modfactor.cc
44.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
// -*- mode:C++ ; compile-command: "g++-3.4 -I.. -g -c -Wall modfactor.cc" -*-
#include "giacPCH.h"
/*
* Copyright (C) 2000,7 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
using namespace std;
#include "sym2poly.h"
#include "modpoly.h"
#include "modfactor.h"
#include "giacintl.h"
#include <stdlib.h>
#include <cmath>
#include "pari.h"
#include "gen.h"
// uncomment to remove NTL factorization
// #undef HAVE_LIBNTL
// #undef HAVE_LIBPARI
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
static int debuglevel=0;
// ******************************************************************
// Modular factorization for univariate polynomial factorization in Z
// assumes q is univariate, square-free in Z/modulo*Z
// assumes modulo is prime !=2
// ******************************************************************
// find modular roots and linear factors
bool roots(const modpoly & q,environment * env, vecteur & v,vector<modpoly> & w){
modpoly ddfactor(q);
modpoly x(xpower1());
gen pn=env->pn;
normalize_env(env);
// try modulars from -modulo/2 to modulo/2
int moduloover2=env->pn.val/2;
if (env->complexe){
for (int i=-moduloover2;i<=moduloover2;i++){
for (int j=-moduloover2;j<=moduloover2;j++){
gen tmp(i,j);
if ( is_zero(horner(ddfactor,tmp,env)) ){
modpoly linearfact(x);
linearfact=linearfact-tmp*one();
v.push_back(tmp);
w.push_back(linearfact);
ddfactor=operator_div(ddfactor,linearfact,env);
}
}
}
return true;
}
modpoly xtop(xpowerpn(env));
if (is_undef(xtop))
return false;
if (ddfactor.size()-1){
for (int i=0;i<pn.val;i++){
int dddeg=int(ddfactor.size())-1;
if (!dddeg)
break; // no more linear factor to extract
if (dddeg==1){
w.push_back(ddfactor);
v.push_back(-ddfactor[1]*invenv(ddfactor[0],env));
break;
}
gen gi=env->coeff.makegen(i);
gen evaluation=horner(ddfactor,gi,env);
// CERR << gi << ":" << evaluation << endl;
if ( is_zero(evaluation) ){
modpoly linearfact(x);
linearfact=linearfact-gi*one();
v.push_back(gi);
w.push_back(linearfact);
ddfactor=operator_div(ddfactor,linearfact,env);
}
}
}
return true;
}
// v[i]=x^(pn*i) mod q
// matrix of the v[i] for i=0..jstart or i=0..degree(q) if jstart=0
void qmatrix(const modpoly & q,environment * env,vector<modpoly> & v,int jstart){
v.clear();
int dim;
if (jstart)
dim=jstart;
else
dim=int(q.size())-1;
normalize_env(env);
v.reserve(dim);
modpoly temp(one()),temp2,temp3;
v.push_back(temp);
if ( env->pn.type==_INT_ && env->pn.val<signed(q.size()) ){
int p=env->pn.val;
for (int i=1;i<dim;i++){
temp2=temp;
shiftmodpoly(temp2,p); // shift instead of *x^p
DivRem(temp2,q,env,temp3,temp);
v.push_back(temp);
}
}
else {
modpoly xtopn(powmod(xpower1(),env->pn,q,env));
for (int i=1;i<dim;i++){
operator_times(temp,xtopn,env,temp2);
DivRem(temp2,q,env,temp3,temp); // temp=(temp*xtop) % q;
v.push_back(temp);
}
}
}
// compute s(x)=r(x^pn) mod q using the q-matrix
static bool xtoxpowerpn(const modpoly & r, const vector<modpoly> & v, environment * env,int qsize,modpoly & s){
s.clear();
if (r.empty())
return true;
normalize_env(env);
int rs=int(r.size());
if ((rs-1)*env->pn.val<qsize){
s=x_to_xp(r,env->pn.val);
return !is_undef(s);
}
int d=int(v.size());
if (rs-1>=d)
return false; // setsizeerr();
int maxdeg(1); // maximal degree+1
// make an array of iterator pointing to the cst coeff of v[]
// and find maximal degree of v
#if 1 // def VISUALC
modpoly::const_iterator *itv = new modpoly::const_iterator[d],*itvptr;
#else
modpoly::const_iterator itv[d],*itvptr;
#endif
vector<modpoly>::const_iterator vitend=v.end(),vit=v.begin();
for (itvptr=itv;vit!=vitend;++vit,++itvptr){
* itvptr=vit->end();
maxdeg=giacmax(maxdeg,int(vit->size()));
}
#if 1 // def VISUALC
gen * res = new gen[maxdeg];
#else
gen res[maxdeg];
#endif
gen * resptr=res;
modpoly::const_iterator itend=r.end(),itbeg=r.begin();
--itend;
--itbeg;
if ( env->moduloon && is_zero(env->coeff) && env->pn.type==_INT_ && env->pn.val<smallint ){
for (int i=0;i<maxdeg;++i,++resptr){ // compute coeff of x^i
int res=0; // init coeff
itvptr=itv; // itvptr points to itv[0], after the coeff of x^i in v[0]
vit=v.begin();
for (modpoly::const_iterator it=itend;it!=itbeg;--it,++itvptr,++vit){
if ( * (int *) &(*itvptr)!=0){
if (*itvptr!=vit->begin()){
--(*itvptr); // decreases iterator to increase power of x to x^i
res += (it->val)*((*itvptr)->val);
}
else
* (int *) &(*itvptr)=0; // mark that v[] has no coeff of order >=i
}
}
*resptr=gen(res);
}
}
else {
for (int i=0;i<maxdeg;++i,++resptr){ // compute coeff of x^i
*resptr=gen( 0); // init coeff
itvptr=itv; // itvptr points to itv[0], after the coeff of x^i in v[0]
vit=v.begin();
// in the loop we add to *resptr the coeff of x^i in r[j]*v[j]
// for increasing j
// therefore the r iterator it starts at itend (for r[0]) and decreases
// itvptr starts at &itv[] and increases
// vit starts at v.begin() and increases
for (modpoly::const_iterator it=itend;it!=itbeg;--it,++itvptr,++vit){
if ( * (int *)&(*itvptr)!=0){
