monomial.h
35.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
// -*- mode:C++ -*-
/*
* Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _GIAC_MONOMIAL_H_
#define _GIAC_MONOMIAL_H_
#include "first.h"
#include <iostream>
#include <fstream>
#include <functional>
#include <algorithm>
#include <cmath>
#include <map>
#include <string>
#ifdef USTL
#include <pair>
#endif
#include "index.h"
#include "poly.h"
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
int powmod(int a,unsigned long n,int m);
#ifdef NSPIRE
template<class T,class U,class I>
nio::ios_base<I> & operator << (nio::ios_base<I> & os,const std::pair<T,U> & p){
return os << "<" << p.first << "," << p.second << ">";
}
#else
template<class T,class U>
std::ostream & operator << (std::ostream & os,const std::pair<T,U> & p){
return os << "<" << p.first << "," << p.second << ">";
}
#endif
extern int debug_infolevel;
#ifndef NO_STDEXCEPT
void setsizeerr(const std::string &);
#endif
inline bool is_zero(const longlong & a){ return a==0; }
inline bool is_zero(const long & a){ return a==0; }
inline bool is_zero(const int & a){ return a==0; }
inline bool is_zero(const double & a){ return a==0; }
inline void type_operator_times(const double & a,const double & b,double & c){
c = a*b;
}
inline void type_operator_plus_times(const double & a,const double & b,double & c){
c += a*b;
}
inline void type_operator_plus_times_reduce(const double & a,const double & b,double & c,int reduce){
c += a*b;
}
inline void type_operator_reduce(const double & a,const double & b,double & c,int reduce){
c = a*b;
}
inline void type_operator_times(const longlong & a,const longlong & b,longlong & c){
c=a*b;
}
inline void type_operator_plus_times(const longlong & a,const longlong & b,longlong & c){
c += a*b;
}
inline void type_operator_plus_times_reduce(const longlong & a,const longlong & b,longlong & c,int reduce){
c += a*b;
if (reduce)
c %= reduce;
}
inline void type_operator_reduce(const longlong & a,const longlong & b,longlong & c,int reduce){
c = a*b;
if (reduce)
c %= reduce;
}
inline void type_operator_times(const int & b,const int & c,int & a){
a=b*c;
}
inline void type_operator_plus_times_reduce(const int & b,const int & c,int & a,int reduce){
if (reduce){
#ifdef _I386_ // a<-a+b*c mod m
if (a<0) a+=reduce;
asm volatile("imull %%ecx; \n\t" /* b*c in edx:eax */
"addl %%ebx,%%eax; \n\t" /* b*c+a */
"adcl $0x0,%%edx; \n\t" /* b*c+a carry */
"idivl %%edi; \n\t"
:"=d"(a)
:"a"(b),"b"(a),"c"(c),"D"(reduce)
);
#else
a=(a+longlong(b)*c)%reduce;
#endif
}
else
a+=b*c;
}
inline void type_operator_plus_times_reduce_nock(const int & b,const int & c,int & a,int reduce){
#ifdef _I386_ // a<-a+b*c mod m
asm volatile("testl %%ebx,%%ebx; \n\t"
"jns .Lok%=\n\t"
"addl %%edi,%%ebx\n" /* a+=m*/
".Lok%=:\t"
"imull %%ecx; \n\t" /* b*c in edx:eax */
"addl %%ebx,%%eax; \n\t" /* b*c+a */
"adcl $0x0,%%edx; \n\t" /* b*c+a carry */
"idivl %%edi; \n\t"
:"=d"(a)
:"a"(b),"b"(a),"c"(c),"D"(reduce)
);
#else
a=(longlong(b)*c+a)%reduce;
#endif
}
inline void type_operator_plus_times(const int & b,const int & c,int & a){
a+=b*c;
}
// a<-b*c mod m
inline void type_operator_times_reduce(const int & b,const int & c,int & a,int reduce){
#ifdef _I386_
asm volatile("imull %%ecx; \n\t" /* b*c in edx:eax */
"idivl %%edi; \n\t"
:"=d"(a)
:"a"(b),"c"(c),"D"(reduce)
);
#else
longlong tmp=longlong(b)*c;
a=tmp%reduce;
#endif
}
inline void type_operator_reduce(const int & b,const int & c,int & a,int reduce){
if (reduce){
#ifdef _I386_ // a<-b*c mod m
asm volatile("imull %%ecx; \n\t" /* b*c in edx:eax */
"idivl %%edi; \n\t"
:"=d"(a)
:"a"(b),"c"(c),"D"(reduce)
);
#else
longlong tmp=longlong(b)*c;
a=tmp%reduce;
#endif
}
else
a=b*c;
}
inline bool has_denominator(int a){ return false; }
inline bool has_denominator(longlong a){ return false; }
