monomial.h 35.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
// -*- mode:C++ -*-
/*
 *  Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef _GIAC_MONOMIAL_H_
#define _GIAC_MONOMIAL_H_
#include "first.h"
#include <iostream>
#include <fstream>
#include <functional>
#include <algorithm>
#include <cmath>
#include <map>
#include <string>
#ifdef USTL
#include <pair>
#endif
#include "index.h"
#include "poly.h"

#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC

  int powmod(int a,unsigned long n,int m);

#ifdef NSPIRE
  template<class T,class U,class I>
  nio::ios_base<I> & operator << (nio::ios_base<I> & os,const std::pair<T,U> & p){
    return os << "<" << p.first << "," << p.second << ">";
  }
#else
  template<class T,class U>
  std::ostream & operator << (std::ostream & os,const std::pair<T,U> & p){
    return os << "<" << p.first << "," << p.second << ">";
  }
#endif
  extern int debug_infolevel;

#ifndef NO_STDEXCEPT
  void setsizeerr(const std::string &);
#endif

  inline bool is_zero(const longlong & a){ return a==0; }
  inline bool is_zero(const long & a){ return a==0; }
  inline bool is_zero(const int & a){ return a==0; }
  inline bool is_zero(const double & a){ return a==0; }

  inline void type_operator_times(const double & a,const double & b,double & c){
    c = a*b;
  }

  inline void type_operator_plus_times(const double & a,const double & b,double & c){
    c += a*b;
  }

  inline void type_operator_plus_times_reduce(const double & a,const double & b,double & c,int reduce){
    c += a*b;
  }

  inline void type_operator_reduce(const double & a,const double & b,double & c,int reduce){
    c = a*b;
  }

  inline void type_operator_times(const longlong & a,const longlong & b,longlong & c){
    c=a*b;
  }

  inline void type_operator_plus_times(const longlong & a,const longlong & b,longlong & c){
    c += a*b;
  }

  inline void type_operator_plus_times_reduce(const longlong & a,const longlong & b,longlong & c,int reduce){
    c += a*b;
    if (reduce)
      c %= reduce;
  }

  inline void type_operator_reduce(const longlong & a,const longlong & b,longlong & c,int reduce){
    c = a*b;
    if (reduce)
      c %= reduce;
  }

  inline void type_operator_times(const int & b,const int & c,int & a){
    a=b*c;
  }

  inline void type_operator_plus_times_reduce(const int & b,const int & c,int & a,int reduce){
    if (reduce){
#ifdef _I386_   // a<-a+b*c mod m
      if (a<0) a+=reduce;
      asm volatile("imull %%ecx; \n\t" /* b*c in edx:eax */
		   "addl %%ebx,%%eax; \n\t" /* b*c+a */
		   "adcl $0x0,%%edx; \n\t" /* b*c+a carry */
		   "idivl %%edi; \n\t"
		   :"=d"(a)
		   :"a"(b),"b"(a),"c"(c),"D"(reduce)
		   );
#else
      a=(a+longlong(b)*c)%reduce;
#endif
    }
    else
      a+=b*c;      
  }

  inline void type_operator_plus_times_reduce_nock(const int & b,const int & c,int & a,int reduce){
#ifdef _I386_   // a<-a+b*c mod m
    asm volatile("testl %%ebx,%%ebx; \n\t"
		 "jns .Lok%=\n\t"
		 "addl %%edi,%%ebx\n" /* a+=m*/
		 ".Lok%=:\t"
		 "imull %%ecx; \n\t" /* b*c in edx:eax */
		 "addl %%ebx,%%eax; \n\t" /* b*c+a */
		 "adcl $0x0,%%edx; \n\t" /* b*c+a carry */
		 "idivl %%edi; \n\t"
		 :"=d"(a)
		 :"a"(b),"b"(a),"c"(c),"D"(reduce)
		 );
#else
    a=(longlong(b)*c+a)%reduce;
#endif
  }

  inline void type_operator_plus_times(const int & b,const int & c,int & a){
    a+=b*c;
  }

  // a<-b*c mod m
  inline void type_operator_times_reduce(const int & b,const int & c,int & a,int reduce){
#ifdef _I386_   
      asm volatile("imull %%ecx; \n\t" /* b*c in edx:eax */
		   "idivl %%edi; \n\t"
		   :"=d"(a)
		   :"a"(b),"c"(c),"D"(reduce)
		   );
#else
      longlong tmp=longlong(b)*c;
      a=tmp%reduce;
#endif
  }
  
  inline void type_operator_reduce(const int & b,const int & c,int & a,int reduce){
    if (reduce){
#ifdef _I386_   // a<-b*c mod m
      asm volatile("imull %%ecx; \n\t" /* b*c in edx:eax */
		   "idivl %%edi; \n\t"
		   :"=d"(a)
		   :"a"(b),"c"(c),"D"(reduce)
		   );
#else
      longlong tmp=longlong(b)*c;
      a=tmp%reduce;
#endif
    }
    else
      a=b*c;      
  }

  inline bool has_denominator(int a){ return false; }
  inline bool has_denominator(longlong a){ return false; }

