poly.h 72.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
/* -*- mode:C++  -*-  */
/*
 *  Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef _GIAC_POLY_H_
#define _GIAC_POLY_H_
#include "first.h"
#include <fstream>
#include "vector.h"
#include <string>
#include "fraction.h"
#include "index.h"
#include "monomial.h"
#include "threaded.h"
#include <algorithm>

#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC

  // the tensor class to represent polynomial
  template <class T> class tensor{
  public:
    // members
    int dim; // number of indices, this is the size of monomial.index
    std::vector< monomial<T> > coord; // sorted list of monomials
    // T zero;
    // functional object sorting function for monomial ordering
    bool (* is_strictly_greater)( const index_m &, const index_m &);
    std::pointer_to_binary_function < const monomial<T> &, const monomial<T> &, bool> m_is_strictly_greater ;
    // constructors
    tensor(const tensor<T> & t) : dim(t.dim), coord(t.coord), is_strictly_greater(t.is_strictly_greater), m_is_strictly_greater(t.m_is_strictly_greater) { }
    tensor(const tensor<T> & t, const std::vector< monomial<T> > & v) : dim(t.dim), coord(v), is_strictly_greater(t.is_strictly_greater), m_is_strictly_greater(t.m_is_strictly_greater) { }
    // warning: this constructor prohibits construction of tensor from a value
    // of type T if this value is an int, except by using tensor<T>(T(int))
    tensor() : dim(0), is_strictly_greater(i_lex_is_strictly_greater), m_is_strictly_greater(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>)) { }
    explicit tensor(int d) : dim(d), is_strictly_greater(i_lex_is_strictly_greater), m_is_strictly_greater(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>)) { }
    explicit tensor(int d,const tensor<T> & t) : dim(d),is_strictly_greater(t.is_strictly_greater), m_is_strictly_greater(t.m_is_strictly_greater)  { }
    tensor(const monomial<T> & v) : dim(int(v.index.size())), is_strictly_greater(i_lex_is_strictly_greater), m_is_strictly_greater(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>)) { 
      coord.push_back(v);
    }
    tensor(const T & v, int d) : dim(d), is_strictly_greater(i_lex_is_strictly_greater), m_is_strictly_greater(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>)) {
      if (!is_zero(v))
	coord.push_back(monomial<T>(v,0,d));
    }
    tensor(int d,const std::vector< monomial<T> > & c) : dim(d), coord(c), is_strictly_greater(i_lex_is_strictly_greater),m_is_strictly_greater(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>)) { }
    ~tensor() { coord.clear(); }
    // member functions
    // ordering monomials in the tensor
    void tsort(){ 
#if 1 // def NSPIRE
      sort_helper<T> M(m_is_strictly_greater);
      sort(coord.begin(),coord.end(),M); 
#else
      sort(coord.begin(),coord.end(),m_is_strictly_greater); 
#endif
    }
    int lexsorted_degree() const{ 
      if (!dim)
	return 0;
      if (coord.empty())
	return 0;
      else
	return coord.front().index.front(); 
    }
    int degree(int n) const ;
    int valuation(int n) const ;
    index_t degree() const ;
    int total_degree() const ;
    int partial_degree(int nvars) const ; // total degree wrt to vars 0..nvars-1
    void void reverse() ;() void reverse() ; // reverse variable ordering
    void append(const tensor<T> &);
    void Tcoeffs(std::vector< tensor<T> > & v) const;
    std::vector< tensor<T> > Tcoeffs() const;
    tensor<T> coeff(int deg) const;
    tensor<T> multiplydegrees(int d) const ;
    tensor<T> dividedegrees(int d) const ;
    tensor<T> dividealldegrees(int d) const ;
    void void reorder(const std::vector<int> & permutation) ;(const std::vector<int> & permutation) void reorder(const std::vector<int> & permutation) ;
    // shift and multiply, shift and divide, shift only
    tensor<T> shift (const index_m & ishift,const T & fois) const ;
    tensor<T> shift (const T & fois,const index_m & ishift) const ;
    tensor<T> shift (const index_m & ishift) const ;
    // tensor<T> operator + (const T & other) const ;
    void TAdd(const tensor<T> &other,tensor<T> & result) const;
    // tensor<T> operator - (const tensor<T> & other) const ;
    void TSub(const tensor<T> &other,tensor<T> & result) const;
    // tensor<T> operator * (const tensor<T> & other) const ;
    // tensor<T> operator * (const T & fact) const ;
    tensor<T> & operator *= (const T & fact) ;
    // tensor<T> operator - () const ;
    // tensor<T> operator / (const tensor<T> & other) const ;
    // tensor<T> operator / (const T & fact) const ;
    tensor<T> & operator /= (const T & fact) ;
    // tensor<T> operator % (const tensor<T> & other) const ;
    bool TDivRem (const tensor<T> & other, tensor<T> & quo, tensor<T> & rem, bool allowrational = true ) const ; // this=quo*other+rem
    bool TDivRemHash(const tensor<T> & b,tensor<T> & quo,tensor<T> & r,bool allowrational=false,int exactquo=0,double qmax=0.0) const ; // same as TDivRem but allowrationnal=false *and* poly with 1 main variable
    bool TDivRem1(const tensor<T> & b,tensor<T> & quo,tensor<T> & r,bool allowrational=false,int exactquo=0) const ; 
    bool Texactquotient (const tensor<T> & other, tensor<T> & quo,bool allowrational=false ) const ; // this=quo*other+rem, rem must be 0
    bool TPseudoDivRem (const tensor<T> & other, tensor<T> & quo, tensor<T> & rem, tensor<T> & a) const ; // a*this=quo*other+rem
    // bool TDivRem (const T & x0, tensor<T> & quo, tensor<T> & rem) const ;
    tensor<T> operator () (const T & x0 ) const;
    // T operator () (const std::vector<T> & x0) const;
    T constant_term() const ;
    T norm() const;
    tensor<T> derivative() const ;
    tensor<T> integrate() const ;
    // insertion of a monomial and reordering
    void insert_monomial(const monomial<T> & c);
    // position corresponding to an index, return -1 if not found
    int position(const index_m & v) const;
    index_m vector_int(int position) const;
    T & operator () ( const index_m & v) ;
    const T & operator () ( const index_m & v) const ;
    tensor<T> untrunc1 (int j=0) const {
      std::vector< monomial<T> > v;
      Untrunc1(this->coord,j,v);
      return tensor<T>(dim+1,v);
    }
    void untruncn (int j=0) {
      Untruncn(this->coord,j);
      ++dim;
    }
    tensor<T> untrunc (int j,int dim) const {
      std::vector< monomial<T> > v;
      Untrunc(this->coord,j,dim,v);
      return tensor<T>(dim,v);
    }
    tensor<T> trunc1 () const {
      assert(dim);
      std::vector< monomial<T> > v;
      Trunc1(this->coord,v);
      return tensor<T>(dim-1,v);
    }
    int gcddeg(int k) const;
    index_t gcddeg() const;
    // printing
    std::string print() const {
      if (coord.empty())
        return "";
      std::string s;
      typename std::vector< monomial<T> > :: const_iterator it=coord.begin(),itend=coord.end();
      for (;;){
        s += it->print();
        ++it;
        if (it==itend)
	  return s;
        s +=  '+' ;
      }
    };
    const char * dbgprint() const { 
      static std::string s;
      s=print();
#if 0 // ndef NSPIRE
      COUT << s << std::endl; 
#endif
      return s.c_str();
    }
    void high_order_degree_truncate(int n){
      // suppress terms of order >= n
      typename std::vector< monomial<T> >::iterator it=coord.begin(),itend=coord.end();
      for (;it!=itend;++it){
	if (it->index.front()<n)
	  break;
      }
      if (it!=coord.begin() && it!=itend)
	coord.erase(coord.begin(),it);
    }
    tensor<T> total_degree_truncate(int n) const {
      tensor<T> res(dim);
      // suppress terms of total degree > n
      typename std::vector< monomial<T> >::const_iterator it=coord.begin(),itend=coord.end();
      for (;it!=itend;++it){
	if (sum_degree(it->index)<=n)
	  res.coord.push_back(*it);
      }
      return res;
    }
  };
  template <class T> class Tref_tensor{
  public:
    ref_count_t ref_count;
    tensor<T> t;
    Tref_tensor<T>(const tensor<T> & P): ref_count(1),t(P) {}
    Tref_tensor<T>(int dim): ref_count(1),t(dim) {}
  };

  // convert p to monomial represented by unsigned integers
  // using the rule [a1 a2 .. an] [deg1 ... degn ] -> 
  // (... (a1*deg2+a2)*deg3 +...)*degn+an
  template<class T,class U>
  void convert(const tensor<T> & p,const index_t & deg,std::vector< T_unsigned<T,U> >  & v){
    typename std::vector< monomial<T> >::const_iterator it=p.coord.begin(),itend=p.coord.end(),itstop;
    v.clear();
    v.reserve(itend-it);
    T_unsigned<T,U> gu;
    U u;
    int nterms;
    index_t::const_iterator itit,itcur,idxcur,idxend,ditbeg=deg.begin(),ditend=deg.end(),dit;
    for (;it!=itend;++it){
      u=0;
      itcur=itit=it->index.begin();
      for (dit=ditbeg;dit!=ditend;++itit,++dit)
	u=u*unsigned(*dit)+unsigned(*itit);
      gu.u=u;
      gu.g=it->value;
      v.push_back(gu);
      // dense poly check 
      --itit;
      nterms=*itit;
      if (nterms<2 || nterms>=itend-it)
	continue;
      itstop=it+nterms;
      if (itstop->index.back())
	continue;
      for (idxcur=itstop->index.begin(),idxend=itstop->index.end()-1;idxcur!=idxend;++idxcur,++itcur){
	if (*idxcur!=*itcur)
	  break;
      }
      if (idxcur!=idxend)
	continue;
      // this part is dense
      for (;it!=itstop;){
	++it;
	gu.g=it->value;
	--gu.u;
	v.push_back(gu);
      }
    }
  }

  template<class T,class U>
  void convert(const std::vector< T_unsigned<T,U> > & v,const index_t & deg,tensor<T> & p){
    typename std::vector< T_unsigned<T,U> >::const_iterator it=v.begin(),itend=v.end();
    index_t::const_reverse_iterator ditbeg=deg.rbegin(),ditend=deg.rend(),dit;
    p.dim=ditend-ditbeg;
    p.coord.clear();
    p.coord.reserve(itend-it);
    U u;
    index_t i(p.dim);
    int k;
    for (;it!=itend;++it){
      u=it->u;
      for (k=p.dim-1,dit=ditbeg;dit!=ditend;++dit,--k){
	i[k]=u % unsigned(*dit);
	u = u/unsigned(*dit);
      }
      p.coord.push_back(monomial<T>(it->g,i));
    }
  }

  template <class T>
  bool operator == (const tensor<T> & p,const tensor<T> & q){
    return p.dim==q.dim && p.coord.size()==q.coord.size() && p.coord==q.coord;
  }