// a class for monomials, poly&matrices are std::imvectors of couples index/monomial
template <class T> class monomial{
public:
index_m index;
T value;
// constructors
monomial(const monomial<T> & m) : index(m.index), value(m.value) {}
monomial():index(),value(0){}
monomial( const T & v, int dim) : value(v) {
index.clear();
index.reserve(dim);
for (int i=1;i<=dim;i++)
index.push_back(0);
}
monomial( const T & v, int var,int dim) : value(v) {
index.clear();
index.reserve(dim);
for (int i=1;i<=dim;i++)
index.push_back(i==var);
}
monomial( const T & v, int deg,int var,int dim) : value(v) {
index.clear();
index.reserve(dim);
for (int i=1;i<=dim;i++)
index.push_back(deg*(i==var));
}
monomial( const T & v, const index_m & i) : index(i),value(v) {}
// unary negation
monomial<T> operator - () const {
return(monomial<T>(-(*this).value,(*this).index));
}
// members
monomial<T> shift(index_m i,const T & fois) const {
return monomial<T>(value*fois,i+index);
}
monomial<T> shift(const T & fois,index_m i) const {
return monomial<T>(value/fois,i+index);
}
monomial<T> shift(index_m i) const {
return monomial<T>(value,i+index);
}
void reverse() {
int s=int(index.size());
index_m new_i;
new_i.reserve(s);
index_t::const_iterator it=index.begin();
index_t::const_iterator itend=index.end();
--it;
--itend;
for (;it!=itend;--itend)
new_i.push_back(*itend);
index=new_i;
}
void reorder(const std::vector<int> & permutation) {
int s=int(index.size());
if (unsigned(s)!=permutation.size()){
#ifndef NO_STDEXCEPT
setsizeerr("Error monomial.h reorder(const index_t &)");
#endif
return;
}
index_m new_i(s);
index_t::iterator newit=new_i.begin();
for (int i=0;i<s;++newit,++i)
*newit=(index)[permutation[i]];
index=new_i;
}
// truncate topmost index value (decrement by 1 the dimension)
inline monomial<T> trunc1 () const {
#ifdef DEBUG_SUPPORT
assert(index.begin()!=index.end());
#endif
return monomial<T>(value,index_m(index.begin()+1,index.end()));
}
monomial<T> untrunc1 (int j=0) const {
index_t::const_iterator it=index.begin(),itend=index.end();
index_m new_i(itend-it+1);
index_t::iterator newit=new_i.begin();
*newit=j;
for (++newit;it!=itend;++newit,++it)
*newit=*it;
return monomial<T>(value,new_i);
}
// add a principal degree equal to j and adjust dimension to dim
monomial<T> untrunc (int j,int dim) const {
int s=int(index.size());
assert(s<dim);
index_m new_i(dim);
index_t::const_iterator it=index.begin();
index_t::iterator newit=new_i.begin();
*newit=j;
for (++newit,--dim;dim>s;++newit,--dim)
*newit=0;
for (;it!=index.end();++newit,++it)
*newit=*it;
return monomial<T>(value,new_i);
}
inline T norm () const{
return abs(value);
}
inline std::string print() const {
std::string s("%%%{");
s += value.print();
s += ',';
s += print_INT_(index.iref());
s += std::string("%%%}");
return s;
}
};
// ordering monomials using index ordering
template <class T>
bool m_total_lex_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_total_lex_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_lex_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_lex_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_total_revlex_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_total_revlex_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_3var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_3var_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_7var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_7var_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_11var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_11var_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_16var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_16var_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_32var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_32var_is_strictly_greater(m1.index,m2.index));
}
template <class T>