if (*itvptr!=vit->begin()){
--(*itvptr); // decreases iterator to increase power of x to x^i
*resptr=*resptr+(*it)*(*(*itvptr));
}
else
* (int *) &(*itvptr)=0; // mark that v[] has no coeff of order >=i
}
}
}
}
// trim the result into a modpoly
--resptr;
// here resptr points to the highest coeff of x^i in the array res[maxdeg]
if (env->moduloon){
for (;resptr!=res-1;--resptr){
// COUT << *resptr << " " << env->modulo << endl;
if (!is_zero(smod(*resptr,env->modulo)))
break;
}
for (;resptr!=res-1;--resptr){
s.push_back(smod(*resptr,env->modulo));
}
}
else {
for (;resptr!=res-1;--resptr){
if (!is_zero(*resptr))
break;
}
for (;resptr!=res-1;--resptr){
s.push_back(*resptr);
}
}
#if 1 // def VISUALC
delete [] itv;
delete [] res;
#endif
return true;
}
static gen lastnonzero(const dense_POLY1 & q) {
int d=int(q.size());
gen n( 0),n0( 0);
for (;d;--d){
n=q[d-1];
if (!is_zero(n))
return n;
}
return 0;
}
// distinct degree factorization
bool ddf(const modpoly & q,const vector<modpoly> & qmat,environment * env,vector< facteur<modpoly> >& v){
modpoly xtop(powmod(xpower1(),env->pn,q,env));
modpoly ddfactor;
gcdmodpoly(operator_minus(xtop,xpower1(),env),q,env,ddfactor);
if (is_undef(ddfactor))
return false;
modpoly qrem(operator_div(q,ddfactor,env));
if (ddfactor.size()-1)
v.push_back( facteur<modpoly>(ddfactor,1) );
int k=1;
modpoly xpi=xtop ;
for (int i=2;;i++){
int qremdeg=int(qrem.size())-1;
if (!qremdeg)
return true;
if (qremdeg<2*i){
v.push_back( facteur<modpoly>(qrem,qremdeg) );
return true;
}
// compute x^(pn^i) mod qrem then gcd(x^pn^i-x,qrem)
// since X^(pn^i)-X is divisible by
// any irreductible of degre dividing i
// COUT << modulo << " " << qmat << endl;
if (qmat.empty())
xpi=powmod(xpower1(),pow(env->pn,i),qrem,env);
else {
if (!xtoxpowerpn(operator_mod(xpi,qrem,env),qmat,env,0,xpi))
return false;
}
gcdmodpoly(operator_minus(xpi,xpower1(),env),qrem,env,ddfactor);
if (is_undef(ddfactor))
return false;
k=int(ddfactor.size())-1;
if (k)
v.push_back(facteur<modpoly>(ddfactor,i));
if (k==qremdeg)
return true;
if (k)
qrem=operator_div(qrem,ddfactor,env);
}
return true;
}
bool cantor_zassenhaus(const modpoly & ddfactor,int i,const vector<modpoly> & qmat,environment * env,vector<modpoly> & v){
if (debuglevel)
COUT << "Factoring [" << i << "] " << ddfactor << endl
// << " " << qmat << endl
;
int k=int(ddfactor.size())-1;
if (k==i){
v.push_back(ddfactor);
return true;
}
if (i==1){ // compute roots
if (!env || is_strictly_greater(10000,env->pn,context0)){
vecteur vtmp;
if (!roots(ddfactor,env,vtmp,v))
return false;
return true;
}
}
// compute qmat modulo ddfactor
vector<modpoly> thisqmat;
if (qmat.empty())
qmatrix(ddfactor,env,thisqmat,0);
else {
vector<modpoly>::const_iterator it=qmat.begin(),itend=qmat.end();
for (int j=0;(it!=itend) && (j<k);++it,++j)
thisqmat.push_back(operator_mod(*it,ddfactor,env));
}
int deg=0;
modpoly fact1;
for ( int count=2;(deg==0) || (deg==k);count++) {
// make random polynomial pp of degree <k
// double d=k-1;
// deg=1+(int) (d*rand()/(RAND_MAX+1.0));
// deg = max(count % (2*i),2);
deg = 2*i-1;
modpoly pp(random(deg,env));
if (debuglevel)
COUT << "Degree:" << deg << ":" << pp << endl ;
// we have pp^(pn^i-1)=1 mod p,q
// factoring we get (pp^(pn^i-1)/2-1)(pp^(pn^i+1)/2+1)=0 mod p,q
// the exponent of the first factor may be rewritten
// (1+pn+..+pn^(i-1))*(pn-1)/2 and that's the way it is computed
// pp * pp^pn * ... * pp^(pn^(i-1)) and then to the power (pn-1)/2
//
// In characteristic 2, pp^(2^(i*m))+pp=0 mod 2,q
// hence P(pp)*(P(pp)+1)=0 mod 2,q
// where P(X)=X^(2^(m*i-1))+X^(2^(m*i-2))+...+X
modpoly ppp(pp),temp,tmp;
if (env->modulo.val==2 ){
modpoly somme(pp);
unsigned m=int(std::log(double(env->pn.val))/std::log(2.));
m *= i;
for (unsigned ii=1;ii<m;++ii){
ppp=operator_times(pp,pp,env);
DivRem(ppp,ddfactor,env,tmp,pp);
somme=operator_plus(somme,pp,env);
}
#if 0
// check that P(pp)*P(pp)+P(pp)=0
ppp=operator_times(somme,somme,env);
ppp=operator_plus(somme,ppp,env);
DivRem(ppp,ddfactor,env,tmp,pp);
#endif
pp=somme;
}
else {
for (int ii=1;ii<i;++ii){
if (!xtoxpowerpn(ppp,thisqmat,env,k,temp))
return false;
ppp=temp;
operator_times(pp,ppp,env,temp);
DivRem(temp,ddfactor,env,tmp,pp); // pp=(pp*ppp)% ddfactor;
}
pp=powmod(pp,(env->pn-1)/2,ddfactor,env);
pp=operator_minus(pp,one(),env);
}
gcdmodpoly(pp,ddfactor,env,fact1);
if (is_undef(fact1))
return false;
// hopefully it will split ddfactor
deg=int(fact1.size())-1;
}
// COUT << "cz:" << i << fact1 << ddfactor/fact1 << endl;
// recursive calls
if (!cantor_zassenhaus(fact1,i,thisqmat,env,v) ||
!cantor_zassenhaus(operator_div(ddfactor,fact1,env),i,thisqmat,env,v))
return false;
return true;
}
bool cantor_zassenhaus(const vector< facteur<modpoly> > & v_in,const vector<modpoly> & qmat, environment * env,vector<modpoly> & v){
// split elements of v_in
// COUT << v_in << endl;
vector< facteur<modpoly> >::const_iterator it=v_in.begin(),itend=v_in.end();
for (;it!=itend;++it){
