tinymt32.h 6.74 KB
#ifndef TINYMT32_H
#define TINYMT32_H
/**
 * @file tinymt32.h
 *
 * @brief Tiny Mersenne Twister only 127 bit internal state
 *
 * @author Mutsuo Saito (Hiroshima University)
 * @author Makoto Matsumoto (University of Tokyo)
 * with modifications for giac by B. Parisse
 *
 * Copyright (C) 2011 Mutsuo Saito, Makoto Matsumoto,
 * Hiroshima University and The University of Tokyo.
 * All rights reserved.
 *
 * The 3-clause BSD License is applied to this software, see
 * tinymt32_license.h
 */

#include <stdint.h>
#include <inttypes.h>

#define TINYMT32_MEXP 127
#define TINYMT32_SH0 1
#define TINYMT32_SH1 10
#define TINYMT32_SH8 8
#define TINYMT32_MASK uint32_t(0x7fffffff)
#define TINYMT32_MUL (1.0f / 4294967296.0f)

/**
 * tinymt32 internal state vector and parameters
 */
struct tinymt32_t;
void tinymt32_init(tinymt32_t * random, uint32_t seed);
void tinymt32_init_by_array(tinymt32_t * random, uint32_t init_key[],
			    int key_length);


struct tinymt32_t {
  uint32_t status[4];
  uint32_t mat1;
  uint32_t mat2;
  uint32_t tmat;
  tinymt32_t(uint32_t seed=1234567){ tinymt32_init(this,seed);}
};

#if defined(__GNUC__)
/**
 * This function always returns 127
 * @param random not used
 * @return always 127
 */
inline static int tinymt32_get_mexp(
    tinymt32_t * random  __attribute__((unused))) {
    return TINYMT32_MEXP;
}
#else
inline static int tinymt32_get_mexp(tinymt32_t * random) {
    return TINYMT32_MEXP;
}
#endif

/**
 * This function changes internal state of tinymt32.
 * Users should not call this function directly.
 * @param random tinymt internal status
 */
inline static void tinymt32_next_state(tinymt32_t * random) {
    uint32_t x;
    uint32_t y;

    y = random->status[3];
    x = (random->status[0] & TINYMT32_MASK)
	^ random->status[1]
	^ random->status[2];
    x ^= (x << TINYMT32_SH0);
    y ^= (y >> TINYMT32_SH0) ^ x;
    random->status[0] = random->status[1];
    random->status[1] = random->status[2];
    random->status[2] = x ^ (y << TINYMT32_SH1);
    random->status[3] = y;
    random->status[1] ^= -((int32_t)(y & 1)) & random->mat1;
    random->status[2] ^= -((int32_t)(y & 1)) & random->mat2;
}

/**
 * This function outputs 32-bit unsigned integer from internal state.
 * Users should not call this function directly.
 * @param random tinymt internal status
 * @return 32-bit unsigned pseudorandom number
 */
inline static uint32_t tinymt32_temper(tinymt32_t * random) {
    uint32_t t0, t1;
    t0 = random->status[3];
#if defined(LINEARITY_CHECK)
    t1 = random->status[0]
	^ (random->status[2] >> TINYMT32_SH8);
#else
    t1 = random->status[0]
	+ (random->status[2] >> TINYMT32_SH8);
#endif
    t0 ^= t1;
    t0 ^= -((int32_t)(t1 & 1)) & random->tmat;
    return t0;
}

/**
 * This function outputs floating point number from internal state.
 * Users should not call this function directly.
 * @param random tinymt internal status
 * @return floating point number r (1.0 <= r < 2.0)
 */
inline static float tinymt32_temper_conv(tinymt32_t * random) {
    uint32_t t0, t1;
    union {
	uint32_t u;
	float f;
    } conv;

    t0 = random->status[3];
#if defined(LINEARITY_CHECK)
    t1 = random->status[0]
	^ (random->status[2] >> TINYMT32_SH8);
#else
    t1 = random->status[0]
	+ (random->status[2] >> TINYMT32_SH8);
#endif
    t0 ^= t1;
    conv.u = ((t0 ^ (-((int32_t)(t1 & 1)) & random->tmat)) >> 9)
	      | uint32_t(0x3f800000);
    return conv.f;
}