  // a class for monomials, poly&matrices are std::imvectors of couples index/monomial
  template <class T> class monomial{
  public:
    index_m index;
    T value;
    // constructors
    monomial(const monomial<T> & m) : index(m.index), value(m.value) {}
    monomial():index(),value(0){}
    monomial( const T & v, int dim) : value(v) {
      index.clear();
      index.reserve(dim);
      for (int i=1;i<=dim;i++)
	index.push_back(0);
    }
    monomial( const T & v, int var,int dim) : value(v) {
      index.clear();
      index.reserve(dim);
      for (int i=1;i<=dim;i++)
	index.push_back(i==var);
    }
    monomial( const T & v, int deg,int var,int dim) : value(v) {
      index.clear();
      index.reserve(dim);
      for (int i=1;i<=dim;i++)
	index.push_back(deg*(i==var));
    }
    monomial( const T & v, const index_m & i) : index(i),value(v) {}
    // unary negation
    monomial<T> operator - () const {
      return(monomial<T>(-(*this).value,(*this).index));
    }
    // members
    monomial<T> shift(index_m i,const T & fois) const {
      return monomial<T>(value*fois,i+index);
    }
    monomial<T> shift(const T & fois,index_m i) const {
      return monomial<T>(value/fois,i+index);
    }
    monomial<T> shift(index_m i) const {
      return monomial<T>(value,i+index);
    }
    void reverse()  {
      int s=int(index.size());
      index_m new_i;
      new_i.reserve(s);
      index_t::const_iterator it=index.begin();
      index_t::const_iterator itend=index.end();
      --it;
      --itend;
      for (;it!=itend;--itend)
	new_i.push_back(*itend);
      index=new_i;
    }
    void reorder(const std::vector<int> & permutation)  {
      int s=int(index.size());
      if (unsigned(s)!=permutation.size()){
#ifndef NO_STDEXCEPT
	setsizeerr("Error monomial.h reorder(const index_t &)");
#endif
	return;
      }
      index_m new_i(s);
      index_t::iterator newit=new_i.begin();
      for (int i=0;i<s;++newit,++i)
	*newit=(index)[permutation[i]];
      index=new_i;
    }
    // truncate topmost index value (decrement by 1 the dimension)
    inline monomial<T> trunc1 () const {
#ifdef DEBUG_SUPPORT
      assert(index.begin()!=index.end());
#endif
      return monomial<T>(value,index_m(index.begin()+1,index.end()));
    }
    monomial<T> untrunc1 (int j=0) const {
      index_t::const_iterator it=index.begin(),itend=index.end();
      index_m new_i(itend-it+1);
      index_t::iterator newit=new_i.begin();    
      *newit=j;
      for (++newit;it!=itend;++newit,++it)
	*newit=*it;
      return monomial<T>(value,new_i);
    }
    // add a principal degree equal to j and adjust dimension to dim
    monomial<T> untrunc (int j,int dim) const {
      int s=int(index.size());
      assert(s<dim);
      index_m new_i(dim);
      index_t::const_iterator it=index.begin();
      index_t::iterator newit=new_i.begin();
      *newit=j;
      for (++newit,--dim;dim>s;++newit,--dim)
	*newit=0;
      for (;it!=index.end();++newit,++it)
	*newit=*it;
      return monomial<T>(value,new_i);
    }
    inline T norm () const{
      return abs(value);
    }
    inline std::string print() const {
      std::string s("%%%{");
      s += value.print();
      s += ',';
      s += print_INT_(index.iref());
      s += std::string("%%%}");
      return s;
    }
  };
  
  // ordering monomials using index ordering
  template <class T>
  bool m_total_lex_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_total_lex_is_strictly_greater(m1.index,m2.index));
  }
  template <class T>
  bool m_lex_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_lex_is_strictly_greater(m1.index,m2.index));
  }

  template <class T>
  bool m_total_revlex_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_total_revlex_is_strictly_greater(m1.index,m2.index));
  }

  template <class T>
  bool m_3var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_3var_is_strictly_greater(m1.index,m2.index));
  }

  template <class T>
  bool m_7var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_7var_is_strictly_greater(m1.index,m2.index));
  }

  template <class T>
  bool m_11var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_11var_is_strictly_greater(m1.index,m2.index));
  }

  template <class T>
  bool m_16var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_16var_is_strictly_greater(m1.index,m2.index));
  }

  template <class T>
  bool m_32var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_32var_is_strictly_greater(m1.index,m2.index));
  }

  template <class T>
  bool m_64var_is_strictly_greater(const monomial<T> & m1, const monomial<T> & m2){
    return(i_64var_is_strictly_greater(m1.index,m2.index));
  }

  template<class T> class sort_helper {
  public:
    std::pointer_to_binary_function < const monomial<T> &, const monomial<T> &, bool> strictly_greater ;
    sort_helper(const std::pointer_to_binary_function < const monomial<T> &, const monomial<T> &, bool> is_strictly_greater):strictly_greater(is_strictly_greater) {};
    sort_helper():strictly_greater(std::ptr_fun<const monomial<T> &, const monomial<T> &, bool>(m_lex_is_strictly_greater<T>)) {};
    bool operator () (const monomial<T> & a, const monomial<T> & b){ return strictly_greater(a,b);}
  };