if (!cantor_zassenhaus(it->fact,it->mult,qmat,env,v))
return false;
}
return true;
}
/*
* From Z/pZ -> Z
*/
// lift modular roots (quadratic lift)
static void liftroots(const dense_POLY1 &q,environment * env,vecteur & v){
// env->moduloon=false;
dense_POLY1 qprime=derivative(q);
// env->moduloon=true;
gen lcoeff(q.front());
gen tcoeff(lastnonzero(q));
gen bound=gen( 2)*abs(lcoeff*tcoeff,context0);
gen modulo_orig(env->modulo),moduloi(env->modulo),modulonext(env->modulo);
// COUT << modulo << endl;
while (is_greater(bound,moduloi,context0)) { // (moduloi<=bound){
modulonext=moduloi*moduloi;
vecteur::iterator it=v.begin(),itend=v.end();
for (;it!=itend;++it){
env->modulo=modulonext;
if (debug_infolevel>=20)
CERR << "liftroot old root value " << *it << endl;
gen temp1(iquo(horner(q,*it,env),moduloi));
if (debug_infolevel>=20)
CERR << "liftroot num " << temp1 << endl;
env->modulo=moduloi;
gen temp2(horner(qprime,*it,env));
if (debug_infolevel>=20)
CERR << "liftroot den " << temp2 << " mod " << env->modulo << endl;
*it=smod(*it - moduloi* temp1 * invmod(temp2,env->modulo),modulonext) ;
if (debug_infolevel>=20)
CERR << "liftroot new root value " << *it << endl;
}
moduloi=modulonext;
env->modulo=moduloi;
}
}
// number of factors and possible degrees
int nfact(const vector< facteur<modpoly> > & v, vector<bool> & possible_degrees , int maxdeg){
int k=int(v.size());
possible_degrees[0]=true;
for (int i=1;i<maxdeg;i++)
possible_degrees[i]=false;
int i=0;
for (int j=0;j<k;j++){
int deg=v[j].mult; // degree of this equal degree factor
int mult=int(v[j].fact.size()-1)/deg; // number of equal degree factors
if (debuglevel)
COUT << "Distinct degree factor of " << mult << " factors of deg " << deg << endl;
i = i + mult;
for (int k=maxdeg-1;k>-1;k--){
if (possible_degrees[k]){
for (int l=mult;l;l--)
possible_degrees[k+l*deg]=true;
}
}
}
return i;
}
// set tab to tab && othertab
void intersect(vector<bool>::iterator tab, vector<bool>::iterator othertab,int size) {
vector<bool>::iterator end = tab+size;
for (;tab!=end;++tab,++othertab)
*tab = (*tab) && (*othertab);
}
static void print_possible_degrees(const vector<bool> & possible_degrees,int qdeg){
for (int tmp=0;tmp<=qdeg;tmp++)
if (possible_degrees[tmp])
COUT << tmp << " ";
COUT << endl;
}
// number of true elements
int sigma(const vector<bool> & deg){
int res=0;
vector<bool>::const_iterator it=deg.begin(),itend=deg.end();
for (;it!=itend;++it)
res += *it;
return res;
}
// Landau-Mignotte bound
gen mignotte_bound(const dense_POLY1 & p){
int d=int(p.size())-1;
gen n( d+1);
if (d%2)
n=n+n;
n=(isqrt(n)+gen( 1));
n=n*abs(norm(p,context0),context0).re(context0);
n=n*pow(gen( 2),1+(d/2));
return n;
}
gen mignotte_bound(const polynome & p){
int d=p.lexsorted_degree();
gen n( d+1);
if (d%2)
n=n+n;
n=(isqrt(n)+gen( 1));
n=n*abs(p.norm(),context0).re(context0);
n=n*pow(gen( 2),1+(d/2));
return n;
}
static bool extracttruefactors(dense_POLY1 & q, environment * env,vector<modpoly> & v_in, vector<modpoly> & v_orig, vectpoly & v_out, int & n,const gen & modulo_orig, const gen & moduloi, gen & bound, vector<modpoly> & u){
int totaldegreefound=0;
modpoly quo,rem;
gen lcoeff=q.front();
vector<modpoly>::const_iterator it=v_in.begin(),itend=v_in.end();
vector<modpoly>::const_iterator orig_it=v_orig.begin();
vector<modpoly> w_in,w_orig;
for (;it!=itend;++it,++orig_it){
modpoly test(*it);
mulmodpoly(test,lcoeff,env,test);
gen z=_lgcd(test,context0);
divmodpoly(test,z,0,test);
// COUT << "Trying " << q << "/" << *it << endl;
if (DenseDivRem(q,test,quo,rem,true) && (rem.empty())){
// COUT << "Found early factor " << *it << endl;
polynome temp=unmodularize(test);
q=quo;
v_out.push_back(temp);
totaldegreefound += int(it->size())-1;
n--;
if (n==1){
v_in.clear();
v_out.push_back(unmodularize(q));
q=one();
n--;
return true;
}
}
else {
// COUT << "No luck for this one!" << endl;
w_in.push_back(*it);
w_orig.push_back(*orig_it);
}
}
if (totaldegreefound){
v_in=w_in;
v_orig=w_orig;
env->modulo=modulo_orig;
if (!egcd(v_orig,env,u))
return false;
env->modulo=moduloi;
bound=iquo(bound,pow(gen(2),totaldegreefound/2));
}
return true;
}
// lift factorization from Z/pZ to Z/p^kZ for a sufficiently large k
// using quadratic Hensel lift
// modulo is modified to modulo^k
// returns -1 on error
static int liftq(environment * env,dense_POLY1 & q,gen &bound,vector<modpoly> & v_in,vectpoly & v_out,vector<bool> & possible_degrees){
if (debuglevel)
COUT << "Big data -> using quadratic Hensel lift." << v_in.size() << endl;
gen lcoeff(q.front());
bool notunit=(!is_one(lcoeff));
bool testfortruefs;
gen modulo_orig(env->modulo),moduloi(env->modulo),modulonext(env->modulo*env->modulo);
vector<modpoly> v_orig(v_in),u;
if (!egcd(v_in,env,u))
return -1;
if (debuglevel){
COUT << "Lifting v_in:" << v_in << endl << "u:" << u << endl;
COUT << "Modulo:" << env->modulo << " Bound:" << bound << endl;
}
int n=int(v_in.size());
int nfact_to_find = n;
vector<bool> truefactor(n),hasbeentested(n);
for (int i=0;i<n;i++){