bool m_64var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
return(i_64var_is_strictly_greater(m1.index,m2.index));
}
template<class T> class sort_helper {
public:
std::pointer_to_binary_function < const monomial<T> &, const monomial<T> &, bool> strictly_greater ;
sort_helper(const std::pointer_to_binary_function < const monomial<T> &, const monomial<T> &, bool> is_strictly_greater):strictly_greater(is_strictly_greater) {};
sort_helper():strictly_greater(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>)) {};
bool operator () (const monomial<T> & a, const monomial<T> & b){ return strictly_greater(a,b);}
};
#ifdef NSPIRE
template <class T,class I>
nio::ios_base<I> & operator << (nio::ios_base<I> & os, const monomial<T> & m ){
return os << m.print();
}
#else
template <class T>
std::ostream & operator << (std::ostream & os, const monomial<T> & m ){
return os << m.print();
}
#endif
template<class T>
bool operator == (const monomial<T>& a,const monomial<T> & b){
return (a.value==b.value) && (a.index==b.index);
}
template<class T>
bool operator != (const monomial<T>& a,const monomial<T> & b){
return !(a==b);
}
template <class T>
monomial<T> Untrunc1(const T & t,int j=0){
index_m new_i;
new_i.push_back(j);
return monomial<T>(t,new_i);
}
#ifdef NSPIRE
template <class T,class I>
nio::ios_base<I> & operator << (nio::ios_base<I> & os, const std::vector<T> v){
typename std::vector<T>::const_iterator it=v.begin();
typename std::vector<T>::const_iterator itend=v.end();
os << "Vector [";
for (;it!=itend;){
os << *it ;
++it;
if (it!=itend)
os << ",";
}
os << "]" ;
return os;
}
#else
template <class T>
std::ostream & operator << (std::ostream & os, const std::vector<T> v){
typename std::vector<T>::const_iterator it=v.begin();
typename std::vector<T>::const_iterator itend=v.end();
os << "Vector [";
for (;it!=itend;){
os << *it ;
++it;
if (it!=itend)
os << ",";
}
os << "]" ;
return os;
}
#endif
/*
template <class T>
std::ostream & operator << (std::ostream & os, const std::vector< monomial<T> > & v){
for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=v.end();++it)
os << *it << "| " ;
return(os);
}
*/
template <class T>
void Mul ( typename std::vector< monomial<T> >::const_iterator & a,
typename std::vector< monomial<T> >::const_iterator & a_end,
const T & fact, std::vector< monomial<T> > & new_coord){
if (new_coord.begin()==a){
if (is_one(fact))
return;
typename std::vector< monomial<T> >::iterator b=new_coord.begin(),b_end=new_coord.end();
for (;b!=b_end;++b){
b->value = b->value * fact;
}
}
else {
new_coord.clear();
new_coord.reserve(a_end - a );
for (;a!=a_end;++a){
T tmp=((*a).value) * fact;
if (!is_zero(tmp))
new_coord.push_back(monomial<T>( tmp , (*a).index) );
}
}
}
template <class T>
std::vector< monomial<T> > operator * (const T & f,const std::vector< monomial<T> > & v){
if (is_one(f))
return v;
typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
std::vector< monomial<T> > res;
if (!is_zero(f))
Mul(a,a_end,f,res);
return res ;
}
template <class T>
inline std::vector< monomial<T> > operator * (const std::vector< monomial<T> > & v,const T & f){
return f*v;
}
template <class T>
std::vector< monomial<T> > & operator *= (std::vector< monomial<T> > & v,const T & f){
if (is_one(f))
return v;
typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
if (!is_zero(f))
Mul(a,a_end,f,v);
else
v.clear();
return v;
}
template <class T>
void Div ( typename std::vector< monomial<T> >::const_iterator & a,
typename std::vector< monomial<T> >::const_iterator & a_end,
const T & fact, std::vector< monomial<T> > & new_coord){
if (new_coord.begin()==a){
if (is_one(fact))
return;
typename std::vector< monomial<T> >::iterator b=new_coord.begin(),b_end=new_coord.end();
for (;b!=b_end;++b){
b->value = b->value / fact;
}
}
else {
new_coord.reserve(a_end - a );
for (;a!=a_end;++a){
new_coord.push_back(monomial<T>( rdiv((*a).value, fact) , (*a).index) );
}
}
}
template <class T>
std::vector< monomial<T> > operator / (const std::vector< monomial<T> > & v,const T & f){
if (is_one(f))
return v;
typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
std::vector< monomial<T> > res;
res.clear();
Div(a,a_end,f,res);
return res ;
}
typedef bool (* m_strictly_greater_t)(const index_m &,const index_m &);
template <class T>
void Add ( typename std::vector< monomial<T> >::const_iterator & a,
typename std::vector< monomial<T> >::const_iterator & a_end,
typename std::vector< monomial<T> >::const_iterator & b,
typename std::vector< monomial<T> >::const_iterator & b_end,
std::vector< monomial<T> > & new_coord,
bool (* is_strictly_greater)( const index_m &, const index_m &)) {
if ( (a!=a_end && new_coord.begin()==a) || (b!=b_end && new_coord.begin()==b)){
std::vector< monomial<T> > tmp;
Add(a,a_end,b,b_end,tmp,is_strictly_greater);
std::swap(new_coord,tmp);
return;
}
new_coord.clear();
new_coord.reserve( (a_end - a) + (b_end - b));
// bool log=false;
/* if (a!=a_end)
log=a->index.size()>=12;
if (log)
CERR << "+ begin" << CLOCK() << endl; */
for (;;) {
if (a == a_end) {
while (b != b_end) {
new_coord.push_back(*b);
++b;
}
break;
}
const index_m & pow_a = a->index;
// If b is empty, fill up with elements from a and stop
if (b == b_end) {
while (a != a_end) {
new_coord.push_back(*a);
++a;
}
break;
}
const index_m & pow_b = b->index;
// a and b are non-empty, compare powers
if (pow_a!=pow_b){
if (is_strictly_greater(pow_a, pow_b)) {
// a has lesser power, get coefficient from a
new_coord.push_back(*a);
++a;
}
else {
// b has lesser power, get coefficient from b
new_coord.push_back(*b);
++b;
}
}
else {
T sum = (*a).value + (*b).value;
if (!is_zero(sum))
new_coord.push_back(monomial<T>(sum,pow_a));
++a;
++b;
}
}
// if (log)
// CERR << "+ end " << CLOCK() << endl;
}
template <class T>
std::vector< monomial<T> > operator + (const std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
std::vector< monomial<T> > res;
Add(a,a_end,b,b_end,res,i_lex_is_strictly_greater);
return res ;
}
template <class T>
void Sub ( typename std::vector< monomial<T> >::const_iterator & a,
typename std::vector< monomial<T> >::const_iterator & a_end,
typename std::vector< monomial<T> >::const_iterator & b,
typename std::vector< monomial<T> >::const_iterator & b_end,
std::vector< monomial<T> > & new_coord,
bool (* is_strictly_greater)( const index_m &, const index_m &)) {
if ((a!=a_end && new_coord.begin()==a) || (b!=b_end && new_coord.begin()==b)){
std::vector< monomial<T> > tmp;
Sub(a,a_end,b,b_end,tmp,is_strictly_greater);
std::swap(new_coord,tmp);
return;
}
new_coord.clear();
new_coord.reserve( (a_end - a) + (b_end - b));
for (;;) {
// If a is empty, fill up with elements from b and stop
if (a == a_end) {
while (b != b_end) {
new_coord.push_back(-(*b));
++b;
}
break;
}
const index_m & pow_a = a->index;
// If b is empty, fill up with elements from a and stop
if (b == b_end) {
while (a != a_end) {
new_coord.push_back(*a);
++a;
}
break;
}
const index_m & pow_b = b->index;
// a and b are non-empty, compare powers
if (pow_a!=pow_b){
if (is_strictly_greater(pow_a, pow_b)) {
// a has lesser power, get coefficient from a
new_coord.push_back(*a);
++a;
}
else {
// b has lesser power, get coefficient from b
new_coord.push_back(-(*b));
++b;
}
}
else {
T diff = (*a).value - (*b).value;
if (!is_zero(diff))
new_coord.push_back(monomial<T>(diff,pow_a));
++a;
++b;
}
}
}
template <class T>
std::vector< monomial<T> > operator - (const std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
std::vector< monomial<T> > res;
Sub(a,a_end,b,b_end,res,i_lex_is_strictly_greater);
return res ;
}
template <class T>
void addsamepower(typename std::vector< monomial<T> >::const_iterator & it,
typename std::vector< monomial<T> >::const_iterator & itend,
std::vector< monomial<T> > & new_coord){
while (it!=itend){
T res=(*it).value;
index_m pow=(*it).index;
++it;
while ( (it!=itend) && ((*it).index==pow)){
res=res+(*it).value;
++it;
}
if (!is_zero(res))
new_coord.push_back(monomial<T>(res, pow));
}
}
struct ltindex
{
bool (* is_strictly_greater)( const index_m &, const index_m &);
inline bool inline bool operator()(const index_m & s1, const index_m & s2) const
{
return is_strictly_greater(s1, s2) ;()(const index_m & s1, const index_m & s2) const
{
return is_strictly_greater(s1, s2) inline bool operator()(const index_m & s1, const index_m & s2) const
{
return is_strictly_greater(s1, s2) ;
}
ltindex(bool (* my_is_strictly_greater)( const index_m &, const index_m &)) : is_strictly_greater(my_is_strictly_greater) {};
};
template <class T>
void Mul ( typename std::vector< monomial<T> >::const_iterator & ita,
typename std::vector< monomial<T> >::const_iterator & ita_end,
typename std::vector< monomial<T> >::const_iterator & itb,
typename std::vector< monomial<T> >::const_iterator & itb_end,
std::vector< monomial<T> > & new_coord,
bool (* is_strictly_greater)( const index_m &, const index_m &),
const std::pointer_to_binary_function < const monomial<T> &, const monomial<T> &, bool> m_is_strictly_greater
) {
if (ita==ita_end || itb==itb_end){
new_coord.clear();
return;
}
// another algorithm using a hash_map
#ifdef HASH_MAP_NAMESPACE
typedef HASH_MAP_NAMESPACE::hash_map< index_t,T,hash_function_object > hash_prod ;
hash_prod produit_;
index_t sum_(ita->index.size());
// const index_t * it_aindexptr;
index_t::const_iterator it_aindex,it_aindexbeg,it_aindexend,it_bindex;
index_t::iterator it_sum_index,it_sum_beg=sum_.begin();
typename hash_prod::iterator prod_it_,prod_it_end;
typename std::vector< monomial<T> >::const_iterator it_a_cur=ita,it_b_cur;
for ( ; it_a_cur!=ita_end; ++it_a_cur ){
// it_aindexptr= &it_a_cur->index.iref();
it_aindexbeg=it_a_cur->index.begin();
it_aindexend=it_a_cur->index.end();
for ( it_b_cur=itb;it_b_cur!=itb_end;++it_b_cur) {
it_bindex=it_b_cur->index.begin();
it_sum_index=it_sum_beg;
for (it_aindex=it_aindexbeg;it_aindex!=it_aindexend;++it_bindex,++it_sum_index,++it_aindex)
*it_sum_index=(*it_aindex)+(*it_bindex);
prod_it_=produit_.find(sum_);
if (prod_it_==produit_.end())
produit_[sum_]=it_a_cur->value*it_b_cur->value;
else
prod_it_->second += it_a_cur->value*it_b_cur->value;
}
}
prod_it_=produit_.begin(),prod_it_end=produit_.end();
new_coord.clear();
new_coord.reserve(produit_.size());
for (;prod_it_!=prod_it_end;++prod_it_)
if (!is_zero(prod_it_->second))
new_coord.push_back(monomial<T>(prod_it_->second,prod_it_->first));
// CERR << new_coord <<endl;
#if 1
sort_helper<T> M(m_is_strictly_greater);
sort(new_coord.begin(),new_coord.end(),M);
#else
sort(new_coord.begin(),new_coord.end(),m_is_strictly_greater);
#endif
return ;
#endif
#ifndef NSPIRE
/* other algorithm using a map to avoid reserving too much space */
typedef std::map< index_t,T,const std::pointer_to_binary_function < const index_m &, const index_m &, bool> > application;
application produit(std::ptr_fun(is_strictly_greater));
// typedef std::map<index_t,T> application;
// application produit;
index_t somme(ita->index.size());
// const index_t * itaindexptr;
index_t::const_iterator itaindex,itaindexbeg,itaindexend,itbindex;
index_t::iterator itsommeindex,itsommebeg=somme.begin();
typename application::iterator prod_it,prod_itend;
typename std::vector< monomial<T> >::const_iterator ita_cur=ita,itb_cur;
for ( ; ita_cur!=ita_end; ++ita_cur ){
itaindexbeg=ita_cur->index.begin();
itaindexend=ita_cur->index.end();
for ( itb_cur=itb;itb_cur!=itb_end;++itb_cur) {
itbindex=itb_cur->index.begin();
itsommeindex=itsommebeg;
for (itaindex=itaindexbeg;itaindex!=itaindexend;++itbindex,++itsommeindex,++itaindex)
*itsommeindex=(*itaindex)+(*itbindex);
prod_it=produit.find(somme);
if (prod_it==produit.end())
produit[somme]=ita_cur->value*itb_cur->value;
else
prod_it->second += ita_cur->value*itb_cur->value;
}
}
prod_it=produit.begin(),prod_itend=produit.end();
new_coord.clear();
new_coord.reserve(produit.size());
for (;prod_it!=prod_itend;++prod_it)
if (!is_zero(prod_it->second))
new_coord.push_back(monomial<T>(prod_it->second,prod_it->first));
// CERR << new_coord <<endl;
// sort(new_coord.begin(),new_coord.end(),m_is_strictly_greater);
return;
#else
/* old algorithm */
std::vector< monomial<T> > multcoord;
int asize=ita_end-ita,bsize=itb_end-itb;
int d=ita->index.size();
multcoord.reserve(asize*bsize); // correct for sparse polynomial
typename std::vector< monomial<T> >::const_iterator ita_begin = ita,itb_begin=itb ;
index_m old_pow=(*ita).index+(*itb).index;
T res( 0);
for ( ; ita!=ita_end; ++ita ){
typename std::vector< monomial<T> >::const_iterator ita_cur=ita;
typename std::vector< monomial<T> >::const_iterator itb_cur=itb;
for (;itb_cur!=itb_end;--ita_cur,++itb_cur) {
index_m cur_pow=(*ita_cur).index+(*itb_cur).index;
if (cur_pow!=old_pow){
if (!is_zero(res))
multcoord.push_back( monomial<T>(res ,old_pow ));
res=((*ita_cur).value) * ((*itb_cur).value);
old_pow=cur_pow;
}
else
res=res+((*ita_cur).value) * ((*itb_cur).value);
if (ita_cur==ita_begin)
break;
}
}
--ita;
++itb;
for ( ; itb!=itb_end;++itb){
typename std::vector< monomial<T> >::const_iterator ita_cur=ita;
typename std::vector< monomial<T> >::const_iterator itb_cur=itb;
for (;itb_cur!=itb_end;--ita_cur,++itb_cur) {
index_m cur_pow=(*ita_cur).index+(*itb_cur).index;
if (cur_pow!=old_pow){
if (!is_zero(res))
multcoord.push_back( monomial<T>(res ,old_pow ));
res=((*ita_cur).value) * ((*itb_cur).value);
old_pow=cur_pow;
}
else
res=res+((*ita_cur).value) * ((*itb_cur).value);
if (ita_cur==ita_begin)
break;
}
}
// push last monomial
if (!is_zero(res))
multcoord.push_back( monomial<T>(res ,old_pow ));
// sort by asc. power
#if 1 // def NSPIRE
sort_helper<T> M(m_is_strictly_greater);
sort(multcoord.begin(),multcoord.end(),M);
#else
sort( multcoord.begin(),multcoord.end(),m_is_strictly_greater);
#endif
typename std::vector< monomial<T> >::const_iterator it=multcoord.begin();
typename std::vector< monomial<T> >::const_iterator itend=multcoord.end();
// adjust result size
// statistics about polynomial density
// a dense poly of deg. aa and d variables has binomial(aa+d,d) monomials
// we need to reserve at most asize*bsize
// but less for dense polynomials since
//ย binomial(aa+d,d)*binomial(bb+d,d) > binomial(aa+bb+d,d)
int aa=total_degree(ita_begin->index),bb=total_degree(itb_begin->index);
double r;
double factoriald=std::lgamma(d+1);
// double factorialaa=std::lgamma(aa+1),factorialbb=std::lgamma(bb+1);
// double factorialaad=std::lgamma(aa+d+1),factorialbbd=std::lgamma(bb+d+1);
double factorialaabbd=std::lgamma(aa+bb+d+1),factorialaabb=std::lgamma(aa+bb+1);
r=std::exp(factorialaabbd-(factorialaabb+factoriald));
if (debug_infolevel)
CERR << "// " << CLOCK() << " Mul degree " << aa << "+" << bb << " size " << asize << "*" << bsize << "=" << asize*bsize << " max " << r << std::endl;
new_coord.clear();
new_coord.reserve(std::min(int(r),itend-it));
// add terms with same power
addsamepower(it,itend,new_coord);
if (debug_infolevel)
CERR << "// Actual mul size " << new_coord.size() << std::endl;
#endif
}
// polynomial multiplication
template <class T>
std::vector< monomial<T> > operator * (const std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
std::vector< monomial<T> > res;
Mul(a,a_end,b,b_end,res,i_lex_is_strictly_greater,std::ptr_fun< const monomial<T> &, const monomial<T> &, bool >((m_lex_is_strictly_greater<T>)));
return res ;
}
template <class T>
std::vector< monomial<T> > & operator *= (std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