#ifdef NSPIRE
  template <class T,class I>
  nio::ios_base<I> & operator << (nio::ios_base<I> & os, const monomial<T> & m ){
    return os << m.print();
  }
#else
  template <class T>
  std::ostream & operator << (std::ostream & os, const monomial<T> & m ){
    return os << m.print();
  }
#endif

  template<class T>
  bool operator == (const monomial<T>& a,const monomial<T> & b){
    return (a.value==b.value) && (a.index==b.index);
  }

  template<class T>
  bool operator != (const monomial<T>& a,const monomial<T> & b){
    return !(a==b);
  }

  template <class T>
  monomial<T> Untrunc1(const T & t,int j=0){
    index_m new_i;
    new_i.push_back(j);
    return monomial<T>(t,new_i);
  }

#ifdef NSPIRE
  template <class T,class I>
  nio::ios_base<I> & operator << (nio::ios_base<I> & os, const  std::vector<T> v){
    typename std::vector<T>::const_iterator it=v.begin();
    typename std::vector<T>::const_iterator itend=v.end();
    os << "Vector [";
    for (;it!=itend;){
      os << *it ;
      ++it;
      if (it!=itend)
	os << ",";
    }
    os << "]" ;
    return os;
  }
#else
  template <class T>
  std::ostream & operator << (std::ostream & os, const  std::vector<T> v){
    typename std::vector<T>::const_iterator it=v.begin();
    typename std::vector<T>::const_iterator itend=v.end();
    os << "Vector [";
    for (;it!=itend;){
      os << *it ;
      ++it;
      if (it!=itend)
	os << ",";
    }
    os << "]" ;
    return os;
  }
#endif

  /*
    template <class T>
    std::ostream & operator << (std::ostream & os, const std::vector< monomial<T> > & v){
    for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=v.end();++it)
    os << *it << "| " ;
    return(os);
    }
  */

  template <class T>
  void Mul ( typename std::vector< monomial<T> >::const_iterator & a,
	     typename std::vector< monomial<T> >::const_iterator & a_end,
	     const T & fact, std::vector< monomial<T> > & new_coord){
    if (new_coord.begin()==a){
      if (is_one(fact))
	return;
      typename std::vector< monomial<T> >::iterator b=new_coord.begin(),b_end=new_coord.end();
      for (;b!=b_end;++b){
	b->value = b->value * fact;
      }
    }
    else {
      new_coord.clear();
      new_coord.reserve(a_end - a );
      for (;a!=a_end;++a){
	T tmp=((*a).value) * fact;
	if (!is_zero(tmp))
	  new_coord.push_back(monomial<T>( tmp , (*a).index) );
      }
    }
  }

  template <class T>
  std::vector< monomial<T> > operator * (const T & f,const std::vector< monomial<T> > & v){
    if (is_one(f))
      return v;
    typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
    std::vector< monomial<T> > res;
    if (!is_zero(f))
      Mul(a,a_end,f,res);
    return res ;
  }

  template <class T>
  inline std::vector< monomial<T> > operator * (const std::vector< monomial<T> > & v,const T & f){
    return f*v;
  }

  template <class T>
  std::vector< monomial<T> > & operator *= (std::vector< monomial<T> > & v,const T & f){
    if (is_one(f))
      return v;
    typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
    if (!is_zero(f))
      Mul(a,a_end,f,v);
    else
      v.clear();
    return v;
  }

  template <class T>
  void Div ( typename std::vector< monomial<T> >::const_iterator & a,
	     typename std::vector< monomial<T> >::const_iterator & a_end,
	     const T & fact, std::vector< monomial<T> > & new_coord){
    if (new_coord.begin()==a){
      if (is_one(fact))
	return;
      typename std::vector< monomial<T> >::iterator b=new_coord.begin(),b_end=new_coord.end();
      for (;b!=b_end;++b){
	b->value = b->value / fact;
      }
    }
    else {
      new_coord.reserve(a_end - a );
      for (;a!=a_end;++a){
	new_coord.push_back(monomial<T>( rdiv((*a).value, fact) , (*a).index) );
      }
    }
  }

  template <class T>
  std::vector< monomial<T> > operator / (const std::vector< monomial<T> > & v,const T & f){
    if (is_one(f))
      return v;
    typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
    std::vector< monomial<T> > res;
    res.clear();
    Div(a,a_end,f,res);
    return res ;
  }

  typedef bool (* m_strictly_greater_t)(const index_m &,const index_m &);