truefactor[i]=false;
hasbeentested[i]=false;
}
modpoly newq(q);
modpoly Q;
env->modulo = modulonext;
modpoly pi; // initialize pi with the product of v_in
vector<modpoly>::iterator it=v_in.begin(),itend=v_in.end();
mulmodpoly(it,itend,env,pi);
for (int count=0;;count++){
// update Q at modulonext, modulonext=moduloi*modulo_orig;
env->modulo=modulonext;
env->pn=env->modulo;
env->moduloon=false;
Q=q-lcoeff*pi;
divmodpoly(Q,moduloi,Q);
Q=modularize(Q,modulo_orig,env);
if (is_undef(Q))
return -1;
env->moduloon=true;
// _VECTute Q such that q=lcoeff*(pi+p^k*Q)
// modulo=modulonext; // work in Z/p^(2), done by modularize below
// COUT << "Q:" << Q << endl;
// _VECTute new v_in
if (Q.empty())
env->modulo=modulonext;
else {
if (notunit)
mulmodpoly(Q,invmod(lcoeff,modulo_orig),env,Q); // Q=Q*invmod(lcoeff);
vector<modpoly>::iterator itv=v_in.begin(),itvend=v_in.end();
vector<modpoly>::iterator itu=u.begin();
vector<modpoly>::iterator itv0=v_orig.begin();
for (int i=0;itv!=itvend;++itv,++itu,++itv0,++i){
if (!truefactor[i]){
env->modulo=modulo_orig;
modpoly vadd,tmp1,tmp2,truefact;
mulmodpoly(Q,*itu,env,tmp1);
DivRem(tmp1,*itv0,env,tmp2,vadd);
// modpoly vadd((Q*(*itu)) % (*itv0));
env->modulo=modulonext; // back in Z/p^2k
if (vadd.empty()){
testfortruefs=true;
mulmodpoly(*itv,lcoeff,env,truefact);
ppz(truefact);
}
else {
hasbeentested[i]=false;
env->moduloon =false ;
mulmodpoly(vadd,moduloi,vadd);
env->moduloon = true ;
addmodpoly(*itv,vadd,env,*itv); // (*itv)=(*itv)+moduloi*vadd;
testfortruefs = false;
}
int debut_time=CLOCK();
if (debuglevel)
COUT << debut_time << "Searching true factor" << endl;
// test if *itv divides q in Z
if ( testfortruefs && !hasbeentested[i] && DenseDivRem(newq,truefact,tmp1,tmp2,true) && (tmp2.empty()) ){
int fin_time=CLOCK();
if (debuglevel)
COUT << fin_time << "Found true factor " << *itv << endl << "New bound:"<< bound << endl;
// yes! _VECTute new q and bound
truefactor[i]=true;
nfact_to_find--;
v_out.push_back(unmodularize(truefact));
if (nfact_to_find==1){
v_out.push_back(unmodularize(tmp1));
q=one();
return 0;
}
newq=tmp1;
bound=mignotte_bound(newq);
int truefactdeg=int(truefact.size())-1;
for (int j=0;j<signed(newq.size());j++)
possible_degrees[j]=possible_degrees[j+truefactdeg];
if (debuglevel){
COUT << "New degree set ";
print_possible_degrees(possible_degrees,int(newq.size())-1);
}
}
else {
int fin_time=CLOCK();
if (debuglevel)
COUT << fin_time << "No luck!" << endl;
if (testfortruefs)
hasbeentested[i]=true;
}
}
}
}
if (debuglevel)
COUT << "Lifted to " << modulonext << endl;
if ( is_strictly_greater(modulonext,bound,context0) ) // (modulonext>bound) )
break;
v_orig=v_in;
if (is_strictly_greater(modulonext*moduloi,bound,context0)){ // modulonext*moduloi>bound)
// need a last *linear* lift, modulo_orig and u unchanged,
moduloi = modulonext ;
modulonext=moduloi*modulo_orig;
// update pi
env->modulo = modulonext ;
it=v_in.begin(); itend=v_in.end();
mulmodpoly(it,itend,env,pi);
}
else {
// compute new u at modulonext and new pi at modulonext^2
// pidown[l]=Pi_{j>n-2-l} v_in[j], piup[l]=Pi_{j<l+1} v_in[j]
vector<modpoly> piup,pidown;
env->modulo=modulonext*modulonext; // modulonext^2 for pi at next iteration
pidown.push_back(v_in[n-1]);
modpoly tmp(v_in[n-1]); // initialization needed if n=2
for (int k=1;k<=n-2;k++){
mulmodpoly(pidown[k-1],v_in[n-k-1],env,tmp);
pidown.push_back(tmp);
}
mulmodpoly(tmp,v_in[0],env,pi);
env->modulo = modulonext ;
piup.push_back(v_in[0]);
for (int k=1;k<=n-2;k++){
mulmodpoly(piup[k-1],v_in[k],env,tmp);
piup.push_back(tmp);
}
// update u and v
u[0] = operator_minus( operator_times(plus_two,u[0],env) , operator_mod( operator_times( operator_mod(pidown[n-2] , v_in[0],env),operator_times(u[0], u[0],env),env) , v_in[0],env) , env);
for (int k=1;k<n-1;k++){
mulmodpoly( operator_mod( pidown[n-2-k] ,v_in[k],env), operator_mod(piup[k-1] , v_in[k],env),env,tmp);
u[k] = operator_minus( operator_times(gen(2),u[k],env) , operator_mod(operator_times( tmp,operator_times(u[k] , u[k] ,env),env) , v_in[k] ,env) , env);
}
u[n-1] = operator_minus( operator_times(gen(2),u[n-1],env) , operator_mod( operator_times ( operator_mod(piup[n-2],v_in[n-1],env), operator_times(u[n-1],u[n-1],env),env ) , v_in[n-1] ,env) , env);
/*
{
modpoly scalarprod(u[0]*pidown[n-2]);
for (int k=1;k<n-1;k++){
scalarprod = scalarprod + u[k]*pidown[n-2-k]*piup[k-1];
}
scalarprod=scalarprod+u[n-1]*piup[n-2]-one(); // this is 0 mod modulonext
COUT << "Modulo" << modulo << ", verif v_in.u:" << scalarprod << endl;
}
*/
moduloi=modulonext;
modulo_orig = moduloi;
modulonext=moduloi*modulo_orig;
} // end update
} // end for loop
// move true factors from v_in to v_out
vector<modpoly> w;
for (int i=0;i<n;i++){
if (!truefactor[i])
w.push_back(v_in[i]);
}
swap(v_in,w);
swap(q,newq);
for (int i=0;i<n;i++)
if (!truefactor[i])
if (!hasbeentested[i]){
// COUT << "Testing 1 combinations" << endl;
return 1;
}
// COUT << "Skipping 1 combinations" << endl;
return 2; // all linear factors have still been tested
