lpsolve.cc
52.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
/*
* lpsolve.cc
*
* Copyright 2017 Luka Marohniฤ
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Description
* ^^^^^^^^^^^
* Function 'lpsolve' solves a (mixed integer/binary) LP problem in general
* form. It is used as follows:
*
* lpsolve (obj, constr, bd, opts)
*
* Parameters:
*
* obj - (mandatory) linear objective function (it is allowed to have a constant term)
* constr - (optional) list of linear constraints
* bd - (optional) bounds for one or more variables
* opts - (optional) equation(s) of the form 'option=value', where
* 'option' is one of: 'assume', 'lp_variables', 'lp_integervariables,
* 'lp_binaryvariables', 'lp_maximize' or 'lp_depthlimit'
*
* The problem may be given in symbolic form or in matrix form. The objective
* function may be given as symbolic expression (including an optional constant
* term) and the constraints as equations and inequalities. Also, a constraint
* may be given in form 'Expr=a..b', where Expr is a linear expression and a,b
* are real constants (possibly +/-infinity).
*
* It is also possible to enter constraints of type 'Expr โ [a,b]' as 'Expr=a..b',
* where Expr is a linear expression and a, b are real numbers.
*
* For problems given in matrix form, the parameter 'obj' is a vector c and 'constr' is
* a list [A, b, Aeq, beq] where A,Aeq are matrices and b,beq are vectors such that
* c.x is maximized/minimized subject to A.x<=b and Aeq.x=beq. Parameters Aeq and beq
* may be omitted if the problem does not have equality constraints.
*
* For symbolically given problems, the parameter 'bd' is a sequence of
* arguments in the form 'name=range', where 'range' is an interval (for
* example, x=-5..5 or y=0..inf). For problems given in matrix form, 'bd' must
* be a vector of two vectors bl and bu such that bl<=x<=bu. In that case, all
* decision variables are bounded at once. For variables that are unbounded
* from above/below one can use +/-infinity as an upper/lower "bound".
*
* All decision variables are unbounded and continuous by default.
*
* With the 'assume' option one can specify:
*
* - assume = integer or lp_integer (all variables are integers)
* - assume = lp_binary (all variables are binary)
* - assume = lp_nonnegative (all variables are nonnegative)
* - assume = nonnegint or lp_nonnegint (all variables are nonnegative integers)
*
* The following options are used to specify continuous, integer and binary
* variables in mixed LP problems:
*
* - lp_variables = <list of continuous variables>
* - lp_integervariables = <list of integer variables>
* - lp_binaryvariables = <list of binary variables>
*
* Instead of a list of identifiers, a list or an interval of their indexes may
* be given as the value for 'lp_(integer/binary)variables'. For example,
* option 'lp_binaryvariables=m..n' specifies xm,x(m+1),...,xn as binary
* variables, and option 'lp_integervariables=[1,3,7]' specifies that the
* variables x1, x3 and x7 are integers. The indexes and identifiers may be
* freely mixed within a list. Variable indexes are 1-based.
*
* Objective function can be either maximized or minimized. By default it is
* minimized, which is equivalent to the (superfluous) option
*
* - lp_maximize = false
*
* To solve a maximization problem, one can specify:
*
* - lp_maximize [= true]
*
* Integer (mixed) LP problems are solved using the branch and bound method,
* during which a binary tree of nodes that need to be inspected is formed. The
* depth of that tree can be limited with option
*
* - lp_depthlimit = <positive integer>
*
* and number of inspected nodes can be limited with option
*
* - lp_nodelimit = <positive integer>
* With 'lp_depthlimit' or 'lp_nodelimit' option set, the integer solution
* returned by the branch&bound method is feasible, but not necessarily the
* optimal one. Also, it is possible that no feasible solution is found,
* although one may exist. By setting 'lp_depthlimit' to zero (which is the
* default), the feasible solution returned by the branch&bound method is
* always optimal.
*
* By default, 'lpsolve' uses two-phase simplex method for optimization of
* the objective function.