  template <class T>
  void Add ( typename std::vector< monomial<T> >::const_iterator & a,
	     typename std::vector< monomial<T> >::const_iterator & a_end,
	     typename std::vector< monomial<T> >::const_iterator & b,
	     typename std::vector< monomial<T> >::const_iterator & b_end,
	     std::vector< monomial<T> > & new_coord,
	     bool (* is_strictly_greater)( const index_m &, const index_m &)) {
    if ( (a!=a_end && new_coord.begin()==a) || (b!=b_end && new_coord.begin()==b)){
      std::vector< monomial<T> > tmp;
      Add(a,a_end,b,b_end,tmp,is_strictly_greater);
      std::swap(new_coord,tmp);
      return;
    }
    new_coord.clear();
    new_coord.reserve( (a_end - a) + (b_end - b));
    // bool log=false;
    /* if (a!=a_end)
       log=a->index.size()>=12; 
       if (log)
       CERR << "+ begin" << CLOCK() << endl; */
    for (;;) {
      if (a == a_end) {
	while (b != b_end) {
	  new_coord.push_back(*b);
	  ++b;
	}
	break;
      } 
      const index_m & pow_a = a->index;
      // If b is empty, fill up with elements from a and stop
      if (b == b_end) {
	while (a != a_end) {
	  new_coord.push_back(*a);
	  ++a;
	}
	break;
      } 
      const index_m & pow_b = b->index;
      // a and b are non-empty, compare powers
      if (pow_a!=pow_b){
	if (is_strictly_greater(pow_a, pow_b)) {
	  // a has lesser power, get coefficient from a
	  new_coord.push_back(*a);
	  ++a;
	} 
	else  {
	  // b has lesser power, get coefficient from b
	  new_coord.push_back(*b);
	  ++b;
	} 
      }
      else {
	T sum = (*a).value + (*b).value;
	if (!is_zero(sum))
	  new_coord.push_back(monomial<T>(sum,pow_a));
	++a;
	++b;
      }
    }
    //  if (log)
    //  CERR << "+ end " << CLOCK() << endl;
  }

  template <class T>
  std::vector< monomial<T> > operator + (const std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
    typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
    typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
    std::vector< monomial<T> > res;
    Add(a,a_end,b,b_end,res,i_lex_is_strictly_greater);
    return res ;
  }

  template <class T>
  void Sub ( typename std::vector< monomial<T> >::const_iterator & a,
	     typename std::vector< monomial<T> >::const_iterator & a_end,
	     typename std::vector< monomial<T> >::const_iterator & b,
	     typename std::vector< monomial<T> >::const_iterator & b_end,
	     std::vector< monomial<T> > & new_coord,
	     bool (* is_strictly_greater)( const index_m &, const index_m &)) {
    if ((a!=a_end && new_coord.begin()==a) || (b!=b_end && new_coord.begin()==b)){
      std::vector< monomial<T> > tmp;
      Sub(a,a_end,b,b_end,tmp,is_strictly_greater);
      std::swap(new_coord,tmp);
      return;
    }
    new_coord.clear();
    new_coord.reserve( (a_end - a) + (b_end - b));
    for (;;) {
      // If a is empty, fill up with elements from b and stop
      if (a == a_end) {
	while (b != b_end) {
	  new_coord.push_back(-(*b));
	  ++b;
	}
	break;
      } 
      const index_m & pow_a = a->index;
      // If b is empty, fill up with elements from a and stop
      if (b == b_end) {
	while (a != a_end) {
	  new_coord.push_back(*a);
	  ++a;
	}
	break;
      } 
      const index_m & pow_b = b->index;
      // a and b are non-empty, compare powers
      if (pow_a!=pow_b){
	if (is_strictly_greater(pow_a, pow_b)) {
	  // a has lesser power, get coefficient from a
	  new_coord.push_back(*a);
	  ++a;
	} 
	else  {
	  // b has lesser power, get coefficient from b
	  new_coord.push_back(-(*b));
	  ++b;
	} 
      }
      else {
	T diff = (*a).value - (*b).value;
	if (!is_zero(diff))
	  new_coord.push_back(monomial<T>(diff,pow_a));
	++a;
	++b;
      }
    }  
  }

  template <class T>
  std::vector< monomial<T> > operator - (const std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
    typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
    typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
    std::vector< monomial<T> > res;
    Sub(a,a_end,b,b_end,res,i_lex_is_strictly_greater);
    return res ;
  }

  template <class T>
  void addsamepower(typename std::vector< monomial<T> >::const_iterator & it,
		    typename std::vector< monomial<T> >::const_iterator & itend,
		    std::vector< monomial<T> > & new_coord){
    while (it!=itend){
      T res=(*it).value;
      index_m pow=(*it).index;
      ++it;
      while ( (it!=itend) && ((*it).index==pow)){
	res=res+(*it).value;
	++it;
      }
      if (!is_zero(res))
	new_coord.push_back(monomial<T>(res, pow));
    }
  }