}
// lift factorization from Z/pZ to Z/p^kZ for a sufficiently large k
// using linear Hensel lift
// modulo is modified to modulo^k
bool liftl(environment * env,dense_POLY1 & q,gen &bound,vector<modpoly> & v_in,vectpoly & v_out){
gen lcoeff(q.front());
bool notunit=(!is_one(lcoeff));
gen modulo_orig(env->modulo),moduloi(env->modulo),modulonext(env->modulo);
vector<modpoly> v_orig(v_in),u;
if (!egcd(v_orig,env,u))
return false;
if (debuglevel){
COUT << "Lifting v_in:" << v_in << endl << "u:" << u << endl;
COUT << "Modulo:" << env->modulo << "Bound" << bound << endl;
}
int n=int(v_in.size());
int d=int(q.size())-1;
// at bound/2^d/2, we will look for factors of q1 in v_in,
// if true add factors to v_out and reduce the bound
// modulo_orig^tryfactors=bound/2^d/2
int tryfactors=(bound.bindigits()-d/2)/modulo_orig.bindigits();
for (int count=1;is_greater(bound,moduloi,context0);count++){ // moduloi<=bound
if ((count==tryfactors/4) || (count==tryfactors)){
if (!extracttruefactors(q,env,v_in,v_orig,v_out,n,modulo_orig,moduloi,bound,u))
return false;
}
if (!n)
return true;
modulonext=moduloi*modulo_orig;
env->moduloon=false;
// product of v_in in Z/p^k Z
vector<modpoly>::iterator it=v_in.begin(),itend=v_in.end();
dense_POLY1 pi;
mulmodpoly(it,itend,env,pi);
lcoeff=q.front();
// compute Q such that q=lcoeff*(pi+p^k*Q)
// modulo=modulonext; // work in Z/p^(k+1), done by modularize below
modpoly Q((q-lcoeff*pi)/moduloi);
Q=modularize(Q,modulo_orig,env);
if (is_undef(Q))
return false;
if (notunit)
mulmodpoly(Q,invmod(lcoeff,env->modulo),env,Q); // Q=Q*invmod(lcoeff);
// COUT << "Q:" << Q << endl;
// compute new v_in
if (Q.empty()){
env->modulo=modulonext;
moduloi=modulonext;
}
else {
it=v_in.begin();
vector<modpoly>::const_iterator itu=u.begin(),itorig=v_orig.begin();
for (;it!=itend;++it,++itu,++itorig){
env->modulo=modulo_orig; // work in Z/p or Z/p^k
modpoly vadd,tmp1,tmp2;
mulmodpoly(Q,*itu,env,tmp1);
DivRem(tmp1,*itorig,env,tmp2,vadd);
// modpoly vadd(Q*(*itu) % (*itorig));
env->modulo=modulonext; // back in Z/p^(k+1) or Z/p^2k
(*it)=operator_plus(*it,operator_times(moduloi,vadd,env),env);
}
moduloi=modulonext;
}
if (debuglevel)
COUT << "Lifted to " << modulonext << endl;
}
return true;
}
// given a factorization v_in of q in Z/p^kZ find a factorization v_out
// over Z, k is the minimal # of factors of v_in to be combined
void combine(const dense_POLY1 & q, const vector<modpoly> & v_in,environment * env,vectpoly & v_out,vector<bool> & possible_degrees, int k){
if (v_in.empty())
return; // nothing to do
int n=int(v_in.size());
if (debuglevel)
COUT << CLOCK() << "Starting combining with " << n << " factors" << endl;
gen lcoeff(smod(q.front(),env->modulo));
bool notunit=(!is_one(lcoeff));
if (n==1){
polynome temp(unmodularize(lcoeff*v_in.front()));
if (notunit)
ppz(temp);
v_out.push_back(temp);
return;
}
#if 1 // def VISUALC
vector<modpoly>::const_iterator * it=new vector<modpoly>::const_iterator[n+1],itend=v_in.end(),itbegin=v_in.begin(), current;
#else
vector<modpoly>::const_iterator it[n+1],itend=v_in.end(),itbegin=v_in.begin(), current;
#endif
vector<int> degrees(n); // records degrees of v_in polynomials
for (int j=0;j<n;j++)
degrees[j]=int(v_in[j].size())-1;
gen twoto32(pow(gen(2),32)); // requires int=32 bits
vector<int> d1tab(n); // records coeff of degree d-1*2^32/modulo
for (int j=0;j<n;j++)
d1tab[j]=(iquo(v_in[j][1]*twoto32,env->modulo)).to_int();
gen dminus1bound((norm(q,0)+1)*gen((int)q.size()-1)*lcoeff);
gen dminus1bound_=iquo(dminus1bound*twoto32,env->modulo);
int d1=dminus1bound_.to_int()+1; // maxvalue of d-1 coeff for a product
// COUT << dminus1bound << endl;
for (;k<n;k++){
if (debuglevel)
COUT << CLOCK() << "Testing combination of " << k << " factors" << endl;
// initialize all iterators, picstcoeff[] and totaldeg[]
it[1]=v_in.begin();
// product of cst coeff
gen lastpi(1);
vecteur picstcoeff;
picstcoeff.push_back(1);
// sum of degrees
int lastdeg=0;
index_t totaldeg;
totaldeg.push_back(0);
// the coeff of degree d-1
gen lastdminus1(0);
vecteur dminus1;
dminus1.push_back(0);
for (int j=1;j<k;j++){
it[j+1]=it[j]+1;
lastpi = smod(lastpi*cstcoeff(*it[j]),env->modulo);
picstcoeff.push_back(lastpi);
lastdeg += int(it[j]->size())-1;
totaldeg.push_back(lastdeg);
lastdminus1 = lastdminus1 + (*it[j])[1];
dminus1.push_back(lastdminus1);
}
// look if the next possible degree is > degree(q)/2 -> q is irreducible
int tmp=lastdeg+int(it[k]->size())-1;
for (;2*tmp<=signed(q.size());++tmp)
if (possible_degrees[tmp])
break;
if (2*tmp>signed(q.size())-1){
v_out.push_back(unmodularize(q));
#if 1 // def VISUALC
delete [] it;
#endif
return ;
}
current=it[k];
int _VECTteur=0;
int * position=°rees[current-itbegin];
int lastd1=(iquo(lastdminus1*twoto32,env->modulo)).to_int();
int * d1tabposition=&d1tab[current-itbegin];
for (;;){
// combination of k factors
// first test that the degree is admissible,
// then do the d-1 test: coeff multiplied by lcoeff mod modulo < bound