  template <class T> bool tensor_is_strictly_greater(const tensor<T> & p,const tensor<T> & q){
    if (q.coord.empty())
      return true;
    if (p.coord.empty())
      return false;
    return p.m_is_strictly_greater(p.coord.front(),q.coord.front());
  }

  template <class T>
  void tensor<T>::insert_monomial(const monomial<T> & c){
    coord.push_back(c);
    this->tsort(); // sort(coord.begin(),coord.end(),m_is_strictly_greater);
  }

  template <class T>
  int tensor<T>::degree(int n) const {
    typename std::vector< monomial<T> >::const_iterator it=this->coord.begin();
    typename std::vector< monomial<T> >::const_iterator it_end=this->coord.end();
    int res=0;
    for (;it!=it_end;++it){
      int temp=(it->index)[n];
      if (res<temp)
	res=temp;
    }
    return res;
  }

  template <class T>
  int tensor<T>::total_degree() const {
    typename std::vector< monomial<T> >::const_iterator it=this->coord.begin();
    typename std::vector< monomial<T> >::const_iterator it_end=this->coord.end();
    int res=0;
    for (;it!=it_end;++it){
      int temp=sum_degree(it->index);
      if (res<temp)
	res=temp;
    }
    return res;
  }

  template <class T>
  int tensor<T>::partial_degree(int vars) const {
    typename std::vector< monomial<T> >::const_iterator it=this->coord.begin();
    typename std::vector< monomial<T> >::const_iterator it_end=this->coord.end();
    int res=0;
    for (;it!=it_end;++it){
      int temp=0;
      index_t::const_iterator jt=it->index.begin(),jtend=jt+vars;
      for (;jt!=jtend;++jt){
	temp += *jt;
      }
      if (res<temp)
	res=temp;
    }
    return res;
  }

  template <class T>
  int tensor<T>::valuation(int n) const {
    typename std::vector< monomial<T> >::const_iterator it=this->coord.begin();
    typename std::vector< monomial<T> >::const_iterator it_end=this->coord.end();
    if (it==it_end)
      return 0;
    int res=(it->index)[n];
    for (;it!=it_end;++it){
      int temp=(it->index)[n];
      if (res>temp)
	res=temp;
    }
    return res;
  }

  template <class T>
  index_t tensor<T>::degree() const {
    typename std::vector< monomial<T> >::const_iterator it=this->coord.begin(),it2;
    typename std::vector< monomial<T> >::const_iterator it_end=this->coord.end();
    index_t res(dim);
    if (!dim) return res;
    index_t::iterator itresbeg=res.begin(),itresend=res.end(),itres;
    index_t::const_iterator ittemp,ittemp2,ittempend;
    if (// false &&
	is_strictly_greater==i_lex_is_strictly_greater){
      for (;it!=it_end;++it){
	ittemp=it->index.begin();
	for (itres=itresbeg;itres!=itresend;++itres,++ittemp){
	  if (*itres<*ittemp)
	    *itres=*ittemp;
	}
	// check if the polynomial is dense -> skip ?
	--ittemp; // point to xn power
	if (*ittemp<3 || *ittemp>=it_end-it)
	  continue;
	it2=it+(*ittemp); // if dense, point to the last monomial with same x1..xn-1 
	if (it2->index.back()) // last power in xn must be 0
	  continue;
	ittemp=it->index.begin();
	ittemp2=it2->index.begin();
	ittempend=ittemp+dim-1; // check all other powers
	for (;ittemp!=ittempend;++ittemp2,++ittemp){
	  if (*ittemp!=*ittemp2)
	    break;
	}
	if (ittemp!=ittempend)
	  continue;
	it=it2;
      }
    }
    else {
      for (;it!=it_end;++it){
	ittemp=it->index.begin();
	for (itres=itresbeg;itres!=itresend;++itres,++ittemp){
	  if (*itres<*ittemp)
	    *itres=*ittemp;
	}
      }
    }
    return res;
  }

  template <class T>
  void tensor<T>::append(const tensor<T> & p){
    if (p.coord.empty())
      return;
    if (this->coord.empty()){
      this->dim=p.dim;
      this->coord=p.coord;
      return;
    }
    if (is_strictly_greater(this->coord.back().index , p.coord.front().index)){
      this->coord.reserve(this->coord.size()+p.coord.size());
      typename std::vector< monomial<T> >::const_iterator it=p.coord.begin();
      typename std::vector< monomial<T> >::const_iterator it_end=p.coord.end();
      for (;it!=it_end;++it)
	this->coord.push_back(*it);
    }
    else
      TAdd(p,*this); // *this=*this+p;
  }

  template <class T>
  tensor<T> tensor<T>::multiplydegrees(int d) const {
    tensor<T> res(dim);
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),it_end=coord.end();
    for (;it!=it_end;++it){
      index_t i=it->index.iref();
      i.front() *= d;
      res.coord.push_back(monomial<T>(it->value,i));
    }
    return res;
  }

  template <class T>
  tensor<T> tensor<T>::dividedegrees(int d) const {
    tensor<T> res(dim);
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),it_end=coord.end();
    for (;it!=it_end;++it){
      index_t i=it->index.iref();
      i.front() /= d;
      res.coord.push_back(monomial<T>(it->value,i));
    }
    return res;
  }

  template <class T>
  tensor<T> tensor<T>::dividealldegrees(int d) const {
    tensor<T> res(dim);
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),it_end=coord.end();
    for (;it!=it_end;++it){
      index_t i=it->index.iref();
      i = i/d;
      res.coord.push_back(monomial<T>(it->value,i));
    }
    return res;
  }

  template <class T> 
  int tensor<T>::position(const index_m & v) const {
    int smax=int(coord.size())-1;
    int smin=0;
    int s;
    for (;smin<smax;){
      s=(smax+smin)/2; // smin <= s < smax
      index_m vs=coord[s].index;
      if (v==vs)
	break;
      if (is_strictly_greater(v,vs)) // if v > v[s] must start above smin+1
	smax=s-1; // same
      else 
	smin=s+1; // keeps smin <=smax
    }
    s=(smax+smin)/2; // if loop breaked return the correct s, else smin=smax
    index_m vs=coord[s].index;
    if (v==vs)
      return(s);
    else
      return(-1);
  }

  template <class T>  
  index_m tensor<T>::vector_int(int position) const {
    return(coord[position].index);
  }

  template <class T>
  T & tensor<T>::operator () ( const index_m & v) {
    int p=position(v);
    if (p!=-1)
      return coord[p].value;
    coord.push_back(T(0),v);
    p=position(v);
    return coord[p].value;
  }

  template<class T>  
  const T & tensor<T>::operator () ( const index_m & v) const{
    static T const myzero(0);
    int p=position(v);
    if (p==-1) {
      return myzero;
    }
    else
      return (coord[p].value);
  }

  template <class T>
  std::ostream & operator << (std::ostream & os, const tensor<T> & t)
  {
    return os << t.print();
  }


  template <class T>
  void lexsort(std::vector < monomial<T> > & v){
#if 1 // def NSPIRE
    sort_helper<T> M(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>));
    sort(v.begin(),v.end(),M);
#else
    sort(v.begin(),v.end(),std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>));
#endif
  }



  template <class T>
  int tensor<T>::gcddeg(int k) const {
    assert(k<dim);
    int res=0;
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),itend=coord.end();
    for (;it!=itend;++it){
      res=mygcd((it->index)[k],res);
      if (res==1)
	break;
    }
    return res;
  }

  template <class T>
  index_t tensor<T>::gcddeg() const {
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),itend=coord.end();
    assert(itend!=it);
    index_t res(it->index.iref());
    index_t zero(res.size());
    for (;it!=itend;++it){
      res=index_gcd(it->index.iref(),res);
      if (res==zero)
	break;
    }
    return res;
  }

  // univariate Horner evaluation with remainder, rem is the evaluation result
  // as a n-1-dimensional tensor and quo the quotient as a n-dim tensor
  /*
    template <class T>
    bool tensor<T>::TDivRem (const T & x0, tensor<T> & quo, tensor<T> & rem) const
    {
    if (coord.empty()){
    rem=*this;
    quo=*this;
    return true;
    }
    std::vector< monomial<T> > horner_coord(coord);
    tensor<T> add_rem(dim-1), add_quo(dim-1);
    lexsort(horner_coord);
    tensor<T> quotient(*this,new_seq);
    rem.coord.clear();
    quo.coord.clear();
    typename std::vector< monomial<T> >::const_iterator it = horner_coord.begin();
    index_m pui=it->index;
    for (;it!=horner_coord.end();++it){
    if (pui.front()==it->index.front()) { 
    // same external power, add
    add_rem.coord.push_back(it->trunc1());
    add_quo.coord.push_back(*it);
    }
    else {      // different power do an Horner *
    rem=(rem+add_rem)*pow(x0,pui.front()-it->index.front());
    add_rem.coord.clear();
    add_rem.coord.push_back(it->trunc1());
    for (;pui.front()> it->index.front();){
    pui[0]--;
    add_quo.divided_by_x();
    add_quo=add_quo*x0;
    quo=quo+add_quo;
    }
    add_quo.coord.clear();
    pui=it->index;
    }
    }
    rem=(rem+add_rem)*pow(x,pui.front());
    for (;pui.front();){
    pui[0]--;
    add_quo.divided_by_x();
    add_quo=add_quo*x0;
    quo=quo+add_quo;
    }
    // sort remainder and quotient
    rem.tsort();
    quo.tsort();
    return true;
    }
  */

  // univariate Horner evaluation with remainder, rem is the evaluation result
  // as a n-1-dimensional tensor, the quotient is not computed
  template <class T>
  tensor<T> tensor<T>::operator () (const T & x0 ) const
  {
    if (coord.empty())
      return *this;
    if (!dim){
      return *this;
    }
    std::vector< monomial<T> > horner_coord(coord);
    tensor<T> rem(dim-1),add_rem(dim-1) ;
    lexsort(horner_coord);
    typename std::vector< monomial<T> >::const_iterator it = horner_coord.begin();
    index_m pui=(*it).index;
    for (;it!=horner_coord.end();++it){
      if (pui.front()==it->index.front()) { 
	// same external power, add
	add_rem.coord.push_back(it->trunc1());
      }
      else {      // different power do an Horner *
#ifndef NSPIRE // GIAC_VECTOR
	rem.TAdd(add_rem,rem); rem *= pow(x0,pui.front()-it->index.front()); 
#else
	rem =(add_rem+rem)*pow(x0,pui.front()-it->index.front());
#endif
	add_rem.coord.clear();
	add_rem.coord.push_back(it->trunc1());
	pui=it->index;
      }
    }
    rem.TAdd(add_rem,rem); // rem=(add_rem+rem);
    if (pui.front()){
#ifndef NSPIRE // GIAC_VECTOR
      rem *= pow(x0,pui.front());
#else
      rem = rem*pow(x0,pui.front());
#endif
    }
    rem.tsort();
    return rem;
  }


  template <class T>
  void tensor<T>::TAdd (const tensor<T> & other,tensor<T> & result) const {  
    typename std::vector< monomial<T> >::const_iterator a=coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end=coord.end();
    if (a == a_end) {
      result=other;
      return ;
    }
    typename std::vector< monomial<T> >::const_iterator b=other.coord.begin();
    typename std::vector< monomial<T> >::const_iterator b_end=other.coord.end();
    if (b==b_end){
      result= *this;
      return ;
    }
    Add(a,a_end,b,b_end,result.coord,is_strictly_greater);
  }