  struct ltindex
  {
    bool (* is_strictly_greater)( const index_m &, const index_m &);
    inline bool inline bool operator()(const index_m & s1, const index_m & s2) const
    {
      return is_strictly_greater(s1, s2) ;()(const index_m & s1, const index_m & s2) const
    {
      return is_strictly_greater(s1, s2) inline bool operator()(const index_m & s1, const index_m & s2) const
    {
      return is_strictly_greater(s1, s2) ;
    }
    ltindex(bool (* my_is_strictly_greater)( const index_m &, const index_m &)) : is_strictly_greater(my_is_strictly_greater) {};
  };

  template <class T>
  void Mul ( typename std::vector< monomial<T> >::const_iterator & ita,
	     typename std::vector< monomial<T> >::const_iterator & ita_end,
	     typename std::vector< monomial<T> >::const_iterator & itb,
	     typename std::vector< monomial<T> >::const_iterator & itb_end,
	     std::vector< monomial<T> > & new_coord,
	     bool (* is_strictly_greater)( const index_m &, const index_m &),
	     const std::pointer_to_binary_function < const monomial<T> &, const monomial<T> &, bool> m_is_strictly_greater
	     ) {
    if (ita==ita_end || itb==itb_end){
      new_coord.clear();
      return;
    }
    // another algorithm using a hash_map 
#ifdef HASH_MAP_NAMESPACE
    typedef HASH_MAP_NAMESPACE::hash_map< index_t,T,hash_function_object > hash_prod ;
    hash_prod produit_;
    index_t sum_(ita->index.size());
    // const index_t * it_aindexptr;
    index_t::const_iterator it_aindex,it_aindexbeg,it_aindexend,it_bindex;
    index_t::iterator it_sum_index,it_sum_beg=sum_.begin();
    typename hash_prod::iterator prod_it_,prod_it_end;
    typename std::vector< monomial<T> >::const_iterator it_a_cur=ita,it_b_cur;
    for ( ; it_a_cur!=ita_end; ++it_a_cur ){
      // it_aindexptr= &it_a_cur->index.iref();
      it_aindexbeg=it_a_cur->index.begin();
      it_aindexend=it_a_cur->index.end();
      for ( it_b_cur=itb;it_b_cur!=itb_end;++it_b_cur) {
	it_bindex=it_b_cur->index.begin();
	it_sum_index=it_sum_beg;
	for (it_aindex=it_aindexbeg;it_aindex!=it_aindexend;++it_bindex,++it_sum_index,++it_aindex)
	  *it_sum_index=(*it_aindex)+(*it_bindex);
	prod_it_=produit_.find(sum_);
	if (prod_it_==produit_.end())
	  produit_[sum_]=it_a_cur->value*it_b_cur->value;
	else 	
	  prod_it_->second += it_a_cur->value*it_b_cur->value;
      }
    }
    prod_it_=produit_.begin(),prod_it_end=produit_.end();
    new_coord.clear();
    new_coord.reserve(produit_.size());
    for (;prod_it_!=prod_it_end;++prod_it_)
      if (!is_zero(prod_it_->second))
	new_coord.push_back(monomial<T>(prod_it_->second,prod_it_->first));
    // CERR << new_coord <<endl;
#if 1
    sort_helper<T> M(m_is_strictly_greater);
    sort(new_coord.begin(),new_coord.end(),M);    
#else
    sort(new_coord.begin(),new_coord.end(),m_is_strictly_greater);
#endif
    return ;
#endif
#ifndef NSPIRE
    /* other algorithm using a map to avoid reserving too much space */
    typedef std::map< index_t,T,const std::pointer_to_binary_function < const index_m &, const index_m &, bool> > application;
    application produit(std::ptr_fun(is_strictly_greater));
    // typedef std::map<index_t,T> application;
    // application produit;
    index_t somme(ita->index.size());
    // const index_t * itaindexptr;
    index_t::const_iterator itaindex,itaindexbeg,itaindexend,itbindex;
    index_t::iterator itsommeindex,itsommebeg=somme.begin();
    typename application::iterator prod_it,prod_itend;
    typename std::vector< monomial<T> >::const_iterator ita_cur=ita,itb_cur;
    for ( ; ita_cur!=ita_end; ++ita_cur ){
      itaindexbeg=ita_cur->index.begin();
      itaindexend=ita_cur->index.end();
      for ( itb_cur=itb;itb_cur!=itb_end;++itb_cur) {
	itbindex=itb_cur->index.begin();
	itsommeindex=itsommebeg;
	for (itaindex=itaindexbeg;itaindex!=itaindexend;++itbindex,++itsommeindex,++itaindex)
	  *itsommeindex=(*itaindex)+(*itbindex);
	prod_it=produit.find(somme);
	if (prod_it==produit.end())
	  produit[somme]=ita_cur->value*itb_cur->value;
	else 	
	  prod_it->second += ita_cur->value*itb_cur->value;
      }
    }
    prod_it=produit.begin(),prod_itend=produit.end();
    new_coord.clear();
    new_coord.reserve(produit.size());
    for (;prod_it!=prod_itend;++prod_it)
      if (!is_zero(prod_it->second))
	new_coord.push_back(monomial<T>(prod_it->second,prod_it->first));
    // CERR << new_coord <<endl;
    // sort(new_coord.begin(),new_coord.end(),m_is_strictly_greater);
    return;
#else
    /* old algorithm */
    std::vector< monomial<T> > multcoord;
    int asize=ita_end-ita,bsize=itb_end-itb;
    int d=ita->index.size();
    multcoord.reserve(asize*bsize); // correct for sparse polynomial
    typename std::vector< monomial<T> >::const_iterator ita_begin = ita,itb_begin=itb ;
    index_m old_pow=(*ita).index+(*itb).index;
    T res( 0);
    for ( ; ita!=ita_end; ++ita ){
      typename std::vector< monomial<T> >::const_iterator ita_cur=ita;
      typename std::vector< monomial<T> >::const_iterator itb_cur=itb;
      for (;itb_cur!=itb_end;--ita_cur,++itb_cur) {
	index_m cur_pow=(*ita_cur).index+(*itb_cur).index;
	if (cur_pow!=old_pow){
	  if (!is_zero(res))
	    multcoord.push_back( monomial<T>(res ,old_pow ));
	  res=((*ita_cur).value) * ((*itb_cur).value);
	  old_pow=cur_pow;
	}
	else
	  res=res+((*ita_cur).value) * ((*itb_cur).value);      
	if (ita_cur==ita_begin)
	  break;
      }
    }
    --ita;
    ++itb;
    for ( ; itb!=itb_end;++itb){
      typename std::vector< monomial<T> >::const_iterator ita_cur=ita;
      typename std::vector< monomial<T> >::const_iterator itb_cur=itb;
      for (;itb_cur!=itb_end;--ita_cur,++itb_cur) {
	index_m cur_pow=(*ita_cur).index+(*itb_cur).index;
	if (cur_pow!=old_pow){
	  if (!is_zero(res))
	    multcoord.push_back( monomial<T>(res ,old_pow ));
	  res=((*ita_cur).value) * ((*itb_cur).value);
	  old_pow=cur_pow;
	}
	else
	  res=res+((*ita_cur).value) * ((*itb_cur).value);
	