// and that the product of cst_coeff divides the polynomial
if ( possible_degrees[lastdeg+(*position)]
&& is_greater(dminus1bound,abs(smod((lastdminus1+(*current)[1])*lcoeff,env->modulo)),0)
//&& ( absint(lastd1+(*d1tabposition))< d1 )
){
gen check=smod(lastpi*cstcoeff(*current)*lcoeff,env->modulo);
check=check/gcd(check,lcoeff);
if (
is_zero(cstcoeff(q)%check)
){
it[k]=current;
// modpoly pi(*it[1]);
// for (int j=2;j<=k;j++)
// pi=pi*(*it[j]);
modpoly pi;
mulmodpoly(it,1,k,env,pi);
if (notunit)
mulmodpoly(pi,lcoeff,env,pi);
dense_POLY1 quo(1),rem(1);
// COUT << pi << " " << combination << endl;
if (notunit)
ppz(pi);
if ( // (gen(2)*abs(pi[2])<dminus1bound*gen((int)q.size()-2)) &&
DenseDivRem(q,pi,quo,rem,true) &&
(rem.empty())
){
// push factor found
polynome found(unmodularize(pi));
if (debuglevel){
COUT << "Found:" ;
dbgprint(found);
}
v_out.push_back(found);
// remove factors found from the list
vector<modpoly> v_new;
vector<modpoly>::const_iterator itnew=v_in.begin();
for (int j=1;j<=k;j++){
for (;itnew!=it[j];++itnew)
v_new.push_back(*itnew);
++itnew;
}
for (;itnew!=itend;++itnew)
v_new.push_back(*itnew);
// if v_new.size is large it might be more efficient
// to compute the factorization of newq
// else call combine with q <- quo
if (v_new.size()>24){
int j=3;
factorunivsqff(unmodularize(quo),env,v_out,j,debuglevel,int(v_new.size()));
}
else {
// re_VECTute possible_degrees
int founddeg=found.lexsorted_degree();
int newqdeg=int(q.size())-1-founddeg;
vector<bool> new_possible_degrees(newqdeg+1);
for (int j=0;j<=newqdeg;j++)
new_possible_degrees[j]=possible_degrees[j+founddeg];
if (debuglevel)
print_possible_degrees(new_possible_degrees,newqdeg);
combine(quo,v_new,env,v_out,new_possible_degrees,k);
}
#if 1 // def VISUALC
delete [] it;
#endif
return;
}
}
}
++position;
++_VECTteur;
++current;
++d1tabposition;
if (current==itend){ // increment the predecessor until not = max
int j=k-1;
for (;j>0;j--){
++it[j];
if (it[j]!=itend+j-k)
break;
}
if (debuglevel && (j<k/2))
COUT << CLOCK() << " " << _VECTteur << " tries." << endl;
// if j!=0, recalculate successors, picstcoeff and totaldeg
if (j){
lastpi=picstcoeff[j-1];
lastdeg=totaldeg[j-1];
lastdminus1=dminus1[j-1];
for (;j<k;j++){
lastpi = smod(lastpi*cstcoeff(*it[j]),env->modulo);
picstcoeff[j]=lastpi;
lastdeg += int(it[j]->size())-1;
totaldeg[j]=lastdeg;
lastdminus1 = lastdminus1 + (*it[j])[1];
dminus1[j]=lastdminus1;
it[j+1]=it[j]+1;
}
current=it[k];
position=°rees[current-itbegin];
lastd1=(iquo(lastdminus1*twoto32,env->modulo)).to_int();
d1tabposition=&d1tab[current-itbegin];
if (2*(lastdeg+current->size()-1)>q.size()-1){
current=itend-1; continue;
}
}
else
break;
}
}
}
// k==n
v_out.push_back(unmodularize(q));
#if 1 // def VISUALC
delete [] it;
#endif
}
const char idivis23[][6]={
{0,0,0,0,0,0},
{1,0,0,0,0,0},
{1,2,0,0,0,0},
{1,3,0,0,0,0},
{1,2,4,0,0,0},
{1,5,0,0,0,0},
{1,2,3,6,0,0},
{1,7,0,0,0,0},
{1,2,4,8,0,0},
{1,3,9,0,0,0},
{1,2,5,10,0,0},
{1,11,0,0,0,0},
{1,2,3,4,6,12},
{1,13,0,0,0,0},
{1,2,7,14,0,0},
{1,3,5,15,0,0},
{1,2,4,8,16,0},
{1,17,0,0,0,0},
{1,2,3,6,9,18},
{1,19,0,0,0,0},
{1,2,4,5,10,20},
{1,3,7,21,0,0},
{1,2,11,22,0,0},
{1,23,0,0,0,0},
};
// Find linear factors of q
int do_linearfind(const polynome & q,environment * env,polynome & qrem,vectpoly & v,vecteur & croots,int & i){
int pn;
if (normalize_env(env))
pn=env->pn.val;
else
pn=-1;
if (q.coord.empty()){
qrem=q;
return 4;
}
if (q.dim!=1)
return 0; // setsizeerr(gettext("modfactor.cc/linearfind"));
int qdeg=q.lexsorted_degree();
if (!qdeg)
return 4;
if (qdeg==1){
v.push_back(q);
if (q.coord.size()==1)
croots.push_back(0);
else
croots.push_back(-q.coord.back().value/q.coord.front().value);
qrem=polynome(gen( 1),1);
return 4;
}
if (!env->complexe && q.coord.size()>1 && q.coord.front().value.type==_INT_ && q.coord.back().value.type==_INT_){
int qn=absint(q.coord.front().value.val),q0=absint(q.coord.back().value.val);
if (qn<24 && q0<24){
// check all rationals divisors of q0/divisor of qn
env->moduloon=false;
polynome Qtest(1),Qquo,Qrem;
Qtest.coord.reserve(2);
Qtest.coord.push_back(monomial<gen>(1,1,1));
if (q.coord.back().index[0]>0){
croots.push_back(0);
v.push_back(Qtest);
qrem=q.shift(index_t(1,-1));
}
else
qrem=q;
Qtest.coord.push_back(monomial<gen>(1,0,1));
const char * qndiv=idivis23[qn];
const char * q0div=idivis23[q0];
for (int i=0;i<6;i++){
int num=q0div[i];
if (!num)
break;
for (int j=0;j<6;j++){
int den=qndiv[j];
if (!den)
break;
Qtest.coord.front().value=den;
if (gcd(num,den)==1){
Qtest.coord.back().value=-num;
if (qrem.TDivRem(Qtest,Qquo,Qrem,false) && Qrem.coord.empty()){
croots.push_back(gen(num)/gen(den));
v.push_back(Qtest);
swap(qrem.coord,Qquo.coord);
}
Qtest.coord.back().value=num;
if (qrem.TDivRem(Qtest,Qquo,Qrem,false) && Qrem.coord.empty()){
croots.push_back(gen(-num)/gen(den));
v.push_back(Qtest);
swap(qrem.coord,Qquo.coord);
}
if (qrem.lexsorted_degree()==0)
return 4;
if (qrem.lexsorted_degree()<=1){
v.push_back(qrem);