  /*
    template <class T>
    tensor<T> tensor<T>::operator + (const tensor<T> & other) const {  
    // Tensor addition
    typename std::vector< monomial<T> >::const_iterator a=coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end=coord.end();
    if (a == a_end) {
    return other;
    }
    typename std::vector< monomial<T> >::const_iterator b=other.coord.begin();
    typename std::vector< monomial<T> >::const_iterator b_end=other.coord.end();
    if (b==b_end){
    return *this;
    }
    std::vector< monomial<T> > new_coord;
    Add(a,a_end,b,b_end,new_coord,is_strictly_greater);
    return tensor<T>(*this,new_coord);
    }

  */

  template <class T>
  void tensor<T>::TSub (const tensor<T> & other,tensor<T> & result) const {
    typename std::vector< monomial<T> >::const_iterator a=coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end=coord.end();
    typename std::vector< monomial<T> >::const_iterator b=other.coord.begin();
    typename std::vector< monomial<T> >::const_iterator b_end=other.coord.end();
    if (b == b_end) {
      result= *this;
      return;
    }
    Sub(a,a_end,b,b_end,result.coord,is_strictly_greater);
  }

  /*
    template <class T>
    tensor<T> tensor<T>::operator - (const tensor<T> & other) const {  
    // Tensor addition
    typename std::vector< monomial<T> >::const_iterator a=coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end=coord.end();
    typename std::vector< monomial<T> >::const_iterator b=other.coord.begin();
    typename std::vector< monomial<T> >::const_iterator b_end=other.coord.end();
    if (b == b_end) {
    return *this;
    }
    std::vector< monomial<T> > new_coord;
    Sub(a,a_end,b,b_end,new_coord,is_strictly_greater);
    return tensor<T>(*this,new_coord);
    }

    template <class T>
    tensor<T> tensor<T>::operator - () const {  
    // Tensor addition
    std::vector< monomial<T> > new_coord;
    typename std::vector< monomial<T> >::const_iterator a = coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end = coord.end();
    new_coord.reserve(((int) a_end - (int) a )/(sizeof(monomial<T>)));  
    for (;a!=a_end;++a){
    new_coord.push_back(monomial<T>(-(*a).value,(*a).index));
    }
    return tensor<T>(*this,new_coord);
    }

    template <class T>
    tensor<T> tensor<T>::operator * (const tensor<T> & other) const {  
    // Multiplication
    typename std::vector< monomial<T> >::const_iterator ita = coord.begin();
    typename std::vector< monomial<T> >::const_iterator ita_end = coord.end();
    typename std::vector< monomial<T> >::const_iterator itb = other.coord.begin();
    typename std::vector< monomial<T> >::const_iterator itb_end = other.coord.end();
    //  COUT << coord.size() << " " << (int) ita_end - (int) ita << " " << sizeof(monomial<T>) << std::endl ;
    // first some trivial cases
    if (ita==ita_end)
    return(*this);
    if (itb==itb_end)
    return(other);
    if (is_one(*this))
    return other;
    if (is_one(other))
    return *this;
    // Now look if length a=1 or length b=1, happens frequently
    // think of x^3*y^2*z translated to internal form
    int c1=coord.size();
    if (c1==1)
    return(other.shift(coord.front().index,coord.front().value));
    int c2=other.coord.size();
    if (c2==1)
    return(this->shift(other.coord.front().index,other.coord.front().value));
    std::vector< monomial<T> > new_coord;
    new_coord.reserve(c1+c2); // assumes dense poly (would be c1+c2-1)
    Mul(ita,ita_end,itb,itb_end,new_coord,m_is_strictly_greater);
    return tensor<T>(*this,new_coord);
    }

  */

  template <class T>
  tensor<T> Tpow(const tensor<T> & x,int n){
#ifndef NO_STDEXCEPT
    if (n<0)
      setsizeerr("poly.h/Tpow n<0");
#endif
    if (!n)
      return tensor<T>(T(1),x.dim);
    if (n==1)
      return x;
    if (n==2)
      return x*x;
    if (x.coord.size()==1)
      return tensor<T>(monomial<T>(pow(x.coord.front().value,n),x.coord.front().index*n));
    tensor<T> res(x);
    for (int j=1;j<n;j++)
      res=res*x;
    return res;
    /* 
       Note: contrary to univariate polynomials or integers
       the "fast" powering algorithm is *slower* than the above
       loop for multivariate polynomials (with the current implementation of Mul)
       Indeed a dense poly of deg. aa and d variables may have 
       binomial(aa+d,d) monomials
       hence the last multiplication in the "fast" powering algorithm
       is O(binomial(n/2*deg+d,d)^2)=O(n^(2d))
       as the n multiplications of the above loop are
       O(n*binomial(n*deg+d,d)) = O(n^(d+1))
       tensor<T> temp=Tpow(x,n/2);
       if (n%2)
       return tensor<T>(temp*temp*x);
       else
       return tensor<T>(temp*temp);
    */
  }

  /*
    template <class T>
    tensor<T> tensor<T>::operator / (const tensor<T> & other) const {  
    tensor<T> rem(*this),quo(*this);
    assert( (*this).TDivRem(other,quo,rem) );
    return(quo);
    }

  template <class T>
  tensor<T> tensor<T>::operator % (const tensor<T> & other) const {  
    tensor<T> rem(*this),quo(*this);
    assert( (*this).TDivRem(other,quo,rem) );
    return(rem);
  }
  
  */

  /*
  template <class T>
  tensor<T> tensor<T>::operator * (const T & fact ) const {  
    // Tensor constant multiplication
    if (is_one(fact))
      return *this;
    std::vector< monomial<T> > new_coord;
    if (is_zero(fact))
      return tensor<T>(*this,new_coord);
    typename std::vector< monomial<T> >::const_iterator a = coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end = coord.end();
    Mul(a,a_end,fact,new_coord);
    return tensor<T>(*this,new_coord);
  }

  inline template <class T>
  tensor<T> operator * (const T & fact ,const tensor<T> & p){
    return p*fact;
  }
  */

  template <class T>
  tensor<T> & tensor<T>::operator *= (const T & fact ) {  
    // Tensor constant multiplication
    if (is_one(fact))
      return *this;
    if (is_zero(fact)){
      coord.clear();
      return *this;
    }
    typename std::vector< monomial<T> >::const_iterator a = coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end = coord.end();
    Mul<T>(a,a_end,fact,coord);
    return *this;
  }

  /*
  template <class T>
  tensor<T> tensor<T>::operator / (const T & fact ) const {  
    if (is_one(fact))
      return *this;
    std::vector< monomial<T> > new_coord;
    typename std::vector< monomial<T> >::const_iterator a = coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end = coord.end();
    Div(a,a_end,fact,new_coord);
    return tensor<T>(*this,new_coord);
  }
  */

  template <class T>
  tensor<T> & tensor<T>::operator /= (const T & fact ) {  
    if (is_one(fact))
      return *this;
    typename std::vector< monomial<T> >::const_iterator a = coord.begin();
    typename std::vector< monomial<T> >::const_iterator a_end = coord.end();
    Div<T>(a,a_end,fact,coord);
    return *this;
  }

  template<class T>
  tensor<T> Tnextcoeff(typename std::vector< monomial<T> >::const_iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend){
    if (it==itend)
      return tensor<T>(0);
    int n=it->index.front();
    int d=int(it->index.size());
    tensor<T> res(d-1);
    for (;(it!=itend) && (it->index.front()==n);++it)
      res.coord.push_back(it->trunc1());
    return res;
  }

  template<class T>
  tensor<T> Tlastcoeff(const typename std::vector< monomial<T> >::const_iterator & itbeg,const typename std::vector< monomial<T> >::const_iterator & itend){
    assert(itbeg!=itend);
    typename std::vector< monomial<T> >::const_iterator it=itend;
    --it;
    int n=it->index.front();
    int d=int(it->index.size());
    tensor<T> res(d-1);
    for (;;){
      if (it==itbeg)
	break;
      --it;
      if (it->index.front()!=n){
	++it;
	break;
      }
    }
    for (;it!=itend;++it)
      res.coord.push_back(it->trunc1());
    return res;
  }