*
* The function 'lpsolve' returns either
*
* - an empty list if no feasible solution exists,
* - the list [+infinity,[...]] if the objective function required to be maximized
* is unbounded from above, i.e. the list [-infinity,[...]] if the objective
* function required to be minimized is unbounded from below, or
* - the optimal solution as a list [optimum,[x1=x1*,x2=x2*,...,xn=xn*]] for
* symbolically given problems, where x1,x2,...,xn are the decision variables,
* or as a list [optimum,[x1*,x2*,...,xn*]] for problems given in matrix form.
*
* If one needs only a fesible point with respect to a set of constraints, one
* should set the parameter 'obj' to 0 for symbolic problems i.e. to [] for
* matrix problems. The return value is the feasible point as a vector of
* coordinates or an empty list if the given set of constraints is
* contradictory.
*
* The function returns an error if no constraints were detected (i.e. when
* none of 'constr', 'bd' and 'assume=(lp_)nonneg(ative/int)' arguments were
* detected).
*
* Examples
* ^^^^^^^^
* 1) Use LPSolve to minimize a linear function subject to linear constraints.
* Remember that all decision variables are unrestricted in sign by default.
*
* lpsolve(2x+y-z+4,[x<=1,y>=2,x+3y-z=2,2x-y+z<=8,-x+y<=5])
* lpsolve(-4x-5y,[x+2y<=6,5x+4y<=20,0<=x,0<=y])
*
* 2) Use the 'lp_maximize [= true]' option to maximize the objective function.
*
* lpsolve(-7x+2y,[4x-12y<=20,-x+3y<=3],x=-5..5,y=0..inf,lp_maximize=true)
* lpsolve(x-y-2z+3,[-3x-y+z<=3,2x-3y>=4z,x-z=y,x>=0,y<=0],lp_maximize)
*
* 3) Use the 'assume = lp_nonnegative' option instead of including
* non-negative constraints explicitly.
*
* lpsolve(-x-y,[y<=3x+1/2,y<=-5x+2],assume=lp_nonnegative)
* lpsolve(x+y,[x<=8,-x+y<=4,-x+2y>=6,2x+y<=25,3x+y>=18,-x+2y>=6],assume=lp_nonnegative)
* lpsolve(45.55x1+21.87x2,[1.64x1+2.67x2<=31.2,2.11x1+2.3x2>=13.9],assume=lp_nonnegative)
* lpsolve(3x+4y,[x<=4,x+3y<=15,-x+2y>=5,x-y>=9,x+y=6],assume=lp_nonnegative,lp_maximize=true)
*
* 4) Simple bounds can be added separately.
*
* lpsolve(-6x+4y+z,[5x-10y<=20,2z-3y=6,-x+3y<=3],x=1..20,y=0..inf)
*
* 5) Use the 'integer' or 'lp_integervariables' option to solve integer
* programming problems.
*
* lpsolve(-5x-7y,[7x+y<=35,-x+3y<=6],assume=integer)
* lpsolve(x+3y+3z,[x+3y+2z<=7,2x+2y+z<=11],assume=lp_nonnegative,lp_integervariables=[x,z],lp_maximize)
*
* 6) The 'nonnegint' option can be used to get non-negative integer values.
*
* lpsolve(2x+5y,[3x-y=1,x-y<=5],assume=nonnegint)
* lpsolve(x1+x2,[2x1+5x2<=16,6x1+5x2<=30],assume=nonnegint,lp_maximize)
*
* 7) Use the 'lp_binary' option to solve binary integer programming problems,
* where the decision variables can only have values from the set {0,1}.
*
* lpsolve(8x1+11x2+6x3+4x4,[5x1+7x2+4x3+3x4<=14],assume=lp_binary,lp_maximize)
*
* 8) LP problems can also be given in matrix form.