if (qrem.coord.size()==1)
croots.push_back(0);
else
croots.push_back(-qrem.coord.back().value/qrem.coord.front().value);
qrem.coord.clear();
return 4;
}
}
}
}
return 4;
} // end qn<20 and q0<20
}
modpoly Q;
// find a prime such that q remains sqff
gen m;
gen lcoeff=q.coord.front().value; // REMOVED .re(0)
bool notunit=(!is_one(lcoeff));
for (;i<100;i++){
if (env->complexe && primes[i]%4!=3) // insure that -1 is not a square mod primes[i]
continue;
m=gen(primes[i]);
if (!is_zero(smod(lcoeff,m))){ // insure that degree remains constant
Q=modularize(q,m,env);
if (is_undef(Q))
return 0;
mulmodpoly(Q,invmod(lcoeff,env->modulo),env,Q); // Q=Q*invmod(lcoeff) Q is now unitary
if (debug_infolevel>=20)
CERR << "linearfind: trying with prime " << m << " for " << Q << endl;
if (is_one(gcd(Q,derivative(Q,env),env)))
break;
}
}
if (i==100) return 0; // setsizeerr(gettext("modfactor.cc/linearfind"));
if (debug_infolevel>=20)
CERR << "linearfind: using prime " << m << endl;
vecteur w,xpuipn(xpowerpn(env));
vector<modpoly> wtmp;
if (is_undef(xpuipn)) return 0;
if (!roots((pn>0 && signed(Q.size())>pn)?gcd(Q,operator_minus(xpuipn,xpower1(),env),env):Q,env,w,wtmp))
return 0;
if (debug_infolevel>=20)
CERR << "linearfind modular roots " << w << endl;
dense_POLY1 q1(modularize(q,gen(0),env));
if (is_undef(q1)) return 0;
liftroots(q1,env,w);
if (debug_infolevel>=20)
CERR << "linearfind lifted modular roots " << w << endl;
// try each element of w
vecteur::const_iterator it=w.begin(),itend=w.end();
for (;it!=itend;++it){
dense_POLY1 combination,quo,rem;
if (notunit){
// COUT << *it << " " << lcoeff << " " << env->modulo << endl;
gen s( smod((*it)*lcoeff,env->modulo) );
gen g(gcd(s,lcoeff,context0));
combination.push_back(iquo(lcoeff,g));
combination.push_back(iquo(-s,g));
// COUT << combination << endl;
}
else {
combination.push_back(gen( 1));
combination.push_back(smod(-(*it),env->modulo));
}
if (debug_infolevel>=20)
CERR << "checking " << combination << endl;
if (DenseDivRem(q1,combination,quo,rem,true) && (rem.empty())){
// push factor found
v.push_back(unmodularize(combination));
croots.push_back(-combination.back()/combination.front());
q1=quo;
}
}
qrem=unmodularize(q1);
env->moduloon=false;
return 4;
}
bool do_factorunivsqff(const polynome & q,environment * env,vectpoly & v,int & i,int debug,int modfactor_primes){
// we do not require q to have 1 as leading coefficient anymore
if (0 && !q.coord.empty() && q.coord.front().value!=1){
polynome unitaryp(1), an(0);
unitarize(q,unitaryp,an);
if (!do_factorunivsqff(unitaryp,env,v,i,debug,modfactor_primes))
return false;
for (unsigned i=0;i<v.size();++i){
v[i]=ununitarize(v[i],an);
}
return true;
}
debuglevel=debug; // 1 or debug;
if (q.coord.empty())
return true;
if (q.dim!=1) return false; // setsizeerr(gettext("modfactor.cc/factorunivsqff"));
int qdeg=q.lexsorted_degree();
if (!qdeg)
return true;
if (qdeg==1){
v.push_back(q);
return true;
}
// find a "best" prime such that Q is sqff and has not too much factors
gen m;
gen lcoeff=q.coord.front().value.re(context0);
gen bound=mignotte_bound(q)*abs(lcoeff,context0) ;
double logbound_d=bound.bindigits()*giac_log((double) 2);
if (debuglevel>=2)
COUT << "Bound " << bound << " log:" << logbound_d << endl;
modpoly Qtry(1);
int bestprime=0,bestnumberoffactors=0;
gen bestliftsteps;
vector< facteur<modpoly> > wf;
vector<modpoly> bestqmat;
vector<bool> possible_degrees(qdeg+1);
for (int essai=0;essai<modfactor_primes;i++){
// for (int essai=0;essai<50;i++){
if (i==100){
if (bestqmat.empty()) return false; // setsizeerr(gettext("modfactor.cc/factorunivsqff"));
break;
}
int currentprime=primes[i];
m=gen(primes[i]);
if (!is_zero(smod(lcoeff,m))){ // insure that degree remains constant
Qtry=modularize(q,m,env);
if (is_undef(Qtry))
return false;
Qtry=operator_times(invmod(lcoeff,env->modulo),Qtry,env); // -> Q is now unitary
// COUT << "Trying with " << m << Q << endl;
if (is_one(gcd(Qtry,derivative(Qtry,env),env))){
vector< facteur<modpoly> > wftry;
// distinct degree factorization of Qtry mod env->modulo
vector<modpoly> qmat;
qmatrix(Qtry,env,qmat,0);
if (!ddf(Qtry,qmat,env,wftry))
return false;
if (debuglevel)
COUT << "Trying prime " << env->modulo << endl;
vector<bool> new_degrees(qdeg+1);
int numberoffactors;
if (essai){
numberoffactors=nfact(wftry,new_degrees,qdeg+1);
intersect(possible_degrees.begin(),new_degrees.begin(),qdeg+1);
}
else
numberoffactors=nfact(wftry,possible_degrees,qdeg+1);
if (debuglevel){
COUT << "Possible degrees after intersection:";
print_possible_degrees(possible_degrees,qdeg);
}
if ( (numberoffactors==1) || (sigma(possible_degrees)<3) ){
v.push_back(q);
env->moduloon=false;
return true;
}
int ilifta=int(giac_ceil(giac_log(logbound_d/giac_log((double) primes[i]))/giac_log(2.0)));
int iliftb=giacmax(1,int(giac_ceil(giac_log(2./3.*logbound_d/giac_log((double) primes[i]))/giac_log(2.))));
if (debuglevel)
COUT << "Would use min " << ilifta << "," << iliftb << " steps modulo " << currentprime << endl;