  template <class T>
  bool tensor<T>::TDivRem1(const tensor<T> & b,tensor<T> & quo,tensor<T> & r,bool allowrational,int exactquo) const {
    const tensor<T> & a=*this;
    quo.coord.clear();
    quo.dim=a.dim;
    r.dim=a.dim;
    r.coord.clear();
    if ( b.dim<=1 || b.coord.size()==1 || a.coord.empty() ){
      return a.TDivRem(b,quo,r,allowrational) && (exactquo?r.coord.empty():true) ;
    }
    /* alternative code
       std::vector< tensor<T> > R=Tcoeffs();
       std::vector< tensor<T> > B=b.Tcoeffs();
       tensor<T> Q;
       int rs=R.size(),bs=B.size(),qs=rs-bs;
       if (rs<bs){
       r=a;
       return true;
       }
       for (int i=0;i<=qs;++i){
       if (!R[i].Texactquotient(B[0],Q,allowrational))
       return false;
       for (int j=i+1;j<i+bs;++j){
       if (!B[j-i].coord.empty())
       R[j]=R[j]-Q*B[j-i];
       }
       Q=Q.untrunc1(qs-i);
       quo.append(Q);
       }
       // convert R[qs+1..rs] to r
       for (int i=qs+1;i<rs;++i){
       R[i]=R[i].untrunc1(rs-i-1);
       r.append(R[i]);
       }
       return true;
    */
    // old code
    typename std::vector< monomial<T> >::const_iterator it=b.coord.begin(),itend=b.coord.end();
    r=a;
    if (b.coord.empty()){
      if (exactquo)
	return r.coord.empty();
      return true;
    }
    int bdeg=it->index.front(),rdeg=r.lexsorted_degree(),qdeg=rdeg-bdeg; // int bval=(itend-1)->index.front();
    tensor<T> b0(Tnextcoeff<T>(it,b.coord.end()));
    tensor<T> q(b0.dim);
    if (it==b.coord.end()){ // bn==b0, b=b0*main var to a power
      it=r.coord.begin();
      itend=r.coord.end();
      while ( it!=itend){
	rdeg=it->index.front();
	if (rdeg<bdeg)
	  break;
	tensor<T> a0(Tnextcoeff<T>(it,itend)),tmp(a0.dim);
	if (!a0.Texactquotient(b0,q,allowrational))
	  return false;
	q=q.untrunc1(rdeg-bdeg);
	quo.append(q);
      }
      r.coord=std::vector< monomial<T> >(it,itend);
      if (exactquo)
	return it==itend;
      return true;
    }
    tensor<T> q1,b1(b0.dim); // subprincipal coeff
    if (it->index.front()==bdeg-1)
      b1=Tnextcoeff<T>(it,b.coord.end()); 
    // here it might be improved by checking that lastcoeff divides
#if 1
    if (exactquo){
      tensor<T> bn=Tlastcoeff<T>(b.coord.begin(),b.coord.end());
      tensor<T> an(Tlastcoeff<T>(a.coord.begin(),a.coord.end())),qn;
      if (!an.Texactquotient(bn,qn,allowrational))
	return false;
    }
#endif
    for ( ;(rdeg=r.lexsorted_degree()) >=bdeg;){
      it=r.coord.begin();
      itend=r.coord.end();
      // compute 2 terms of the quotient in one iteration,
      // this will save one long substraction
      tensor<T> a0(Tnextcoeff<T>(it,itend)),a1(a0.dim);
      if (exactquo && it==itend)
	return false;
      if (!a0.Texactquotient(b0,q,allowrational))
	return false;
      qdeg=rdeg-bdeg;
      if (qdeg){
	if (it!=itend && it->index.front()==rdeg-1)
	  a1=Tnextcoeff<T>(it,itend);
#if defined GIAC_VECTOR || defined NSPIRE // fix for * on arm compiler
	tensor<T> tmp(q.dim);
	tmp.coord=q.coord*b1.coord;
	a1.TSub(tmp,a1);
#else
	a1.TSub(q*b1,a1); // a1=a1-q*b1; 
#endif
	q=q.untrunc1(qdeg);
	if (!a1.Texactquotient(b0,q1,allowrational))
	  return false;
	q.TAdd(q1.untrunc1(qdeg-1),q); // q=q+q1.untrunc1(qdeg-1);
      }
      else
	q=q.untrunc1(qdeg);	
      /*
      if (exactquo){
	tensor<T> an(Tlastcoeff<T>(it,itend));
	int rval=(itend-1)->index.front();
	if (rval-bval<rdeg-bdeg){
	  if (rval<bval+count) // we must gain one valuation per loop
	    return false;
	  if (!an.Texactquotient(bn,qn,allowrational))
	    return false;
	  q=q+qn.untrunc1(rval-bval);
	  ++count;
	}
      }
      */
      quo.TAdd(q,quo); // quo=quo+q;
#if defined GIAC_VECTOR || defined NSPIRE
      tensor<T> tmp(q.dim);
      tmp.coord=q.coord*b.coord;
      r.TSub(tmp,r); // r=r-q*b;       
#else
      r.TSub(q*b,r); // r=r-q*b; 
#endif
      if (r.coord.empty())
	return true;
    }
    if (exactquo) return r.coord.empty();
    return true;
  }


  // hashing seems slower than DivRem1 if computation should be done with int
  template <class T>
  bool tensor<T>::TDivRemHash(const tensor<T> & b,tensor<T> & quo,tensor<T> & r,bool allowrational,int exactquo,double qmax) const {
    const tensor<T> & a=*this;
    quo.coord.clear();
    quo.dim=a.dim;
    r.dim=a.dim;
    r.coord.clear();
    int bs=b.coord.size();
    if ( b.dim<=1 || bs==1 || a.coord.empty() ){
      return a.TDivRem(b,quo,r,allowrational) && (exactquo?r.coord.empty():true) ;
    }
    int bdeg=b.coord.front().index.front(),rdeg=lexsorted_degree(),ddeg=rdeg-bdeg;
    if (ddeg>2 && bs>10){
      index_t d1=degree(),d2=b.degree(),d3=b.coord.front().index.iref(),d(dim);
      // i-th degrees of th / other in quotient and remainder
      // are <= i-th degree of th + ddeg*(i-th degree of other - i-th degree of lcoeff of other) 
      double ans=1;
      for (int i=0;i<dim;++i){
	d[i]=d1[i]+(ddeg+1)*(d2[i]-d3[i])+1;
	int j=1;
	// round to newt power of 2
	for (;;j++){
	  if (!(d[i] >>= 1))
	    break;
	}
	d[i] = 1 << j;
	ans = ans*unsigned(d[i]);
	if (ans/RAND_MAX>RAND_MAX)
	  break;
      }
      if (ans<RAND_MAX){
	std::vector< T_unsigned<T,unsigned> > p1,p2,quot,remain;
	std::vector<unsigned> vars(dim);
	vars[dim-1]=1;
	for (int i=dim-2;i>=0;--i){
	  vars[i]=d[i+1]*vars[i+1];
	}
	convert(*this,d,p1);
	convert(b,d,p2);
	if (hashdivrem<T,unsigned>(p1,p2,quot,remain,vars,/* reduce */0,qmax,allowrational)){
	  convert(quot,d,quo);
	  convert(remain,d,r);
	  return true;
	}
	else
	  ans=1e200; // don't make another unsuccessfull division!
      }
      if (ans/RAND_MAX<RAND_MAX){
	std::vector< T_unsigned<T,ulonglong> > p1,p2,quot,remain;
	std::vector<ulonglong> vars(dim);
	vars[dim-1]=1;
	for (int i=dim-2;i>=0;--i){
	  vars[i]=d[i+1]*vars[i+1];
	}
	convert(*this,d,p1);
	convert(b,d,p2);
	if (hashdivrem<T,ulonglong>(p1,p2,quot,remain,vars,/* reduce */0,qmax,allowrational)){
	  convert(quot,d,quo);
	  convert(remain,d,r);
	  return true;
	}
      }
    }
    return TDivRem1(b,quo,r,allowrational,exactquo);
  }

  template<class T> tensor<T> tensor<T>::coeff(int deg) const {
    tensor<T> res(dim-1);
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),itend=coord.end();
    for (;it!=itend;++it){
      int d=it->index.front();
      if (d>deg)
	continue;
      if (d==deg)
	return Tnextcoeff<T>(it,itend);
      else
	return res;
    }
    return res;
  }

  template<class T>
  void tensor<T>::Tcoeffs(std::vector< tensor<T> > & v) const{
    int current_deg=lexsorted_degree();
    std::vector< tensor<T> > w(current_deg+1,dim-1);
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),itend=coord.end();
    for (;it!=itend;++it){
      w[current_deg-it->index.front()].coord.push_back(it->trunc1());
    }
    w.swap(v);
  }

  template<class T>
  std::vector< tensor<T> > tensor<T>::Tcoeffs() const{
    int current_deg=lexsorted_degree();
    std::vector< tensor<T> > v;
    v.reserve(current_deg+1);
    typename std::vector< monomial<T> >::const_iterator it=coord.begin(),itend=coord.end();
    for (;it!=itend;--current_deg){
      if (it->index.front()==current_deg){
	v.push_back(Tnextcoeff<T>(it,itend));
      }
      else 
	v.push_back(tensor<T>(dim-1));
    }
    for (;current_deg>=0;--current_deg) v.push_back(tensor<T>(dim-1));
    return v;
  }

  template <class T>
  bool tensor<T>::Texactquotient(const tensor<T> & b,tensor<T> & quo,bool allowrational) const {
    if (coord.empty()){
      quo.dim=dim; quo.coord.clear();
      return true;
    }
    if (*this==b){
      quo=tensor<T>(T(1),dim);
      return true;
    }
    if (dim>1 && !allowrational && lexsorted_degree()==b.lexsorted_degree()){
      if (!Tfirstcoeff(*this).trunc1().Texactquotient(Tfirstcoeff(b).trunc1(),quo,allowrational))
	return false;
      quo=quo.untrunc1();
      if (is_one(quo))
	return false; // already tested above
      return *this==quo*b;
    }
    tensor<T> r(b.dim);
    return this->TDivRem1(b,quo,r,allowrational,1);
  }

  template <class T>
  bool tensor<T>::TDivRem (const tensor<T> & other, tensor<T> & quo, tensor<T> & rem, bool allowrational ) const {  
    int asize=int((*this).coord.size());
    if (!asize){
      quo=*this;
      rem=*this; 
      return true;
    }
    int bsize=int(other.coord.size());
    if (!bsize){
      quo.dim=dim; quo.coord.clear();
      rem=*this;
      return true;
    }
    index_m a_max = (*this).coord.front().index;
    index_m b_max = other.coord.front().index;
    quo.coord.clear();
    quo.dim=this->dim;
    rem.dim=this->dim;
    if (bsize==1){
      rem.coord.clear();
      T b=other.coord.front().value;
      if (b_max==b_max*0){
	if (is_one(b))
	  quo = *this ;
	else {
	  typename std::vector< monomial<T> >::const_iterator itend=coord.end();
	  for (typename std::vector< monomial<T> >::const_iterator it=coord.begin();it!=itend;++it){
	    T q=rdiv(it->value,b);
	    if (!allowrational && has_denominator(q))
	      return false;
	    quo.coord.push_back(monomial<T>(q,it->index)); 
	  }
	}
	return true;
      }
      typename std::vector< monomial<T> >::const_iterator itend=coord.end();
      typename std::vector< monomial<T> >::const_iterator it=coord.begin();
      for (;it!=itend;++it){
	if (!(it->index>=b_max))
	  break;
	T q=rdiv(it->value,b);
	if (!allowrational && has_denominator(q))
	  return false;
	quo.coord.push_back(monomial<T>(q,it->index-b_max)); 
      }
      rem.coord=std::vector< monomial<T> >(it,itend);
      return true;
    }
    rem=*this;
    if ( ! (a_max>=b_max) ){
      // test that the first power of a_max is < to that of b_max
      return (a_max.front()<b_max.front());
    }
    T b=other.coord.front().value;
    while (a_max >= b_max){
      // errors should be trapped here and false returned if error occured
      T q=rdiv(rem.coord.front().value,b);
      if (!allowrational){
	if ( has_denominator(q) || 
	     (!is_zero(q*b - rem.coord.front().value)) )
	  return false;
      }
      // end error trapping
      quo.coord.push_back(monomial<T>(q,a_max-b_max));
      const tensor<T> & temp=other.shift(a_max-b_max,q);
      rem.TSub(temp,rem); // rem = rem-temp;
      if (rem.coord.size())
	a_max=rem.coord.front().index;
      else
	break;
    }
    return(true);    
  }