*
* c:=[-2,1];A:=[[-1,1],[1,1],[-1,0],[0,-1]];b:=[3,5,0,0];lpsolve(c,[A,b])
* c:=[-1,1];A:=[[-3,1],[5,1]];b:=[1/2,2];lpsolve(c,[A,b],assume=lp_nonnegative)
*
* 9) Bounds for problem in matrix form can be added separately. In
* the following example, there are no other constraints.
*
* c:=[-2,5,-3];bl:=[2,3,1];bu:=[6,10,3.5];lpsolve(c,[],[bl,bu])
*
* 10) For problems in matrix form with no inequality constraints, an empty list
* is passed for parameters A and b.
*
* c:=[4,5];Aeq:=[[-1,1.5],[-3,2]];beq:=[2,3];lpsolve(c,[[],[],Aeq,beq])
*
* 11) The 'lp_integervariables' or 'lp_binaryvariables' option can be used to
* specify mixed-integer problems.
*
* c:=[2,-3,-5];A:=[[-5,4,-5],[2,5,7],[2,-3,4]];b:=[3,1,-2];lpsolve(c,[A,b],lp_integervariables=[1,3])
*
* Additional LP problems for testing
* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* 1) Maximize
*
* z = -3x1 + 2x2 - x3 + 4x4
*
* subject to:
*
* x1 + x2 - 4x3 + 2x4 โฅ 4,
* -3x1 + x2 - 2x3 โค 6,
* x2 - x4 = -1,
* x1 + x2 - x3 = 0,
* x3, x4 โฅ 0.
*
*
* 2) Minimize or maximize
*
* z = 28x11 + 84x12 + 112x13 + 112x14 + 60x21 + 20x22
* + 50x23 + 50x24 + 96x31 + 60x32 + 24x33 + 60x34
* + 64x41 + 40x42 + 40x43 + 16x44 + 50y1 + 50y2
* + 50y3 + 50y4
*
* subject to:
*
* x11 + x12 + x13 + x14 = 1,
* x21 + x22 + x23 + x24 = 1,
* x31 + x32 + x33 + x34 = 1,
* x41 + x42 + x43 + x44 = 1,
* -x11 - x21 - x31 - x41 + 4y1 โฅ 0,
* -x12 - x22 - x32 - x42 + 4y2 โฅ 0,
* -x13 - x23 - x33 - x43 + 4y3 โฅ 0,
* -x14 - x24 - x34 - x44 + 4y4 โฅ 0,
* xij, zi โ {0,1} for all i,j=1,2,3,4.
*
*
* 3) (from cascmd_fr) Minimize
*
* z = 2x + y - z + 4
*
* subject to:
*
* x โค 1,
* y โฅ 2,
* x + 3y - z = 2,
* 2x - y + z โค 8,
* -x + y โค 5.
*
*
* 4) The problem of putting as much queens as possible on an 8x8 chessboard so that they don't threat each other.
*
* Maximize
* c.x,
* where c = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
* subject to:
* A.x<=b
* where A = [[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0]]
* and b = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
* (42 constraints in total)
* 64 decision variables x=(x11,x12,...,x18,x21,x22,...,x28,...,x81,x82,...,x88), all binary
* xij=1 if there is a queen on field in ith row and jth column of a chessboard, xij=0 if the field is empty
*
* 5)
* [2,10,13,17,7,5,7,3],[[],[],[[22,13,26,33,21,3,14,26],[39,16,22,28,26,30,23,24],[18,14,29,27,30,38,26,26],[41,26,28,36,18,38,16,26]],[7872,10466,11322,12058]],assume=lp_nonnegative
*
* 6)
* 1.06x1+0.56x2+3x3+2703.50x4+4368.23x5,[1.06x1+0.015x3>=729824.87,0.56x2+0.649x3>=1522188.03,x3>=1680.05,x4>=60,x5>=4],assume=lp_nonnegative
*/
using namespace std;
#include "lpsolve.h"
#include "giac.h"
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
/*
* Maximize obj^t*x subject to A*x<=b using two-phase simplex method. Slack and
* surplus variables need to be represented with additional columns in matrix
* m_orig. Equality constraints must come before inequality constraints in that
* matrix. Function introduces artificial variables automatically when
* preparing for the first phase. This implementation is intended for exact
* computation, phase I may fail if calculations are floating-point because of
* roundoff errors (see example 6 in 'Additional LP problems for testing'
* section above).
