bn_mp_div.c
7.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#include <tommath.h>
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
#ifdef BN_MP_DIV_SMALL
/* slower bit-bang division... also smaller */
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
mp_int ta, tb, tq, q;
int res, n, n2;
/* is divisor zero ? */
if (mp_iszero (b) == 1) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag (a, b) == MP_LT) {
if (d != NULL) {
res = mp_copy (a, d);
} else {
res = MP_OKAY;
}
if (c != NULL) {
mp_zero (c);
}
return res;
}
/* init our temps */
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
return res;
}
mp_set(&tq, 1);
n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto LBL_ERR;
}
while (n-- >= 0) {
if (mp_cmp(&tb, &ta) != MP_GT) {
if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
goto LBL_ERR;
}
}
if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
goto LBL_ERR;
}
}
/* now q == quotient and ta == remainder */
n = a->sign;
n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
if (c != NULL) {
mp_exch(c, &q);
c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
}
if (d != NULL) {
mp_exch(d, &ta);
d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
}
LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return res;
}
#else
/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
mp_int q, x, y, t1, t2;
int res;
/* is divisor zero ? */
if (mp_iszero (b) == 1) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag (a, b) == MP_LT) {
if (d != NULL) {
res = mp_copy (a, d);
} else {
res = MP_OKAY;
}
if (c != NULL) {
mp_zero (c);
}
return res;
}
if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
return res;
}
q.used = a->used + 2;
if ((res = mp_init (&t1)) != MP_OKAY) {
goto LBL_Q;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
goto LBL_T2;
}
if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
goto LBL_X;
}
res=alloc_mp_div(a,b,c,d,&q,&x,&y,&t1,&t2);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
LBL_Q:mp_clear (&q);
return res;
}
int alloc_mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d,mp_int * qptr,mp_int * xptr,mp_int * yptr,mp_int * t1ptr, mp_int * t2ptr)
{
int res, n, t, i, norm, neg;
/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
xptr->sign = yptr->sign = MP_ZPOS;
/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
norm = mp_count_bits(yptr) % DIGIT_BIT;
if (norm < (int)(DIGIT_BIT-1)) {
norm = (DIGIT_BIT-1) - norm;
if ((res = mp_mul_2d (xptr, norm, xptr)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_mul_2d (yptr, norm, yptr)) != MP_OKAY) {
goto LBL_Y;
}
} else {
norm = 0;
}
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
n = xptr->used - 1;
t = yptr->used - 1;
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
if ((res = mp_lshd (yptr, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
goto LBL_Y;
}
while (mp_cmp (xptr, yptr) != MP_LT) {
++(qptr->dp[n - t]);
if ((res = mp_sub (xptr, yptr, xptr)) != MP_OKAY) {
goto LBL_Y;
}
}
/* reset y by shifting it back down */
mp_rshd (yptr, n - t);
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
if (i > xptr->used) {
continue;
}
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (xptr->dp[i] == yptr->dp[t]) {
qptr->dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
} else {
mp_word tmp;
tmp = ((mp_word) xptr->dp[i]) << ((mp_word) DIGIT_BIT);
tmp |= ((mp_word) xptr->dp[i - 1]);
tmp /= ((mp_word) yptr->dp[t]);
if (tmp > (mp_word) MP_MASK)
tmp = MP_MASK;
qptr->dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
*/
qptr->dp[i - t - 1] = (qptr->dp[i - t - 1] + 1) & MP_MASK;
do {
qptr->dp[i - t - 1] = (qptr->dp[i - t - 1] - 1) & MP_MASK;
/* find left hand */
mp_zero (t1ptr);
t1ptr->dp[0] = (t - 1 < 0) ? 0 : yptr->dp[t - 1];
t1ptr->dp[1] = yptr->dp[t];
t1ptr->used = 2;
if ((res = mp_mul_d (t1ptr, qptr->dp[i - t - 1], t1ptr)) != MP_OKAY) {
goto LBL_Y;
}
/* find right hand */
t2ptr->dp[0] = (i - 2 < 0) ? 0 : xptr->dp[i - 2];
t2ptr->dp[1] = (i - 1 < 0) ? 0 : xptr->dp[i - 1];
t2ptr->dp[2] = xptr->dp[i];
t2ptr->used = 3;
} while (mp_cmp_mag(t1ptr, t2ptr) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((res = mp_mul_d (yptr, qptr->dp[i - t - 1], t1ptr)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_lshd (t1ptr, i - t - 1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_sub (xptr, t1ptr, xptr)) != MP_OKAY) {
goto LBL_Y;
}
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (xptr->sign == MP_NEG) {
if ((res = mp_copy (yptr, t1ptr)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_lshd (t1ptr, i - t - 1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_add (xptr, t1ptr, xptr)) != MP_OKAY) {
goto LBL_Y;
}
qptr->dp[i - t - 1] = (qptr->dp[i - t - 1] - 1UL) & MP_MASK;
}
}
/* now q is the quotient and x is the remainder
* [which we have to normalize]
*/
/* get sign before writing to c */
xptr->sign = xptr->used == 0 ? MP_ZPOS : a->sign;
if (c != NULL) {
mp_clamp (qptr);
mp_exch (qptr, c);
c->sign = neg;
}
if (d != NULL) {
mp_div_2d (xptr, norm, xptr, NULL);
mp_exch (xptr, d);
}
res = MP_OKAY;
LBL_Y:
return res;
}
#endif
#endif
/* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/03/31 14:18:44 $ */