  template <class T>
  bool tensor<T>::TPseudoDivRem (const tensor<T> & other, tensor<T> & quo, tensor<T> & rem, tensor<T> & a) const {
    int m=this->lexsorted_degree();
    int n=other.lexsorted_degree();
    a.coord.clear();
    a.coord.push_back(monomial<T>(T(1),a.dim));
    rem=*this;
    quo.coord.clear();
    if (m<n)
      return true;
    // a=Tpow(Tfirstcoeff(other),m-n+1);
    // return (a*(*this)).TDivRem1(other,quo,rem);
    index_m ishift(dim);
    tensor<T> b0(Tfirstcoeff(other));
    for (int i=m;i>=n;--i){
#ifdef NSPIRE
      a=a*b0;
      quo=quo*b0;
#else
#ifdef GIAC_VECTOR
      a.coord *= b0.coord; // a.coord = a.coord*b0.coord; // a=a*b0;
      quo.coord *= b0.coord; // quo.coord = quo.coord*b0.coord; // quo=quo*b0;
#else
      a *= b0; // a=a*b0
      quo *= b0; // quo=quo*b0
#endif // GIAC_VECTOR
#endif // NSPIRE
      typename std::vector< monomial<T> >::const_iterator it=rem.coord.begin(),itend=rem.coord.end();
      if (it==itend || it->index.front()!=i){
#ifdef NSPIRE
	rem=rem*b0;
#else
#ifdef GIAC_VECTOR
	rem.coord *= b0.coord; // rem.coord = rem.coord*b0.coord; // rem=rem*b0;
#else
	rem *= b0; // rem=rem*b0;
#endif
#endif // NSPIRE
	continue;
      }
      ishift.front()=i-n;
      const tensor<T> & rem0 = Tfirstcoeff(rem).shift(ishift);
      quo.append(rem0);
#if defined GIAC_VECTOR || defined NSPIRE
      rem.coord = rem.coord*b0.coord; 
      tensor<T> tmp(rem0.dim);
      tmp.coord=rem0.coord*other.coord;
      rem.TSub(tmp,rem); // rem=rem*b0-rem0*other;
#else
      rem=rem*b0-rem0*other;
#endif
    }
    return true;
  }

  template <class T>
  T tensor<T>::constant_term () const {  
    if (!((*this).coord.size()))
      return T(0);
    index_m i=(*this).coord.front().index*0;
    return (*this)(i);
  }

  template <class T>
  tensor<T> tensor<T>::shift (const index_m & i,const T & fois) const {
    tensor<T> res(dim,*this);
    res.coord.reserve(coord.size());
    Shift(this->coord,i,fois,res.coord);
    return res;
  }

  template <class T>
  tensor<T> tensor<T>::shift (const T & fois,const index_m & i) const {
    tensor<T> res(dim,*this);
    res.coord.reserve(coord.size());
    Shift(this->coord,fois,i,res.coord);
    return res;
  }

  template <class T>
  tensor<T> tensor<T>::shift (const index_m & i) const {
    tensor<T> res(dim);
    res.coord.reserve(coord.size());
    Shift(this->coord,i,res.coord);
    return res;
  }

  template <class T>
  void tensor<T>::reverse() {
    typename std::vector< monomial<T> >::const_iterator itend=coord.end();
    for (typename std::vector< monomial<T> >::iterator it=coord.begin();it!=itend;++it)
      (*it).reverse();
    this->tsort();
  }

  template <class T>
  void tensor<T>::reorder(const std::vector<int> & permutation) {
    typename std::vector< monomial<T> >::const_iterator itend=coord.end();
    for (typename std::vector< monomial<T> >::iterator it=coord.begin();it!=itend;++it)
      it->reorder(permutation);
    this->tsort();
  }

  template <class T>
  T tensor<T>::norm() const{
    T res( 0);
    typename std::vector< monomial<T> >::const_iterator itend=coord.end();
    for (typename std::vector< monomial<T> >::const_iterator it=coord.begin();it!=itend;++it)
      res=max(res,it->norm());
    return res;
  }

  template <class T>
  T Tcontent(const tensor<T> & p){
    return Content(p.coord);
  }

  template<class T>
  T Tppz(tensor<T> & p,bool divide=true){
    T n=Tcontent(p);
    if (divide)
      p /= n;
    return T(n);
  }

  template<class T>
  bool Tis_one(const tensor<T> &p){
    if (p.coord.size()!=1)
      return false;
    if (!is_one(p.coord.front().value))
      return false;
    const index_m & i = p.coord.front().index;
    index_t::const_iterator it=i.begin(),itend=i.end();
    for (;it!=itend ;++it){
      if ((*it)!=0)
	return false;
    }
    return true;
  }

  template <class T>
  bool Tis_constant(const tensor<T> & p){
    if (p.coord.size()!=1)
      return false;
    const index_m & i = p.coord.front().index;
    index_t::const_iterator it=i.begin(),itend=i.end();
    for (;it!=itend ;++it){
      if ((*it)!=0)
	return false;
    }
    return true;  
  }

  template<class T>
  bool Tlistmax(const tensor<T> &p,T & n){
    n=T(  1);
    for (typename std::vector< monomial<T> >::const_iterator it=p.coord.begin();it!=p.coord.end() ;++it){
      if (!(it->value.is_cinteger()))
	return false;
      n=max(n,linfnorm(it->value));
    }
    return true;
  }

  template<class T>
  void Tapply(const tensor<T> & p,T (*f)(const T &),tensor<T> & pgcd){
    typename std::vector< monomial<T> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    Apply(it,itend,f,pgcd.coord);
  }

  template<class T>
  tensor<T> Tapply(const tensor<T> &p,T (*f)(const T &)){
    tensor<T> res(p.dim);
    Tapply(p,f,res);
    return res;
  }

  template<class T>
  void Tlgcd(const tensor<T> & p,tensor<T> & pgcd){
    if (!p.dim){
      pgcd=p;
      return ;
    } 
    if (Tis_one(pgcd))
      return;
    pgcd=pgcd.trunc1();
    typename std::vector< monomial<T> >::const_iterator it=p.coord.begin();
    typename std::vector< monomial<T> >::const_iterator itend=p.coord.end();
    // typename std::vector< monomial<T> >::const_iterator itbegin=it;
    for (;it!=itend;){
      if (Tis_one(pgcd))
	break;
      pgcd=gcd(pgcd,Tnextcoeff<T>(it,itend));
    }
    if (pgcd.coord.empty()){
      index_m i;
      for (int j=0;j<p.dim;j++)
	i.push_back(0);
      pgcd.coord.push_back(monomial<T>(T(1),i));
      ++pgcd.dim;
    }
    else
      pgcd=pgcd.untrunc1();
  }

  template<class T>
  tensor<T> Tlgcd(const tensor<T> & p){
    if (p.dim==1){
      const T & c=Tcontent(p);
      return tensor<T>(c,1);
    }
    tensor<T> pgcd(p.dim); // pgcd=0
    Tlgcd(p,pgcd);
    return pgcd;
  }

  template<class T>
  void Tcommonlgcd(const tensor<T> & p,const tensor<T> & q,tensor<T> & pgcd){
    if (!p.dim){
      pgcd=p;
      return ;
    } 
    pgcd=pgcd.trunc1();
    typename std::vector< monomial<T> >::const_iterator it=p.coord.begin();
    typename std::vector< monomial<T> >::const_iterator itend=p.coord.end();
    typename std::vector< monomial<T> >::const_iterator jt=q.coord.begin();
    typename std::vector< monomial<T> >::const_iterator jtend=q.coord.end();
    for (;(it!=itend) && (jt!=jtend);){
      if (Tis_one(pgcd))
	break;
      pgcd=gcd(pgcd,Tnextcoeff<T>(it,itend));
      pgcd=gcd(pgcd,Tnextcoeff<T>(jt,jtend));
    }
    for (;(it!=itend);){
      if (Tis_one(pgcd))
	break;
      pgcd=gcd(pgcd,Tnextcoeff<T>(it,itend));
    }
    for (;(jt!=jtend);){
      if (Tis_one(pgcd))
	break;
      pgcd=gcd(pgcd,Tnextcoeff<T>(jt,jtend));
    }
    if (pgcd.coord.empty()){
      index_m i;
      for (int j=0;j<p.dim;j++)
	i.push_back(0);
      pgcd.coord.push_back(monomial<T>(T(1),i));
    }
    else
      pgcd=pgcd.untrunc1();
  }

  // collect all terms with same 1st Tpower as the 1st power of p
  template<class T>
  tensor<T> Tcarcomp(const tensor<T> & p){
    typename std::vector< monomial<T> >::const_iterator it=p.coord.begin();
    int n=it->index.front();
    tensor<T> res(p.dim);
    for (;n==it->index.front();++it)
      res.coord.push_back(monomial<T>(it->value,it->index));
    return res;
  }

  template<class T>
  tensor<T> Tfirstcoeff(const tensor<T> & p){
    typename std::vector< monomial<T> >::const_iterator it=p.coord.begin();
    typename std::vector< monomial<T> >::const_iterator itend=p.coord.end();
    if (it==itend)
      return p;
    int n=it->index.front();
    tensor<T> res(p.dim);
    for (;(it!=itend) && (n==it->index.front());++it)
      res.coord.push_back(monomial<T>(it->value,it->index.set_first_zero()));
    return res;
  }

  template<class T>
  void Tswap(tensor<T> * & a, tensor<T> * & b){
    tensor<T> * c =  a;
    a = b ;
    b = c ;
  }

  // polynomial subresultant: compute content and primitive part of the GCD
  // with respect to the other vars
  // gcddeg!=0 if we know the probable degree of the gcd
  template<class T>
  void Tcontentgcd(const tensor<T> &p, const tensor<T> & q, tensor<T> & cont,tensor<T> & prim,int gcddeg){
    if (p.coord.empty()){
      cont=Tlgcd(q);
      prim=q/Tlgcd(q);
      return ;
    }
    if (q.coord.empty()){
      cont=Tlgcd(p);
      prim=p/Tlgcd(p);
      return;
    }
    assert(p.dim==q.dim);
    // set auxiliary polynomials g and h to 1
    tensor<T> g(T(1),p.dim);
    tensor<T> h(g);
    // dp and dq are the "content" of p and q w.r.t. other variables
    tensor<T> dp(Tlgcd(p));
    tensor<T> dq(Tlgcd(q));
    cont=gcd(dp.trunc1(),dq.trunc1()).untrunc1();
    if (!p.dim){
      prim=tensor<T>(T(1),0);
      return ;
    }
    // COUT << "Cont" << cont << std::endl; 
    tensor<T> a(p.dim),b(p.dim),quo(p.dim),r(p.dim),tmp(p.dim);
    // a and b are the primitive part of p and q
    p.TDivRem1(dp,a,r,true);
    q.TDivRem1(dq,b,r,true);
    while (
	   !a.coord.empty()
	   && !ctrl_c && !interrupted
	   ){
      int n=b.lexsorted_degree();
      int m=a.lexsorted_degree();
      if (!n) {// if b is constant (then b!=0), gcd=original Tlgcd
	prim=tensor<T>(T(1),p.dim);
	return ;
      }
      if (n==gcddeg){
	b.TDivRem1(Tlgcd(b),prim,r,true);
	if (a.Texactquotient(prim,r,true))
	  return;
      }
      int ddeg=m-n;
      if (ddeg<0){
#if defined RTOS_THREADX || defined BESTA_OS || defined USTL
	tensor<T> t(a); a=b; b=t;
#else
	swap(a,b); // exchange a<->b may occur only at the beginning
#endif
      }
      else {
	tensor<T> b0(Tfirstcoeff(b));
	a.TPseudoDivRem(b,quo,r,tmp);
	// (a*Tpow(b0,ddeg+1)).TDivRem1(b,quo,r); // division works always
	if (r.coord.empty())
	  break;
	// remainder is non 0, loop continue: a <- b
	a=b;
	tensor<T> temp(Tpow(h,ddeg));
	// now divides r by g*h^(m-n), result is the new b
	r.TDivRem1(g*temp,b,quo); // quo is the remainder here, not used
	// new g=b0 and new h=b0^(m-n)*h/temp
	if (ddeg==1) // the normal case, remainder deg. decreases by 1 each time
	  h=b0;
	else // not sure if it's better to keep temp or divide by h^(m-n+1)
	  (Tpow(b0,ddeg)*h).TDivRem1(temp,h,quo);
	g=b0;
      }
    }
    // COUT << "Prim" << b << std::endl;
    b.TDivRem1(Tlgcd(b),prim,r,true);
  }