*/
matrice simplex_twophase(matrice & m_orig,vecteur & b,vecteur & obj,vecteur & soln,gen & optimum,GIAC_CONTEXT) {
int nc=m_orig.size(),nv=obj.size();
int ns=int(m_orig.front()._VECTptr->size())-nv;
int neq=nc-ns;
matrice m(m_orig),idn(midn(nc));
// append columns for artificial variables and b (rhs values)
vector<int> av;
m=mtran(m);
for (int i=-neq;i<ns;++i) {
if (i<0 || is_one(-m[i+nv][i+neq])) {
av.push_back(i+neq);
m.push_back(idn[i+neq]);
}
}
int na=av.size();
m.push_back(b);
m=mtran(m);
vecteur br; // bottom row
if (na==0) { // no artificial variables, the problem is in canonical form
br=mergevecteur(-obj,vecteur(ns+na+1,0));
m.push_back(br);
m=simplex_reduce(m,soln,optimum,true,false,contextptr);
}
else {
// artificial variables were introduced, proceed with the two phase method
br=mergevecteur(vecteur(nv+ns,0),vecteur(av.size(),1));
br.push_back(gen(0));
for (vector<int>::const_iterator it=av.begin();it!=av.end();++it) {
br=subvecteur(br,*m[*it]._VECTptr);
}
m.push_back(br);
m=simplex_reduce(m,soln,optimum,true,false,contextptr); // phase I
if (!is_zero(optimum,contextptr)) { // no feasible solution exists
soln=vecteur(0);
return m;
}
vector< pair<int,int> > basis;
vector<bool> found(nc+1,false); // found[i] becomes true when ith column of idn is found
vector<bool> row_active(nc+1,true); // a constraint is inactive when tautologic (0=0)
for (int j=0;j<nv+ns+na;++j) {
int I=-1;
for (int i=0;i<nc+1;++i) {
if (!is_zero(m[i][j])) {
if (I>=0) {
I=-1;
break;
}
I=i;
}
}
if (I==-1 || found[I] || !is_one(m[I][j])) // jth variable not in the basis, skip
continue;
// jth variable is in the basis
found[I]=true; // remember which idn columns have been found so far
if (j>=nv+ns) { // jth variable is artificial, it must be pushed out of the basis
int k=0;
for (;k<nv+ns && is_zero(m[I][k]);++k);
if (k<nv+ns) { // kth variable entering the basis, jth leaving
m[I]=divvecteur(*m[I]._VECTptr,m[I][k]);
vecteur & pivot_v = *m[I]._VECTptr;
gen a;
for (int i=0;i<nc+1;++i) {
if (i==I)
continue;
vecteur & v=*m[i]._VECTptr;
a=v[k];
for (int J=0;J<nv+ns+na+1;++J) {
v[J]=v[J]-a*pivot_v[J];
}
}
basis.push_back(make_pair(I,k));
}
else // mark Ith row inactive
row_active[I]=false;
}
else
basis.push_back(make_pair(I,j));
}
// remove the artificial variables columns and the last row from m
m=mtran(m);
m.erase(m.begin()+nv+ns,m.end()-1);
m=mtran(m);
m.pop_back();
br=mergevecteur(-obj,vecteur(ns+1,0)); // bottom row for maximizing the objective function
for (vector< pair<int,int> >::const_iterator it=basis.begin();it!=basis.end();++it) {
br=subvecteur(br,multvecteur(br[it->second],*m[it->first]._VECTptr));
}
m.push_back(br);
for (int i=nc;i>=0;--i) {
if (!row_active[i])
m.erase(m.begin()+i);
}
m=simplex_reduce(m,soln,optimum,true,false,contextptr); // phase II
}
return m;
}
/*
* Assure that b contains no negative elements.
*/
void simplex_prepare(matrice & m,vecteur & b,GIAC_CONTEXT) {
for (int i=0;i<int(m.size());++i) {
if (is_strictly_positive(-b[i],contextptr)) {
m[i]=-m[i];
b[i]=-b[i];
}
}
}
/*
* Compute vector w=A*v.
*/
vecteur multmatvec(const matrice & m,const vecteur & v) {
vecteur res(m.size(),gen(0));
for (int i=0;i<int(m.size());++i) {
for (int j=0;j<int(v.size());++j) {
res[i]+=m[i][j]*v[j];
}
}
return res;
}
vecteur multdiagvec(const vecteur & d,const vecteur & v) {
vecteur res(d.size());
for (int i=0;i<int(d.size());++i) {
res[i]=d[i]*v[i];
}
return res;
}
bool cholesky_decomposition(const vecteur & A,matrice & L,GIAC_CONTEXT) {
int n=A.size(),j,k,l;
for (j=0;j<n;j++) {
gen s;
for (l=j;l<n;l++) {
if (int(L.size())<n)
L.push_back(vecteur(n,gen(0)));
s=0;
for (k=0;k<j;k++) {
if (is_zero(L[k][k],contextptr))
return false;
s+=L[l][k]*L[j][k]/L[k][k];
}
L[l]._VECTptr->at(j)=A[l]._VECTptr->at(j)-s;
// cout << "(" << l << "," << j << "): " << L[l][j] << endl;
}
}
for (k=0;k<n;k++) {
gen c(inv(sqrt(L[k][k],contextptr),contextptr));
for (j=k;j<n;j++) {
L[j]._VECTptr->at(k)=L[j][k]*c;
}
}
return true;
}
static int step_count;
/*
* Implementation of primal-dual affine scaling algorithm from:
* http://www.4er.org/CourseNotes/Book%20B/B-III.pdf
*/
bool primal_dual_affine_scaling(matrice & A,vecteur & b,vecteur & c,
vecteur & x,vecteur & p,vecteur & s,GIAC_CONTEXT) {
gen alpha(0.99995),beta(0.1),mu;
int nv=A.front()._VECTptr->size(),nc=A.size();
matrice At(mtran(A)),L;
vecteur xinv(nv),dx(nv),ds;
do {
++step_count;
mu=beta*scalarproduct(s,x,contextptr)/gen(nv);
for (int k=0;k<nv;++k) {
xinv[k]=pow(x[k],-1);
}
// solve the system:
// [-X^-1*S At] [dx] _ [c-At*p-mu*X^-1*e]
// [ A 0 ] [ds] โพ [ b-A*x ]
// where X^-1=diag(xinv) and S=diag(s)
vecteur B,rh1(subvecteur(c,addvecteur(multmatvec(At,p),multvecteur(mu,xinv))));
vecteur rh2(subvecteur(b,multmatvec(A,x)));
for (int j=0;j<nv;++j) {
for (int i=0;i<nc;++i) {
if (int(B.size())<nc)
B.push_back(vecteur(i+1,0));
gen cf(A[i][j]*x[j]/s[j]);
vecteur r(At[j]._VECTptr->begin(),At[j]._VECTptr->begin()+i+1);
B[i]=addvecteur(*B[i]._VECTptr,multvecteur(cf,r));
rh2[i]+=cf*rh1[j];
}
}
if (!cholesky_decomposition(B,L,contextptr)) // can't iterate further
break;
vecteur dp(rh2);
for (int i=0;i<nc;++i) {
for (int j=0;j<i;++j) {
dp[i]-=L[i][j]*dp[j];
}
dp[i]=dp[i]/L[i][i];
}
for (int j=nc-1;j>=0;--j) {
for (int i=j+1;i<nc;++i) {
dp[j]-=L[i][j]*dp[i];
}
dp[j]=dp[j]/L[j][j];
}
for (int k=0;k<nv;++k) {
rh1[k]-=scalarproduct(*At[k]._VECTptr,dp,contextptr);
dx[k]=-x[k]*rh1[k]/s[k];
}
ds=-addvecteur(s,multdiagvec(xinv,subvecteur(multdiagvec(s,dx),vecteur(nv,mu))));
if (_count_inf(makesequence(gen(0),dx),contextptr).val==0 ||
_count_inf(makesequence(gen(0),ds),contextptr).val==0)
// no optimal solution can be found
return false;
vecteur theta_xv,theta_sv;
for (int k=0;k<nv;++k) {
if (is_positive(-dx[k],contextptr) && !is_exactly_zero(dx[k]))
