3Operands, 3, false), false);
}
m_numberOfSolutions = 3;
}
m_exactSolutions[m_numberOfSolutions] = delta;
}
#endif
}
void EquationStore::tidySolution() {
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
if (m_exactSolutionExactLayouts[i]) {
delete m_exactSolutionExactLayouts[i];
m_exactSolutionExactLayouts[i] = nullptr;
}
if (m_exactSolutionApproximateLayouts[i]) {
delete m_exactSolutionApproximateLayouts[i];
m_exactSolutionApproximateLayouts[i] = nullptr;
}
}
}
}