  template<class T>
  void Tsturm_seq(const giac::tensor<T> &p, giac::tensor<T> & cont,std::vector< tensor<T> > & sturm_seq){
    sturm_seq=std::vector< tensor<T> > (1,p);
    if (p.coord.empty()){
      cont=p;
      return ;
    }
    // set auxiliary polynomials g and h to 1
    tensor<T> g(T(1),p.dim);
    tensor<T> h(g);
    // dp and dq are the "content" of p and q w.r.t. other variables
    cont=Tlgcd(p);
    if (!p.dim)
      return ;
    // COUT << "Cont" << cont << std::endl; 
    tensor<T> a(p.dim),b(p.dim),quo(p.dim),r(p.dim),tmp(p.dim);
    tensor<T> b0(g);
    std::vector< tensor<T> > sign_error(2,g);
    // a is the primitive part of p and q
    p.TDivRem1(cont,a,r);
    b=p.derivative();
    sturm_seq.push_back(b);
    for (int loop_counter=0;!a.coord.empty();++loop_counter){
      int m=a.lexsorted_degree();
      int n=b.lexsorted_degree();
      int ddeg=m-n; // should be 1 generically
      if (!n) {// if b is constant (then b!=0), gcd=original Tlgcd
	return ;
      }
      b0=Tfirstcoeff(b); 
      a.TPseudoDivRem(b,quo,r,tmp);
      // (a*Tpow(b0,ddeg+1)).TDivRem1(b,quo,r); // division works always
      if (r.coord.empty())
	break;
      // remainder is non 0, loop continue: a <- b
      a=b;
      tensor<T> temp(Tpow(h,ddeg));
      // now divides r by g*h^(m-n) and change sign, result is the new b
      r.TDivRem1(-g*temp,b,quo); // quo is the remainder here, not used
      // Now save b in the Sturm sequence *with sign adjustement*
      // Since we have -g*h^ddeg*r=b0^(ddeg+1)*a % previous b
      // instead of -r=a % previous b for correct sign
      // the sign error on b does not change the sign error on r
      // if ddeg is odd, the sign error on r is sign error on a*sign(g*h)
      // if ddeg is even, the signe error on r is sign error on a*sign(b0*g)
      // Note that if ddeg is odd and the previous ddeg was generic = 1
      // we do not change the sign error at all
      // Note that the sign errors propagate modulo 2 on the indices
      // of the Sturm sequence hence the vector of sign errors of length 2
      if ( ( (ddeg %2)!=0 ) && (h!=g) )
	sign_error[loop_counter %2] = sign_error[loop_counter %2] * h * g ;
      if ( ( (ddeg %2)==0) && (b0!=g) )
	sign_error[loop_counter %2] = sign_error[loop_counter % 2] * b0 * g;
      sturm_seq.push_back(b*sign_error[loop_counter %2]);
      // new g=b0 and new h=b0^(m-n)*h/temp
      if (ddeg==1) // the normal case, remainder deg. decreases by 1 each time
	h=b0;
      else // not sure if it's better to keep temp or divide by h^(m-n+1)
	(Tpow(b0,ddeg)*h).TDivRem1(temp,h,quo);
      g=b0;
    } // end while loop
  }

  // polynomial sub-resultant: return the gcd only
  template<class T>
  tensor<T> Tgcdpsr(const tensor<T> & p, const tensor<T> & q,int gcddeg=0){
    tensor<T> prim(p.dim),cont(p.dim);
    Tcontentgcd(p,q,prim,cont,gcddeg);
    // COUT << "Prim" << prim << "Cont" << cont << std::endl;
    return prim*cont;
  }

  template<class T>
  tensor<T> Tresultant(const tensor<T> &p, const tensor<T> & q){
    assert(p.dim==q.dim);
    if (p.coord.empty())
      return p;
    if (q.coord.empty())
      return q;
    int m=p.lexsorted_degree();
    int n=q.lexsorted_degree();
    int sign=1;
    tensor<T> ptmp(p),qtmp(q);
    if (n > m) {
      if ( (n*m) % 2)
	sign=-1;
      int tmpint=n; n=m; m=tmpint;
#if defined RTOS_THREADX || defined BESTA_OS || defined USTL
      ptmp=q; qtmp=p; // swap(ptmp,qtmp);
#else
      swap(ptmp,qtmp);
#endif
    }
    // degree(qtmp)=n <= degree(ptmp)=m
    if (!n) // q is cst
      return pow(qtmp,m)*T(sign);
    int ddeg;
    T cp(ppz(ptmp)),cq(ppz(qtmp));
    T res(pow(cq,m)*pow(cp,n));
    tensor<T> g(T(1),p.dim), h(T(1),p.dim);
    while (n){
      if (m*n %2)
	sign=-sign;
      ddeg=m-n;
      if (debug_infolevel)
	CERR << CLOCK() << "Tresultant n,m,ddeg: " << n << " ," << m << " ," << ddeg << std::endl;
      tensor<T> tmp1(Tfirstcoeff(qtmp)),tmp2(p.dim),tmp3(pow(h,ddeg)),rem(p.dim),a(p.dim);
      ptmp.TPseudoDivRem(qtmp,tmp2,rem,a); // (ptmp*pow(tmp1,ddeg+1)).TDivRem1(qtmp,tmp2,rem,false);
      rem.high_order_degree_truncate(n);
      ptmp=qtmp;
      m=n;
      qtmp=(rem/g)/tmp3; // qtmp=rem/(g*tmp3);
      n=qtmp.lexsorted_degree();
      if (ddeg==1)
	h=tmp1;
      else
	h=(h*pow(tmp1,ddeg))/tmp3;
      g=tmp1;
    }
    // q is cst or zero
    if (qtmp.coord.empty())
      return tensor<T>(T(0),p.dim);
    m=ptmp.lexsorted_degree();
    return (pow(qtmp,m)/pow(h,m-1))*(res*T(sign));
  }

  // Bรฉzout identity
  // given p and q, find u and v s.t. u*p+v*q=d where d=gcd(p,q) using PSR algo
  // Iterative algorithm to find u and d, then q=(d-u*p)/v
  template<class T>
  void Tegcdpsr(const tensor<T> &p1, const tensor<T> & p2, tensor<T> & u,tensor<T> & v,tensor<T> & d){
    assert(p1.dim==p2.dim);
    // set auxiliary polynomials g and h to 1
    tensor<T> g(T(1),p1.dim);
    tensor<T> h(g);
    tensor<T> a(p1.dim),b(p1.dim),q(p1.dim),r(p1.dim);
    const tensor<T> & cp1=Tlgcd(p1);
    const tensor<T> & cp2=Tlgcd(p2);
    bool Tswapped=false;
    if (p1.lexsorted_degree()<p2.lexsorted_degree())
      Tswapped=true;
    // initializes a and b to p1, p2
    const tensor<T> & pp1=Tis_one(cp1)?p1:p1/cp1;
    const tensor<T> & pp2=Tis_one(cp2)?p2:p2/cp2;
    if (Tswapped){
      a=pp2;
      b=pp1;
    }
    else {
      a=pp1;
      b=pp2;
    }
    // initializes ua to 1 and ub to 0, the coeff of u in ua*a+va*b=a
    tensor<T> ua(T(1),p1.dim), ub(p1.dim),ur(p1.dim);
    tensor<T> b0pow(p1.dim);
    // loop: ddeg <- deg(a)-deg(b), 
    // TDivRem: b0^(ddeg+1)*a = bq+r 
    // hence ur <- ua*b0^(ddeg+1)-q*ub verifies
    // ur*a+vr*b=r
    // a <- b, b <- r/(g*h^ddeg), ua <- ub and ub<- ur/(g*h^ddeg)
    // g <- b0, h <- b0^(m-n) * h / h^ddeg
    for (;;){
      int n=b.lexsorted_degree();
      int m=a.lexsorted_degree();
      if (!n){ // b is cst !=0 hence is the gcd, ub is valid
	break;
      }
      int ddeg=m-n;
      const tensor<T> & b0=Tfirstcoeff(b);
      // b0pow=Tpow(b0,ddeg+1);
      // (a*b0pow).TDivRem1(b,q,r); // division works always
      a.TPseudoDivRem(b,q,r,b0pow);
      // if r is 0 then b is the gcd and ub the coeff
      if (r.coord.empty())
	break;
      // COUT << ua*b0pow << std::endl << q*ub << std::endl ;
      (ua*b0pow).TSub(q*ub,ur); // ur=ua*b0pow-q*ub;
      // COUT << ur << std::endl;
#if defined RTOS_THREADX || defined BESTA_OS || defined USTL
      a=b; 
#else
      swap(a,b); // a=b
#endif
      const tensor<T> & temp=Tpow(h,ddeg);
      // now divides r by g*h^(m-n), result is the new b
      r.TDivRem1(g*temp,b,q); // q is not used anymore
#if defined RTOS_THREADX || defined BESTA_OS || defined USTL
      ua=ub;
#else
      swap(ua,ub); // ua=ub
#endif
      ur.TDivRem1(g*temp,ub,q);
      // COUT << (b-ub*p1) << "/" << p2 << std::endl;
      // new g=b0 and new h=b0^(m-n)*h/temp
      if (ddeg==1) // the normal case, remainder deg. decreases by 1 each time
	h=b0;
      else // not sure if it's better to keep temp or divide by h^(m-n+1)
	(Tpow(b0,ddeg)*h).TDivRem1(temp,h,q);
      g=b0;
    }
    // ub is valid and b is the gcd, vb=(b-ub*p1)/p2 if not Tswapped
    // vb is stored in ua
    // COUT << ub << std::endl;
    if (Tswapped){
      (b-ub*pp2).TDivRem1(pp1,ua,r);
      ua *= cp2; // ua=ua*cp2;
      ub *= cp1; // ub=ub*cp1;
      b *= cp1; b *= cp2; // b=b*cp1*cp2;
    }
    else {
      (b-ub*pp1).TDivRem1(pp2,ua,r);
      ua *= cp1; // ua=ua*cp1;
      ub *= cp2; // ub=ub*cp2;
      b *= cp1; b *= cp2; // b=b*cp1*cp2;
    }
    // final simplifications
    q.coord.clear();
    Tlgcd(b,q); // q=Tlgcd(b);
    Tlgcd(ua,q);
    Tlgcd(ub,q);
    b.TDivRem1(q,d,r,true);  // d=b/Tlgcd
    if (Tswapped){
      ub.TDivRem1(q,v,r,true); // v=ub/Tlgcd
      ua.TDivRem1(q,u,r,true); // u=ua/Tlgcd
    }
    else {
      ub.TDivRem1(q,u,r,true); // u=ub/Tlgcd
      ua.TDivRem1(q,v,r,true); // v=ua/Tlgcd
    }
  }