theta_xv.push_back(-x[k]/dx[k]);
if (is_positive(-ds[k],contextptr) && !is_exactly_zero(ds[k]))
theta_sv.push_back(-s[k]/ds[k]);
}
gen theta_x(_min(theta_xv,contextptr)),theta_s(_min(theta_sv,contextptr));
gen theta(_min(makesequence(gen(1),alpha*theta_x),contextptr));
gen phi(_min(makesequence(gen(1),alpha*theta_s),contextptr));
x=addvecteur(x,multvecteur(theta,dx));
p=addvecteur(p,multvecteur(phi,dp));
s=addvecteur(s,multvecteur(phi,ds));
} while (!is_zero(_max(_abs(multdiagvec(dx,ds),contextptr),contextptr),contextptr));
// x is optimal
return true;
}
/*
* Return true iff m has full row rank.
*/
bool is_fullrank(const matrice & m,int & r,GIAC_CONTEXT) {
r=_rank(m,contextptr).val;
return r==int(m.size());
}
/*
* Maximize z=c^T*x subject to A*x=b using primal-dual affine scaling method.
* Optimal value z* is returned.
*/
gen affscale(matrice & A,vecteur & b,vecteur & c_orig,vecteur & x,bool report,GIAC_CONTEXT) {
int rnk;
if (!is_fullrank(A,rnk,contextptr)) {
x=vecteur(0);
if (report)
cout << "Error: constraint matrix is not full rank" << endl;
return undef;
}
step_count=0;
int nv=int(c_orig.size()),ns=A.front()._VECTptr->size()-nv,nc=A.size();
vecteur c(mergevecteur(-c_orig,vecteur(ns,gen(0))));
if (x.empty())
x=vecteur(nv,gen(1));
vecteur y(ns);
for (int k=0;k<ns;++k) {
int i=k+nc-ns,j=nv+k;
vecteur & r = *A[i]._VECTptr;
y[k]=(b[i]-scalarproduct(vecteur(r.begin(),r.begin()+nv),x,contextptr))/A[i][j];
if (!is_strictly_positive(y[k],contextptr))
y[k]=gen(1);
}
x=mergevecteur(x,y);
vecteur s(nv+ns,gen(1)),p(nc,gen(0));
if (!primal_dual_affine_scaling(A,b,c,x,p,s,contextptr)) {
x=vecteur(0);
if (report)
cout << "No optimal solution found" << endl;
return undef;
}
return scalarproduct(-c,x,contextptr);
}
/*
* Test if g is integer w.r.t. tolerance itol. g is considered integer if
* |g-round(g)|<=itol.
*/
bool is_whole(const gen & g,gen & itol,GIAC_CONTEXT) {
gen d(_abs(g-_round(g,contextptr),contextptr));
return is_greater(itol,d,contextptr);
}
bool exactify_solution(vecteur & soln,vector<int> vartype,gen & itol,GIAC_CONTEXT) {
for (int i=0;i<int(vartype.size());++i) {
if (vartype[i]==1) {
if (is_whole(soln[i],itol,contextptr)) {
if (is_exactly_zero(itol))
soln[i]=exact(soln[i],contextptr);
}
else
return false;
}
}
return true;
}
bool is_slack_integer(matrice & m,vecteur & b,int J,vector<int> & vartype,vecteur & eq,GIAC_CONTEXT) {
int i=0,nv=vartype.size();
for (;is_zero(m[i][J]);++i);
eq=*m[i]._VECTptr;
eq[J]=gen(0);
eq.push_back(b[i]);
eq=multvecteur(-m[i][J],eq);
gen itol(0);
if (!is_whole(eq.back(),itol,contextptr))
return false;
for (int j=0;j<nv;++j) {
if (is_zero(eq[j]))
continue;
if (vartype[j]==0 || !is_whole(eq[j],itol,contextptr))
return false;
}
return true;
}
/*
* Some heuristics mentioned in:
*
* http://eventos.cmm.uchile.cl/discretas2016/wp-content/uploads/sites/26/2015/12/ChileSummerSchool.pdf
*
* (see page 25) are implemented in this function to discard bad cuts.