gen qlifta(pow(currentprime,(long unsigned int) pow(gen(2),ilifta).to_int()));
gen qliftb(pow(currentprime,(long unsigned int) 3*pow(gen(2),iliftb-1).to_int()));
if (debuglevel>=2)
COUT << "Would use min " << qlifta << "," << endl << qliftb << " modulo " << currentprime << endl;
gen liftsteps;
if (is_strictly_greater(qliftb,qlifta,context0)) // (qlifta<qliftb)
liftsteps=qlifta;
else
liftsteps=qliftb;
// compare with previous factorization:
// keep the factorization with less factors
// if equal number try to minimize the # of lifting steps
if ( (!essai) || is_strictly_greater(bestnumberoffactors,numberoffactors,context0) || ( (numberoffactors==bestnumberoffactors) && is_strictly_greater(bestliftsteps,liftsteps,context0) ) ){ // (numberoffactors<bestnumberoffactors) && (liftsteps<bestliftsteps)
bestprime=currentprime;
bestliftsteps = liftsteps;
bestnumberoffactors=numberoffactors;
bestqmat=qmat;
wf=wftry;
}
essai++;
}
else // non sqff
if (debuglevel)
COUT << "Not square-free modulo " << currentprime <<endl;
}
else // degree non cst
if (debuglevel)
COUT << "Non constant degree modulo " << currentprime << endl;
}
env->modulo=gen(bestprime);
if (debuglevel){
COUT << "Using prime " << env->modulo << endl;
if (debuglevel>=2){
COUT << " for " ;
dbgprint(q);
}
}
vector<modpoly> w;
if (!cantor_zassenhaus(wf,bestqmat,env,w))
return false;
// COUT << "Starting lift" << endl;
// lift and combine
dense_POLY1 q1(modularize(q,gen(0),env));
if (is_undef(q1))
return false;
#ifdef HAVE_LIBPARI
// use PARI LLL+knapsack recombination
if (w.size()>12){
vector<dense_POLY1> res;
if (pari_lift_combine(q1,w,env->modulo,res)){
vector<dense_POLY1>::const_iterator it=res.begin(),itend=res.end();
for (;it!=itend;++it)
v.push_back(unmodularize(*it));
env->moduloon=false;
return true;
}
}
#endif // HAVE_LIBPARI
// quadratic lift commented until bug is fixed for factor(poly2symb([2052661997653969,0,-28627701862508750,0,2045357156640625],x));
if (0 && is_strictly_greater(bound,pow(env->modulo,(long unsigned int) HENSEL_QUADRATIC_POWER),context0)) { // bound>pow(...)
int res=liftq(env,q1,bound,w,v,possible_degrees);
if (res==-1)
return false;
if (res)
combine(q1,w,env,v,possible_degrees,res);
}
else {
if (!liftl(env,q1,bound,w,v))
return false;
combine(q1,w,env,v,possible_degrees);
}
env->moduloon=false;
if (debuglevel)
COUT << CLOCK() << "End combine" << endl;
return true;
}
#ifdef HAVE_LIBNTL
typedef gen inttype;
int ntlfactor(inttype *p, int pdeg,inttype ** result,int * resultdeg,int debug=0){
if (debug_infolevel)
CERR << CLOCK()*1e-6 << " NTL factor begin" << endl;
NTL::ZZX f(tab2ZZX(p,pdeg));
// COUT << "Factoring " << f << endl;
NTL::vec_pair_ZZX_long factors;
NTL::ZZ c;
factor(c, factors, f,debug); // c will be 0 since q has content 1
// convert factors to arrays, multiplicity is always 1
// COUT << factors << endl;
int s=factors.length();
for (int i=0;i<s;i++){
ZZX2tab(factors[i].a,resultdeg[i],result[i]);
}
if (debug_infolevel)
CERR << CLOCK()*1e-6 << " NTL factor end" << endl;
return s;
}
// ithprime will not be used here
bool factorunivsqff(const polynome & q,environment * env,vectpoly & v,int & i,int debug=0,int modfactor_primes=MODFACTOR_PRIMES){
#ifdef HAVE_LIBPTHREAD
int locked=pthread_mutex_trylock(&ntl_mutex);
#endif // HAVE_LIBPTHREAD
if (locked || ntl_on(context0)==0){
return do_factorunivsqff(q,env,v,i,debug,modfactor_primes);
}
try {
int n=q.lexsorted_degree();
inttype * tab=new inttype[n+1]; // dense rep of the polynomial
inttype * result[n]; // array of dense rep of the polynomial
int resultdeg[n];
if (!polynome2tab(q,n,tab)){
delete [] tab;
return false;
}
// CERR << "NTL factor begins" << endl;
int size=ntlfactor(tab,n,result,resultdeg,debug);
// CERR << "NTL factor end" << endl;
// size is the number of poly in result
for (long i = 0 ; i < size; i++){
v.push_back(tab2polynome(result[i],resultdeg[i]));
delete [] result[i];
}
delete [] tab;
} catch (std::runtime_error & e){
}
#ifdef HAVE_LIBPTHREAD
pthread_mutex_unlock(&ntl_mutex);
#endif
return true;
}
// find linear factor, nothing is done here, all the work is performed above
int linearfind(const polynome & q,environment * env,polynome & qrem,vectpoly & v,int & i){
#ifdef HAVE_LIBPTHREAD
int locked=pthread_mutex_trylock(&ntl_mutex);
#endif // HAVE_LIBPTHREAD
if (locked || ntl_on(context0)==0){
vecteur cr;
return do_linearfind(q,env,qrem,v,cr,i);
}
#ifdef HAVE_LIBPTHREAD
pthread_mutex_unlock(&ntl_mutex);
#endif
qrem=q;
return 2;
}
#else // HAVE_LIBNTL
// find linear factor only
int linearfind(const polynome & q,environment * env,polynome & qrem,vectpoly & v,int & i){
vecteur cr;
return do_linearfind(q,env,qrem,v,cr,i);
}
// this function trashes the current value of env->modulo
bool factorunivsqff(const polynome & q,environment * env,vectpoly & v,int & i,int debug,int modfactor_primes){
return do_factorunivsqff(q,env,v,i,debug,modfactor_primes);
}
#endif // ndef HAVE_LIBNTL
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC