bn_mp_sqrt.c
1.79 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include <tommath.h>
#ifdef BN_MP_SQRT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(mp_int *arg, mp_int *ret)
{
int res;
mp_int t1,t2;
/* must be positive */
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* easy out */
if (mp_iszero(arg) == MP_YES) {
mp_zero(ret);
return MP_OKAY;
}
if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto E2;
}
/* First approx. (not very bad for large arg) */
mp_rshd (&t1,t1.used/2);
/* t1 > 0 */
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* And now t1 > sqrt(arg) */
do {
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* t1 >= sqrt(arg) >= t2 at this point */
} while (mp_cmp_mag(&t1,&t2) == MP_GT);
mp_exch(&t1,ret);
E1: mp_clear(&t2);
E2: mp_clear(&t1);
return res;
}
#endif
/* $Source: /cvs/libtom/libtommath/bn_mp_sqrt.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/03/31 14:18:44 $ */