  // seems interesting in dimension 1 only
  template<class T>
  void TegcdTlgcd(const tensor<T> &p1, const tensor<T> & p2, tensor<T> & u,tensor<T> & v,tensor<T> & d){
    assert(p1.dim==p2.dim);
    // p1=cp1*a p2=cp2*b
    // a*u+b*v=d
    // hence multiplying by cp1*cp2 p1*(u*cp2)+p2*(v*cp1)=d*cp1*cp2
    tensor<T> cp1(Tlgcd(p1)), cp2(Tlgcd(p2)),pp1(p1/cp1),pp2(p2/cp2);
    tensor<T> a(p1.dim),b(p1.dim),q(p1.dim),r(p1.dim);
    bool Tswapped=false;
    if (p1.lexsorted_degree()<p2.lexsorted_degree())
      Tswapped=true;
    // initializes a and b to p1, p2
    if (Tswapped){
      a=pp2;
      b=pp1;
    }
    else {
      a=pp1;
      b=pp2;
    }
    // initializes ua to 1 and ub to 0, the coeff of u in ua*a+va*b=a
    tensor<T> ua(T(1),p1.dim), ub(p1.dim),ur(p1.dim);
    // loop: ddeg <- deg(a)-deg(b), 
    // TDivRem: b0^(ddeg+1)*a = bq+r 
    // hence ur <- ua*b0^(ddeg+1)-q*ub verifies
    // ur*a+vr*b=r
    // divide r and ur by their common Tlgcd
    // a <- b, b <- r/Tlgcd, ua <- ub and ub<- ur/Tlgcd
    for (;;){
      int n=b.lexsorted_degree();
      // int m=a.lexsorted_degree();
      if (!n){ // b is cst !=0 hence is the gcd, ub is valid
	break;
      }
      // int ddeg=m-n;
      tensor<T> b0(Tfirstcoeff(b)),b0pow(b0.dim);
      // b0pow=Tpow(b0,ddeg+1);
      // (a*b0pow).TDivRem1(b,q,r,true); // division works always
      a.TPseudoDivRem(b,q,r,b0pow);
      // if r is 0 then b is the gcd and ub the coeff
      if (r.coord.empty())
	break;
      ur=ua*b0pow-q*ub;
      a=b;
      tensor<T> pgcd(Tlgcd(ur));
      Tlgcd(r,pgcd);
      // now divides r by pgcd, result is the new b
      r.TDivRem1(pgcd,b,q,true); // q is not used anymore
      ua=ub;
      ur.TDivRem1(pgcd,ub,q,true);
    }
    // ub is valid and b is the gcd, vb=(b-ub*p1)/p2 if not Tswapped
    // vb is stored in ua
    // COUT << ub << std::endl;
    if (Tswapped){
      q=b-ub*pp2;
      tensor<T> b0(Tfirstcoeff(pp1));
      int m=q.lexsorted_degree();
      int n=pp1.lexsorted_degree();
      tensor<T> b0pow(Tpow(b0,m-n+1));
      b=b*b0pow;
      ub=ub*b0pow;
      q=q*b0pow;
      q.TDivRem1(pp1,ua,r,true);
      ua=ua*cp2;
      ub=ub*cp1;
      b=b*cp1*cp2;
    }
    else {
      // first multiply b and ub by p1_max_deg^# before doing division
      q=b-ub*pp1;
      tensor<T> b0(Tfirstcoeff(pp2));
      int m=q.lexsorted_degree();
      int n=pp2.lexsorted_degree();
      tensor<T> b0pow(Tpow(b0,m-n+1));
      b=b*b0pow;
      ub=ub*b0pow;
      q=q*b0pow;
      q.TDivRem1(pp2,ua,r,true);
      ua=ua*cp1;
      ub=ub*cp2;
      b=b*cp1*cp2;
    }
    // final simplifications
    q=Tlgcd(ua);
    Tlgcd(ub,q);
    Tlgcd(b,q);
    b.TDivRem1(q,d,r,true);  // d=b/Tlgcd
    if (Tswapped){
      ua.TDivRem1(q,u,r,true); // u=ua/Tlgcd
      ub.TDivRem1(q,v,r,true); // v=ub/Tlgcd
    }
    else {
      ub.TDivRem1(q,u,r,true); // u=ub/Tlgcd
      ua.TDivRem1(q,v,r,true); // v=ua/Tlgcd
    }
  }

  // utility for Bรฉzout identity solving
  template<class T>
  void Tegcdtoabcuv(const tensor<T> & a,const tensor<T> &b, const tensor<T> &c, tensor<T> &u,tensor<T> &v, tensor<T> & d, tensor<T> & C){
    tensor<T> d0(Tfirstcoeff(d));
    int m=c.lexsorted_degree();
    int n=d.lexsorted_degree();
    assert(m>=n); // degree of c must be greater than degree of d
    C=Tpow(d0,m-n+1);
    tensor<T> coverd(a.dim),temp(a.dim);
    (c*C).TDivRem1(d,coverd,temp);
    assert(temp.coord.empty()); // division of c by d must be exact
    // now multiply a*u+b*v=d by coverd -> a*u*coverd+b*v*coverd=c*d0pow
    u *= coverd; // u=u*coverd;
    v *= coverd; // v=v*coverd;
    m=u.lexsorted_degree();
    n=b.lexsorted_degree();
    if (m<n)
      return;
    // then reduces the degree of u, a*u+b*v=c*C
    d0=Tpow(Tfirstcoeff(b),m-n+1); 
    C *= d0; // C=C*d0;
    // now a*u*d0+b*v*d0=c*C
    (u*d0).TDivRem1(b,temp,u); // replace u*d0 -> temp*b+u
    // a*b + b*(a*temp+v*d0) = c*C
    v=a*temp+v*d0;
    return ;
  }

  // given a,b,c, find u, v and a cst C s.t. C*c=a*u+b*v and degree(u)<degree(b)
  // requires an egcd implementation, for example egcdpsr above
  template<class T>
  void Tabcuv(const tensor<T> & a,const tensor<T> &b, const tensor<T> &c, tensor<T> &u,tensor<T> &v, tensor<T> & C){
    tensor<T> d(a.dim);
    Tegcdpsr(a,b,u,v,d); // a*u+b*v=d
    Tegcdtoabcuv(a,b,c,u,v,d,C);
  }

  template<class T>
  tensor<T> tensor<T>::derivative() const{
    if (coord.empty())
      return *this;
    tensor<T> res(dim);
    if (dim==0)
      return res;
    res.coord.reserve(coord.size());
    typename std::vector< monomial<T> >::const_iterator itend=coord.end();
    T tmp;
    for (typename std::vector< monomial<T> >::const_iterator it=coord.begin();it!=itend;++it){
      index_t i= it->index.iref() ;
      T n(i.front());
      i[0]--;
      tmp = it->value*n;
      if (!is_zero(tmp))
	res.coord.push_back(monomial<T>(tmp,i));
    }
    return res;
  }

  template<class T>
  tensor<T> tensor<T>::integrate() const{
    if (coord.empty())
      return *this;
    tensor<T> res(dim);
    res.coord.reserve(coord.size());
    typename std::vector< monomial<T> >::const_iterator itend=coord.end();
    for (typename std::vector< monomial<T> >::const_iterator it=coord.begin();it!=itend;++it){
      index_t i = it->index.iref();
      T n(i.front()+1);
      i[0]++;
      if (!is_zero(n))
	res.coord.push_back(monomial<T>(rdiv(it->value,n),i));
    }
    return res;
  }

  template<class T>
  void Tfracadd(const tensor<T> & n1, const tensor<T> & d1,const tensor<T> & n2, const tensor<T> & d2, tensor<T> & num, tensor<T> & den){
    // COUT << n1 << "/" << d1 << "+" << n2 << "/" << d2 << "=";
    if (Tis_one(d1)){
      n2.TAdd(n1*d2,num);  //  num=n1*d2+n2;
      den=d2;
      // COUT << num << "/" << den << std::endl;
      return;
    }
    if (Tis_one(d2)){
      n1.TAdd(n2*d1,num); // num=n2*d1+n1;
      den=d1;
      // COUT << num << "/" << den << std::endl;
      return;
    }
    // n1/d1+n2/d2 with g=gcd(d1,d2), d1=d1g*g, d2=d2g*g is
    // (n1*d2g+n2*d1g)/g * 1/(d1g*d2g)
    tensor<T> d1g(d1),d2g(d2);
    den=simplify(d1g,d2g);
    (n1*d2g).TAdd(n2*d1g,num);
    simplify(num,den);
    den=den*d1g*d2g;

    /* 
       (n1*d2).TAdd(n2*d1,num); //    num=n1*d2+n2*d1;
       den=d1*d2;
       simplify(num,den);
    */
  }

  template <class T>
  void Tfracmul(const tensor<T> & n1, const tensor<T> & d1,const tensor<T> & n2, const tensor<T> & d2, tensor<T> & num, tensor<T> & den){
    // COUT << n1 << "/" << d1 << "*" << n2 << "/" << d2 << "=";
    if (Tis_one(d1)){
      num=n1;
      den=d2;
      simplify(num,den);
      num=num*n2;
      // COUT << num << "/" << den << std::endl;
      return;
    }
    if (Tis_one(d2)){
      num=n2;
      den=d1;
      simplify(num,den);
      num=num*n1;
      // COUT << num << "/" << den << std::endl;
      return;
    }
    num=n1;
    den=d2;
    simplify(num,den);
    tensor<T> ntemp(n2),dtemp(d1);
    simplify(ntemp,dtemp);
    num=num*ntemp;
    den=den*dtemp;
    // COUT << num << "/" << den << std::endl;
  }

  /*
    template<class T>
    std::ostream & operator << (std::ostream & os, const std::vector< facteur<T> > & v){
    std::vector< facteur<T> >::const_iterator itend=v.end();
    for (std::vector< facteur<T> >::const_iterator it=v.begin();;){
    os << *it ;
    ++it;
    if (it==itend)
    break;
    else
    os << "*";
    }
    return(os);
    }
  */

  template<class T>
  T Tproduct(const std::vector< facteur<T> > & v){
    assert (!v.empty());
    typename std::vector< facteur<T> >::const_iterator it=v.begin();
    typename std::vector< facteur<T> >::const_iterator itend=v.end();
    T prod(Tpow(it->fact,it->mult));
    ++it;
    for (;it!=itend;++it)
      prod *= it->mult==1?it->fact:Tpow(it->fact,it->mult); //  prod=prod*Tpow(it->fact,it->mult);
    return prod;
  }

  template<class T>
  T Tproduct(typename std::vector< facteur<T> >::const_iterator it,
	     typename std::vector< facteur<T> >::const_iterator itend){
    assert (it!=itend);
    T prod(Tpow(it->fact,it->mult));
    ++it;
    for (;it!=itend;++it)
      prod *= it->mult==1?it->fact:Tpow(it->fact,it->mult); // prod=prod*Tpow(it->fact,it->mult);
    return prod;
  }