	if (ita_cur==ita_begin)
	  break;
      }
    }
    // push last monomial
    if (!is_zero(res))
      multcoord.push_back( monomial<T>(res ,old_pow ));
    // sort by asc. power
#if 1 // def NSPIRE
    sort_helper<T> M(m_is_strictly_greater);  
    sort(multcoord.begin(),multcoord.end(),M);
#else
    sort( multcoord.begin(),multcoord.end(),m_is_strictly_greater);
#endif
    typename std::vector< monomial<T> >::const_iterator it=multcoord.begin();
    typename std::vector< monomial<T> >::const_iterator itend=multcoord.end();
    // adjust result size 
    // statistics about polynomial density
    // a dense poly of deg. aa and d variables has binomial(aa+d,d) monomials
    // we need to reserve at most asize*bsize
    // but less for dense polynomials since 
    //ย binomial(aa+d,d)*binomial(bb+d,d) > binomial(aa+bb+d,d)
    int aa=total_degree(ita_begin->index),bb=total_degree(itb_begin->index);
    double r;
    double factoriald=std::lgamma(d+1);
    // double factorialaa=std::lgamma(aa+1),factorialbb=std::lgamma(bb+1);
    // double factorialaad=std::lgamma(aa+d+1),factorialbbd=std::lgamma(bb+d+1);
    double factorialaabbd=std::lgamma(aa+bb+d+1),factorialaabb=std::lgamma(aa+bb+1);
    r=std::exp(factorialaabbd-(factorialaabb+factoriald));
    if (debug_infolevel)
      CERR << "// " << CLOCK() << " Mul degree " << aa << "+" << bb << " size " << asize << "*" << bsize << "=" << asize*bsize << " max " << r << std::endl;
    new_coord.clear();
    new_coord.reserve(std::min(int(r),itend-it));
    // add terms with same power
    addsamepower(it,itend,new_coord);
    if (debug_infolevel)
      CERR << "// Actual mul size " << new_coord.size() << std::endl;
#endif
  }