/**
 * This function outputs floating point number from internal state.
 * Users should not call this function directly.
 * @param random tinymt internal status
 * @return floating point number r (1.0 < r < 2.0)
 */
inline static float tinymt32_temper_conv_open(tinymt32_t * random) {
    uint32_t t0, t1;
    union {
	uint32_t u;
	float f;
    } conv;

    t0 = random->status[3];
#if defined(LINEARITY_CHECK)
    t1 = random->status[0]
	^ (random->status[2] >> TINYMT32_SH8);
#else
    t1 = random->status[0]
	+ (random->status[2] >> TINYMT32_SH8);
#endif
    t0 ^= t1;
    conv.u = ((t0 ^ (-((int32_t)(t1 & 1)) & random->tmat)) >> 9)
	      | uint32_t(0x3f800001);
    return conv.f;
}

/**
 * This function outputs 32-bit unsigned integer from internal state.
 * @param random tinymt internal status
 * @return 32-bit unsigned integer r (0 <= r < 2^32)
 */
inline static uint32_t tinymt32_generate_uint32(tinymt32_t * random) {
    tinymt32_next_state(random);
    return tinymt32_temper(random);
}

/**
 * This function outputs floating point number from internal state.
 * This function is implemented using multiplying by 1 / 2^32.
 * floating point multiplication is faster than using union trick in
 * my Intel CPU.
 * @param random tinymt internal status
 * @return floating point number r (0.0 <= r < 1.0)
 */
inline static float tinymt32_generate_float(tinymt32_t * random) {
    tinymt32_next_state(random);
    return tinymt32_temper(random) * TINYMT32_MUL;
}

/**
 * This function outputs floating point number from internal state.
 * This function is implemented using union trick.
 * @param random tinymt internal status
 * @return floating point number r (1.0 <= r < 2.0)
 */
inline static float tinymt32_generate_float12(tinymt32_t * random) {
    tinymt32_next_state(random);
    return tinymt32_temper_conv(random);
}

/**
 * This function outputs floating point number from internal state.
 * This function is implemented using union trick.
 * @param random tinymt internal status
 * @return floating point number r (0.0 <= r < 1.0)
 */
inline static float tinymt32_generate_float01(tinymt32_t * random) {
    tinymt32_next_state(random);
    return tinymt32_temper_conv(random) - 1.0f;
}

/**
 * This function outputs floating point number from internal state.
 * This function may return 1.0 and never returns 0.0.
 * @param random tinymt internal status
 * @return floating point number r (0.0 < r <= 1.0)
 */
inline static float tinymt32_generate_floatOC(tinymt32_t * random) {
    tinymt32_next_state(random);
    return 1.0f - tinymt32_generate_float(random);
}

/**
 * This function outputs floating point number from internal state.
 * This function returns neither 0.0 nor 1.0.
 * @param random tinymt internal status
 * @return floating point number r (0.0 < r < 0.0)
 */
inline static float tinymt32_generate_floatOO(tinymt32_t * random) {
    tinymt32_next_state(random);
    return tinymt32_temper_conv_open(random) - 1.0f;
}

/**
 * This function outputs double precision floating point number from
 * internal state. The returned value has 32-bit precision.
 * In other words, this function makes one double precision floating point
 * number from one 32-bit unsigned integer.
 * @param random tinymt internal status
 * @return floating point number r (1.0 < r < 2.0)
 */
inline static double tinymt32_generate_32double(tinymt32_t * random) {
    tinymt32_next_state(random);
    return tinymt32_temper(random) * (1.0 / 4294967296.0);
}
#endif