Mul(a,a_end,b,b_end,v,i_lex_is_strictly_greater,std::ptr_fun< const monomial<T> &, const monomial<T> &, bool >((m_lex_is_strictly_greater<T>)));
return v;
}
template <class T>
void Shift (const std::vector< monomial<T> > & v,const index_m &i, std::vector< monomial<T> > & new_coord){
new_coord.clear();
typename std::vector< monomial<T> >::const_iterator itend=v.end();
for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
new_coord.push_back( it->shift(i) );
}
template <class T>
void Shift (const std::vector< monomial<T> > & v,const index_m &i, const T & fois, std::vector< monomial<T> > & new_coord){
new_coord.clear();
typename std::vector< monomial<T> >::const_iterator itend=v.end();
if (is_one(fois)){
for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
new_coord.push_back( it->shift(i) );
}
else {
for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
new_coord.push_back( it->shift(i,fois) );
}
}
template <class T>
void Shift (const std::vector< monomial<T> > & v,const T & fois, const index_m &i, std::vector< monomial<T> > & new_coord){
new_coord.clear();
typename std::vector< monomial<T> >::const_iterator itend=v.end();
for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
new_coord.push_back( it->shift(fois,i) );
}
template <class T>
T Content (const std::vector< monomial<T> > & v){
typename std::vector< monomial<T> >::const_iterator it=v.begin();
typename std::vector< monomial<T> >::const_iterator itend=v.end();
if (it==itend)
return 1;
T res=(itend-1)->value;
for (;it!=itend ;++it){
res=gcd(res,it->value);
if (is_one(res))
break;
}
return res;
}
template<class T>
T ppz(std::vector< monomial<T> > & p){
T n=Content(p);
p=p/n;
return n;
}
template<class T>
void Nextcoeff(typename std::vector< monomial<T> >::const_iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,std::vector< monomial<T> > & v){
int n=it->index.front();
int d=it->index.size();
for (;(it!=itend) && (it->index.front()==n);++it)
v.push_back(it->trunc1());
}
template <class T>
void Trunc1(const std::vector< monomial<T> > & c,std::vector< monomial<T> > & v){
v.reserve(c.size());
typename std::vector< monomial<T> >::const_iterator it=c.begin();
typename std::vector< monomial<T> >::const_iterator itend=c.end();
for (;it!=itend;++it)
v.push_back(it->trunc1());
}
template <class T>
void Untrunc1(const std::vector< monomial<T> > & c,int j,std::vector< monomial<T> > & v){
v.reserve(c.size());
typename std::vector< monomial<T> >::const_iterator it=c.begin();
typename std::vector< monomial<T> >::const_iterator itend=c.end();
for (;it!=itend;++it)
v.push_back(it->untrunc1(j));
}
template <class T>
void Untruncn(std::vector< monomial<T> > & c,int j){
typename std::vector< monomial<T> >::iterator it=c.begin();
typename std::vector< monomial<T> >::iterator itend=c.end();
index_t tmp;
for (;it!=itend;++it){
/*
index_t & i= it->index.riptr->i;
if (it->index.riptr->ref_count==1)
i.push_back(j);
else {
*/
tmp=it->index.iref();
tmp.push_back(j);
it->index=tmp;
/*
}
*/
}
}
template <class T>
void Untrunc(const std::vector< monomial<T> > & c,int j,int dim,std::vector< monomial<T> > & v){
v.reserve(c.size());
typename std::vector< monomial<T> >::const_iterator it=c.begin();
typename std::vector< monomial<T> >::const_iterator itend=c.end();
for (;it!=itend;++it)
v.push_back(it->untrunc(j,dim));
}
template<class T>
void Apply(typename std::vector< monomial<T> >::const_iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,T (*f)(const T &),std::vector< monomial<T> > & v ){
v.reserve(itend-it);
T temp;
for (;it!=itend;++it){
temp=f(it->value);
if (!is_zero(temp))
v.push_back(monomial<T>(temp,it->index));
}
}
template <class T>
bool Findpivot(std::vector< monomial<T> > & v,int rows,int cols, index_t & permut,int &pivotr,int & pivotc,std::vector< monomial<T> > & pivotline,T * pivotcol, T & pivotcoeff){