  // polynomial multiplication
  template <class T>
  std::vector< monomial<T> > operator * (const std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
    typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
    typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
    std::vector< monomial<T> > res;
    Mul(a,a_end,b,b_end,res,i_lex_is_strictly_greater,std::ptr_fun< const monomial<T> &, const monomial<T> &, bool >((m_lex_is_strictly_greater<T>)));
    return res ;
  }

  template <class T>
  std::vector< monomial<T> > & operator *= (std::vector< monomial<T> > & v,const std::vector< monomial<T> > & w){
    typename std::vector< monomial<T> >::const_iterator a=v.begin(), a_end=v.end();
    typename std::vector< monomial<T> >::const_iterator b=w.begin(), b_end=w.end();
    Mul(a,a_end,b,b_end,v,i_lex_is_strictly_greater,std::ptr_fun< const monomial<T> &, const monomial<T> &, bool >((m_lex_is_strictly_greater<T>)));
    return v;
  }


  template <class T>
  void Shift (const std::vector< monomial<T> > & v,const index_m &i, std::vector< monomial<T> > & new_coord){
    new_coord.clear();
    typename std::vector< monomial<T> >::const_iterator itend=v.end();
    for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
      new_coord.push_back( it->shift(i) );
  }

  template <class T>
  void Shift (const std::vector< monomial<T> > & v,const index_m &i, const T & fois, std::vector< monomial<T> > & new_coord){
    new_coord.clear();
    typename std::vector< monomial<T> >::const_iterator itend=v.end();
    if (is_one(fois)){
      for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
	new_coord.push_back( it->shift(i) );
    }
    else {
      for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
	new_coord.push_back( it->shift(i,fois) );
    }
  }

  template <class T>
  void Shift (const std::vector< monomial<T> > & v,const T & fois, const index_m &i, std::vector< monomial<T> > & new_coord){
    new_coord.clear();
    typename std::vector< monomial<T> >::const_iterator itend=v.end();
    for (typename std::vector< monomial<T> >::const_iterator it=v.begin();it!=itend;++it)
      new_coord.push_back( it->shift(fois,i) );
  }

  template <class T>
  T Content (const std::vector< monomial<T> > & v){
    typename std::vector< monomial<T> >::const_iterator it=v.begin();
    typename std::vector< monomial<T> >::const_iterator itend=v.end();
    if (it==itend)
      return 1;
    T res=(itend-1)->value;
    for (;it!=itend ;++it){
      res=gcd(res,it->value);
      if (is_one(res))
	break;
    }
    return res;
  }

  template<class T>
  T ppz(std::vector< monomial<T> > & p){
    T n=Content(p);
    p=p/n;
    return n;
  }

  template<class T>
  void Nextcoeff(typename std::vector< monomial<T> >::const_iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,std::vector< monomial<T> > & v){
    int n=it->index.front();
    int d=it->index.size();
    for (;(it!=itend) && (it->index.front()==n);++it)
      v.push_back(it->trunc1());
  }


  template <class T>
  void Trunc1(const std::vector< monomial<T> > & c,std::vector< monomial<T> > & v){
    v.reserve(c.size());
    typename std::vector< monomial<T> >::const_iterator it=c.begin();
    typename std::vector< monomial<T> >::const_iterator itend=c.end();
    for (;it!=itend;++it)
      v.push_back(it->trunc1());
  }

  template <class T>
  void Untrunc1(const std::vector< monomial<T> > & c,int j,std::vector< monomial<T> > & v){
    v.reserve(c.size());
    typename std::vector< monomial<T> >::const_iterator it=c.begin();
    typename std::vector< monomial<T> >::const_iterator itend=c.end();
    for (;it!=itend;++it)
      v.push_back(it->untrunc1(j));
  }

  template <class T>
  void Untruncn(std::vector< monomial<T> > & c,int j){
    typename std::vector< monomial<T> >::iterator it=c.begin();
    typename std::vector< monomial<T> >::iterator itend=c.end();
    index_t tmp;
    for (;it!=itend;++it){
      /*
      index_t & i= it->index.riptr->i;
      if (it->index.riptr->ref_count==1)
	i.push_back(j);
      else {
      */
      tmp=it->index.iref();
      tmp.push_back(j);
      it->index=tmp;
	/*
      }
	*/
    }
  }

  template <class T>
  void Untrunc(const std::vector< monomial<T> > & c,int j,int dim,std::vector< monomial<T> > & v){
    v.reserve(c.size());
    typename std::vector< monomial<T> >::const_iterator it=c.begin();
    typename std::vector< monomial<T> >::const_iterator itend=c.end();
    for (;it!=itend;++it)
      v.push_back(it->untrunc(j,dim));
  }

  template<class T>
  void Apply(typename std::vector< monomial<T> >::const_iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,T (*f)(const T &),std::vector< monomial<T> > & v ){
    v.reserve(itend-it);
    T temp;
    for (;it!=itend;++it){
      temp=f(it->value);
      if (!is_zero(temp))
	v.push_back(monomial<T>(temp,it->index));
    }
  }

