nth_root.cpp
1.95 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <poincare/nth_root.h>
#include <poincare/division.h>
#include <poincare/power.h>
#include <poincare/undefined.h>
#include "layout/nth_root_layout.h"
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type NthRoot::type() const {
return Type::NthRoot;
}
Expression * NthRoot::clone() const {
NthRoot * a = new NthRoot(m_operands, true); return a;
}
Expression * NthRoot::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
if (operand(0)->type() == Type::Matrix || operand(1)->type() == Type::Matrix) {
return replaceWith(new Undefined(), true);
}
#endif
Power * invIndex = new Power(operand(1), new Rational(-1), false);
Power * p = new Power(operand(0), invIndex, false);
detachOperands();
invIndex->shallowReduce(context, angleUnit);
replaceWith(p, true);
return p->shallowReduce(context, angleUnit);
}
ExpressionLayout * NthRoot::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
return new NthRootLayout(operand(0)->createLayout(floatDisplayMode, numberOfSignificantDigits), operand(1)->createLayout(floatDisplayMode, numberOfSignificantDigits), false);
}
template<typename T>
Evaluation<T> * NthRoot::templatedApproximate(Context& context, AngleUnit angleUnit) const {
Evaluation<T> * base = operand(0)->privateApproximate(T(), context, angleUnit);
Evaluation<T> * index = operand(1)->privateApproximate(T(), context, angleUnit);
Complex<T> result = Complex<T>::Undefined();
if (base->type() == Evaluation<T>::Type::Complex && index->type() == Evaluation<T>::Type::Complex) {
Complex<T> * basec = static_cast<Complex<T> *>(base);
Complex<T> * indexc = static_cast<Complex<T> *>(index);
result = Power::compute(*basec, std::complex<T>(1)/(*indexc));
}
delete base;
delete index;
return new Complex<T>(result);
}
}