  // square-free factorization of a polynomial
  // T must be a 0 characteristic field
  template<class T>
  std::vector< facteur< tensor<T> > > Tsqff_char0(const tensor<T> &p ){
    tensor<T> y(p.derivative()),w(p);
    tensor<T> c(simplify(w,y));
    // p=p_1*p_2^2*...*p_n^n, c=gcd(p,p')=p_2*...*p_n^(n-1), 
    // w=p/c=pi_i p_i, y=p'/c=sum_{i>=1} ip_i'*pi_{j!=i} p_j
    y.TSub(w.derivative(),y); // y=y-w.derivative(); // y= sum_{i>=2} (i-1) p_i' * pi_{j!=i} p_j
    std::vector< facteur< tensor<T> > > v;
    int k=1; // multiplicity counter
    while(!y.coord.empty()){
      // y=sum_{i>=k+1} (i-k) p_i' * pi_{j!=i, j>=k} p_j
      const tensor<T> & g=simplify(w,y);
      if (!Tis_one(g))
	v.push_back(facteur< tensor<T> >(g,k));
      // this push p_k, now w=pi_{i>=k+1} p_i and 
      // y=sum_{i>=k+1} (i-k) p_i' * pi_{j!=i, j>=k+1} p_j
      y.TSub(w.derivative(),y); // y=y-w.derivative();
      // y=sum_{i>=k+1} (i-(k+1)) p_i' * pi_{j!=i, j>=k+1} p_j
      k++;
    }
    if (!Tis_one(w))
      v.push_back(facteur< tensor<T> >(w,k));
    return std::vector< facteur< tensor<T> > > (v);
  }

  // class for partial fraction decomposition
  template<class T>
  class pf{
  public:
    tensor<T> num;
    tensor<T> fact;
    tensor<T> den;
    int mult; // den=cste*fact^mult
    pf(): num(),fact(),den(),mult(0) {}
    pf(const pf & a) : num(a.num), fact(a.fact), den(a.den), mult(a.mult) {}
    pf(const tensor<T> &n, const tensor<T> & d, const tensor<T> & f,int m) : num(n), fact(f), den(d), mult(m) {};
  };

  template<class T>
  std::ostream & operator << (std::ostream & os, const pf<T> & v){
    os << v.num << "/" << v.den ;
    return os;
  }

#ifdef NSPIRE
  template<class T,class I>
  nio::ios_base<I> & operator << (nio::ios_base<I> & os, const std::vector< pf<T> > & v){
    typename std::vector< pf<T> >::const_iterator itend=v.end();
    for (typename std::vector< pf<T> >::const_iterator it=v.begin();;){
      os << *it ;
      ++it;
      if (it==itend)
	break;
      else
	os << "+";
    }
    return(os);
  }
#else
  template<class T>
  std::ostream & operator << (std::ostream & os, const std::vector< pf<T> > & v){
    typename std::vector< pf<T> >::const_iterator itend=v.end();
    for (typename std::vector< pf<T> >::const_iterator it=v.begin();;){
      os << *it ;
      ++it;
      if (it==itend)
	break;
      else
	os << "+";
    }
    return(os);
  }
#endif

  template<class T>
  tensor<T> TsimplifybyTlgcd(tensor<T>& a,tensor<T> &b){
    const tensor<T> & Tlgcdg=gcd(Tlgcd(a),Tlgcd(b));
    if (!Tis_one(Tlgcdg)){
      a=a/Tlgcdg;
      b=b/Tlgcdg;
    }
    return Tlgcdg;
  }

  // utility for Tpartfrac, see below
  template<class T>
  void Tpartfrac(const tensor<T> & num, const tensor<T> & den, /* const tensor<T> & dendiff ,*/const std::vector< facteur< tensor<T> > > & w , int n, int m, std::vector < pf <T> > & pfdecomp ){
    if (m==n)
      return;
    if (m-n==1){
      tensor<T> nums(num), dens(den);
      TsimplifybyTlgcd(nums,dens);
      pfdecomp.push_back(pf<T>(nums,dens,w[n].fact,w[n].mult));    
      return ;
    }
    typename std::vector< facteur< tensor<T> > >::const_iterator it=w.begin()+n; // &w[n];
    typename std::vector< facteur< tensor<T> > >::const_iterator it_end=w.begin()+m; // &w[m];
    /*
    // check if all factors of degree 1 and mult 1
    for (;it!=itend;++it){
      if (it->mult!=1 || it->fact.lexsorted_degree()!=1)
	break;
    }
    if (it==itend){
      // add rem(num,it->fact)/rem(dendiff,it->fact) / it->fact for all factors
      it=w.begin()+n;
      for (;it!=itend;++it){
	
      }
    }
    */
    // split v in 2 parts, then apply recursively Tpartfrac on each part
    it=w.begin()+n;
    int p=(m+n)/2;
    typename std::vector< facteur< tensor<T> > >::const_iterator it_milieu=w.begin()+p; // &w[p];
    const tensor<T> & fn=Tproduct< tensor<T> >(it,it_milieu);
    const tensor<T> & fm=Tproduct< tensor<T> >(it_milieu,it_end);
    // write C*num=u*fn+v*fm
    tensor<T> C(den.dim),u(den.dim),v(den.dim);
    Tabcuv(fn,fm,num,u,v,C);
    C=C*(den/(fn*fm));
    // num/den= (u*fn+v*fm)/(C*fn*fm)=u/(C*fm)+v/(C*fn)
    Tpartfrac(v,C*fn,w,n,p,pfdecomp);
    Tpartfrac(u,C*fm,w,p,m,pfdecomp);
  }

  // if num/den with den=cste*pi_i d_i^{mult_i}
  // Tpartfrac rewrites num/den as
  // sum_{i} pfi.num/pfi.den with pfi.den = cste* pfi.den^pfi.mult
  // num and den are assumed to be prime together
  template<class T>
  void Tpartfrac(const tensor<T> & num, const tensor<T> & den, const std::vector< facteur< tensor<T> > > & v , std::vector < pf <T> > & pfdecomp, tensor<T> & ipnum, tensor<T> & ipden ){
    int n=int(v.size());
    pfdecomp.reserve(n);
    // compute ip and call Tpartfrac
    tensor<T> rem(num.dim);
    num.TPseudoDivRem(den,ipnum,rem,ipden);
    // ipden*num=den*ipnum+rem hence num/den=ipnum/ipden+rem/(ipden*den)
    const tensor<T> & temp=ipden*den;
    // simplify(rem,temp);
    if (n==1)
      pfdecomp.push_back(pf<T>(rem,temp,v.front().fact,v.front().mult));
    else
      Tpartfrac(rem,temp,/* temp.derivative() ,*/ v,0,n,pfdecomp);
  }

  // reduction of a fraction with multiple poles to single poles by integration
  // by part, use the relation
  // ilaplace(P'/P^(k+1))=laplacevar/k*ilaplace(1/P^k)
  template<class T>
  pf<T> Tlaplace_reduce_pf(const pf<T> & p_cst, tensor<T> & laplacevar ){
    pf<T> p(p_cst);
    assert(p.mult>0);
    if (p.mult==1)
      return p_cst;
    tensor<T> fprime=p.fact.derivative();
    tensor<T> d(fprime.dim),C(fprime.dim),u(fprime.dim),v(fprime.dim);
    Tegcdpsr(p.fact,fprime,u,v,d); // f*u+f'*v=d
    tensor<T> usave(u),vsave(v);
    // int initial_mult=p.mult-1;
    while (p.mult>1){
      Tegcdtoabcuv(p.fact,fprime,p.num,u,v,d,C);
      p.mult--;
      p.den=(p.den/p.fact)*C*T(p.mult);
      p.num=u*T(p.mult)+v.derivative()+v*laplacevar;
      if ( (p.mult % 5)==1) // simplify from time to time
	TsimplifybyTlgcd(p.num,p.den);
      if (p.mult==1)
	break;
      u=usave;
      v=vsave;
    }
    return pf<T>(p);
  }

  // reduction of a fraction with multiple poles to single poles by integration
  // by part, the integrated part is added to intdecomp
  template<class T>
  pf<T> Tintreduce_pf(const pf<T> & p_cst, std::vector< pf<T> > & intdecomp ){
    assert(p_cst.mult>0);
    if (p_cst.mult==1)
      return p_cst;
    pf<T> p(p_cst);
    tensor<T> fprime=p.fact.derivative();
    tensor<T> d(fprime.dim),u(fprime.dim),v(fprime.dim),C(fprime.dim);
    tensor<T> resnum(fprime.dim),resden(T(1),fprime.dim),numtemp(fprime.dim),dentemp(fprime.dim);
    Tegcdpsr(p.fact,fprime,u,v,d); // f*u+f'*v=d
    tensor<T> usave(u),vsave(v);
    int initial_mult=p.mult-1;
    while (p.mult>1){
      Tegcdtoabcuv(p.fact,fprime,p.num,u,v,d,C);
      p.mult--;
      p.den=(p.den/p.fact)*C*T(p.mult);
      p.num=u*T(p.mult)+v.derivative();
      u=-p.den;
      TsimplifybyTlgcd(u,v);
      Tfracadd<T>(resnum,resden,v,u,numtemp,dentemp);
      resnum=numtemp;
      resden=dentemp;
      if ( (p.mult % 5)==1) // simplify from time to time
	TsimplifybyTlgcd(p.num,p.den);
      if (p.mult==1)
	break;
      u=usave;
      v=vsave;
    }
    intdecomp.push_back(pf<T>(resnum,resden,p.fact,initial_mult));
    return pf<T>(p);
  }

  template<class T>
  std::vector<T> makevector(const T & a, const T &b){
    std::vector<T> v;
    v.push_back(a);
    v.push_back(b);
    return v;
  }

  template<class T>
  std::vector<T> makevector(const T & a, const T &b,const T & c){
    std::vector<T> v;
    v.push_back(a);
    v.push_back(b);
    v.push_back(c);
    return v;
  }

  template<class T>
  std::vector<T> makevector(const T & a, const T &b,const T & c,const T & d){
    std::vector<T> v;
    v.push_back(a);
    v.push_back(b);
    v.push_back(c);
    v.push_back(d);
    return v;
  }

  template<class T>
  std::vector<T> merge(const std::vector<T> & a, const std::vector<T> &b){
    std::vector<T> v(a);
    int as=a.size();
    int bs=b.size();
    v.reserve(as+bs);
    typename std::vector<T>::const_iterator it=b.begin(),itend=b.end();
    for (;it!=itend;++it)
      v.push_back(*it);
    return v;
  }

#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC


#endif // ndef _GIAC_POLY_H