bool found=false;
T zero(0);
for (int i=1;i<=rows;i++)
pivotcol[i]=zero;
T pivotrrefnorm;
typename std::vector< monomial<T> >::const_iterator itend=v.end();
for ( ; (pivotc<=cols) && (!found) ; ){
pivotr=1;
// search in lines not already in permut for the best pivot
// set found to true as soon as one is non 0
typename std::vector< monomial<T> >::const_iterator it=v.begin();
for (;it!=itend;++it){
if ((it->index)[1]==pivotc){
int r=it->index.front();
T val=it->value;
pivotcol[r]=val;
if ( !has(permut,r) ){
if ( (!found) || ( rrefnorm(val)>pivotrrefnorm) ) {
found = true;
pivotcoeff=val;
pivotr=r;
pivotrrefnorm=rrefnorm(pivotcoeff);
}
}
}
}
if (!found)
pivotc++;
}
if (!found)
return false;
permut.push_back(pivotr);
// pivot has been found, compute pivotline = line of the pivot shifted by x^
pivotline.clear();
typename std::vector< monomial<T> >::const_iterator it=v.begin();
for (;it!=itend;++it){
if (it->index.front()==pivotr)
break;
}
for (;it!=itend;++it){
if (it->index.front()!=pivotr)
break;
pivotline.push_back(it->trunc1());
}
return true;
}
template <class T>
void Rref (std::vector< monomial<T> > & v,int rows,int cols, index_t & permut, bool dobareiss=true){
T bareisscoeff=1;
permut.clear();
permut.push_back(0); // 0 -> 0 convention for permutations
T* pivotcol = new T[rows+1];
int pivotr;
for (int pivotc=1;pivotc<=cols;pivotc++){
std::vector< monomial<T> > pivotline;
std::vector< monomial<T> > newcoord;
T pivotcoeff;
if (!Findpivot(v,rows,cols,permut,pivotr,pivotc,pivotline,pivotcol,pivotcoeff))
break;
newcoord.reserve(v.size());
typename std::vector< monomial<T> >::const_iterator it=v.begin(),itend=v.end(),tmpit,tmpitend;
while (it!=itend){
int r=it->index.front();
std::vector< monomial<T> > temp;
Nextcoeff(it,itend,temp);
if (r!=pivotr){
// COUT << "L" << r << "=" << pivotcoeff << "*L" << r << "-" << pivotcol[r] << "*L" << pivotr << std::endl ;
temp=temp*pivotcoeff-pivotline*pivotcol[r];
if (dobareiss)
temp=temp/bareisscoeff;
}
typename std::vector< monomial<T> >::const_iterator tmpit,tmpitend=temp.end();
for (tmpit=temp.begin();tmpit!=tmpitend;++tmpit)
newcoord.push_back(tmpit->untrunc1(r));
}
bareisscoeff=pivotcoeff;
v=newcoord;
// COUT << v << std::endl;
}
delete [] pivotcol;
}
template <class T>
void Findbeginofrows(typename std::vector< monomial<T> >::const_iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,const int & cols,typename std::vector< monomial<T> >::const_iterator * beg){
for (int j=0;j<=cols;j++)
beg[j]=0;
for (;it!=itend;){
int row=it->index.front();
int col=(it->index)[1];
beg[col]=it;
while ((it!=itend) && (row==it->index.front()))
++it;
}
}
template <class T>
void Findbeginofrows(typename std::vector< monomial<T> >::iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,const int & cols,typename std::vector< monomial<T> >::iterator * beg){
for (int j=0;j<=cols;j++)
beg[j]=0;
for (;it!=itend;){
int row=it->index.front();
int col=(it->index)[1];
beg[col]=it;
while ((it!=itend) && (row==it->index.front()))
++it;
}
}
template <class T>
void Normalrref (std::vector< monomial<T> > & v,int rows,int cols, index_t & permut, bool dobareiss=true){
Rref(v,rows,cols,permut,dobareiss);
// divide each non-zero row by leading coeff and order
typename std::vector< monomial<T> >::const_iterator it=v.begin(),itend=v.end();
typename std::vector< monomial<T> >::const_iterator *beg = new typename std::vector< monomial<T> >::const_iterator[cols+1];
std::vector< monomial<T> > temp,newcoord;
Findbeginofrows(it,itend,cols,beg);
int r=1;
for (int j=1;j<=cols;j++){
it=beg[j];
if (it){
T val=it->value;
temp.clear();
Nextcoeff(it,itend,temp);
Untrunc1(temp/val,r,newcoord);
r++;
}
if (it==itend)
break;
}
v=newcoord;
delete [] beg;
}
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC
#endif // ndef _GIAC_MONOMIAL_H