  template <class T>
  bool Findpivot(std::vector< monomial<T> > & v,int rows,int cols, index_t & permut,int &pivotr,int & pivotc,std::vector< monomial<T> > & pivotline,T * pivotcol, T & pivotcoeff){
    bool found=false;
    T zero(0);
    for (int i=1;i<=rows;i++)
      pivotcol[i]=zero;
    T pivotrrefnorm;
    typename std::vector< monomial<T> >::const_iterator itend=v.end();
    for ( ; (pivotc<=cols) && (!found) ; ){
      pivotr=1;
      // search in lines not already in permut for the best pivot
      // set found to true as soon as one is non 0
      typename std::vector< monomial<T> >::const_iterator it=v.begin();
      for (;it!=itend;++it){
	if ((it->index)[1]==pivotc){	
	  int r=it->index.front();
	  T val=it->value;
	  pivotcol[r]=val;
	  if ( !has(permut,r) ){
	    if ( (!found) || ( rrefnorm(val)>pivotrrefnorm) ) {
	      found = true;
	      pivotcoeff=val;
	      pivotr=r;
	      pivotrrefnorm=rrefnorm(pivotcoeff);
	    } 
	  }
	}
      }
      if (!found)
	pivotc++;
    }
    if (!found)
      return false;
    permut.push_back(pivotr);
    // pivot has been found, compute pivotline = line of the pivot shifted by x^
    pivotline.clear();
    typename std::vector< monomial<T> >::const_iterator it=v.begin();
    for (;it!=itend;++it){
      if (it->index.front()==pivotr)
	break;
    }
    for (;it!=itend;++it){
      if (it->index.front()!=pivotr)
	break;
      pivotline.push_back(it->trunc1());
    }
    return true;
  }

  template <class T>
  void Rref (std::vector< monomial<T> > & v,int rows,int cols, index_t & permut, bool dobareiss=true){
    T bareisscoeff=1;
    permut.clear();
    permut.push_back(0); // 0 -> 0 convention for permutations
    T* pivotcol = new T[rows+1];
    int pivotr;
    for (int pivotc=1;pivotc<=cols;pivotc++){
      std::vector< monomial<T> > pivotline;
      std::vector< monomial<T> > newcoord;
      T pivotcoeff;
      if (!Findpivot(v,rows,cols,permut,pivotr,pivotc,pivotline,pivotcol,pivotcoeff))
	break;
      newcoord.reserve(v.size());
      typename std::vector< monomial<T> >::const_iterator it=v.begin(),itend=v.end(),tmpit,tmpitend;
      while (it!=itend){
	int r=it->index.front();
	std::vector< monomial<T> > temp;
	Nextcoeff(it,itend,temp);
	if (r!=pivotr){
	  // COUT << "L" << r << "=" << pivotcoeff << "*L" << r << "-" << pivotcol[r] << "*L" << pivotr << std::endl ;
	  temp=temp*pivotcoeff-pivotline*pivotcol[r];
	  if (dobareiss)
	    temp=temp/bareisscoeff;
	}
	typename std::vector< monomial<T> >::const_iterator tmpit,tmpitend=temp.end();
	for (tmpit=temp.begin();tmpit!=tmpitend;++tmpit)
	  newcoord.push_back(tmpit->untrunc1(r));
      }
      bareisscoeff=pivotcoeff;
      v=newcoord;
      // COUT << v << std::endl;
    }
    delete [] pivotcol;
  }

  template <class T>
  void Findbeginofrows(typename std::vector< monomial<T> >::const_iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,const int & cols,typename std::vector< monomial<T> >::const_iterator * beg){
    for (int j=0;j<=cols;j++)
      beg[j]=0;
    for (;it!=itend;){
      int row=it->index.front();
      int col=(it->index)[1];
      beg[col]=it;
      while ((it!=itend) && (row==it->index.front()))
	++it;
    }
  }

  template <class T>
  void Findbeginofrows(typename std::vector< monomial<T> >::iterator & it,const typename std::vector< monomial<T> >::const_iterator & itend,const int & cols,typename std::vector< monomial<T> >::iterator * beg){
    for (int j=0;j<=cols;j++)
      beg[j]=0;
    for (;it!=itend;){
      int row=it->index.front();
      int col=(it->index)[1];
      beg[col]=it;
      while ((it!=itend) && (row==it->index.front()))
	++it;
    }
  }


  template <class T>
  void Normalrref (std::vector< monomial<T> > & v,int rows,int cols, index_t & permut, bool dobareiss=true){
    Rref(v,rows,cols,permut,dobareiss);
    // divide each non-zero row by leading coeff and order
    typename std::vector< monomial<T> >::const_iterator it=v.begin(),itend=v.end();
    typename std::vector< monomial<T> >::const_iterator *beg = new typename std::vector< monomial<T> >::const_iterator[cols+1];
    std::vector< monomial<T> > temp,newcoord;
    Findbeginofrows(it,itend,cols,beg);
    int r=1;
    for (int j=1;j<=cols;j++){
      it=beg[j];
      if (it){
	T val=it->value;
	temp.clear();
	Nextcoeff(it,itend,temp);
	Untrunc1(temp/val,r,newcoord);
	r++;
      }
      if (it==itend)
	break;
    }
    v=newcoord;
    delete [] beg;
  }

#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC

#endif // ndef _GIAC_MONOMIAL_H