* A bad cut is represented by an empty vector.
*/
vecteur gomory_cut(matrice & M,matrice & m,vecteur & b,int I,int J,vector<int> & vartype,GIAC_CONTEXT) {
int n=m.front()._VECTptr->size(),nv=vartype.size();
vecteur eq(*M[I]._VECTptr),cut(n,gen(0));
gen f0(eq.back()-_floor(eq.back(),contextptr));
if (is_greater(f0,gen(0.99),contextptr) || is_strictly_greater(gen(0.01),f0,contextptr))
// f0 or 1-f0 is too small
return vecteur(0);
eq.pop_back();
cut.push_back(gen(1));
gen cfmin(0),cfmax(0);
for (int j=0;j<n;++j) {
if (j==J || is_zero(eq[j]))
continue;
vecteur eqj;
gen &aij=eq[j];
if (j<nv?(vartype[j]==1):is_slack_integer(m,b,j,vartype,eqj,contextptr)) {
gen fj(aij-_floor(aij,contextptr));
cut[j]=is_greater(f0,fj,contextptr)?fj/f0:(1-fj)/(1-f0);
}
else
cut[j]=aij/(is_positive(aij,contextptr)?f0:f0-1);
if (is_exactly_zero(cfmin) || is_strictly_greater(cfmin,cut[j],contextptr))
cfmin=cut[j];
if (is_strictly_greater(cut[j],cfmax,contextptr))
cfmax=cut[j];
if (j>=nv) {
cut=addvecteur(cut,multvecteur(cut[j],eqj));
cut[j]=gen(0);
}
}
if (is_greater(_abs(_evalf(cfmax/cfmin,contextptr),contextptr),pow(gen(10),6),contextptr))
// dynamism of the cut is too large
return vecteur(0);
int nz=nv;
for (int i=0;i<nv;++i) {
if (is_exactly_zero(cut[i]))
--nz;
}
if (nz>1+nv/2) // the cut is too dense
return vecteur(0);
cut=*exact(cut,contextptr)._VECTptr;
gen nzv(_abs(_denom(cut.back(),contextptr),contextptr));
for (int i=0;i<nv;++i) {
if (is_zero(cut[i]))
continue;
nzv=_lcm(makesequence(nzv,_abs(_denom(cut[i],contextptr),contextptr)),contextptr);
}
return multvecteur(nzv,cut);
}
static int cut_count;
bool simplex_gomory(matrice & M,matrice & m,vecteur & b,vecteur & obj,vector<int> & vartype,
vecteur & soln,gen & optimum,GIAC_CONTEXT) {
int nv=obj.size(),discarded_cuts=0;
if (soln.empty())
return false;
matrice cuts;
gen itol(0);
for (int j=0;j<nv;++j) {
if (vartype[j]==1 && !is_whole(soln[j],itol,contextptr)) {
int i=0;
for (;!is_one(M[i][j]);++i);
vecteur cut(gomory_cut(M,m,b,i,j,vartype,contextptr));
if (cut.empty())
++discarded_cuts;
if (!cut.empty() && find(cuts.begin(),cuts.end(),cut)==cuts.end())
cuts.push_back(cut);
}
}
if (cuts.empty())
return false;
cut_count+=int(cuts.size());
cuts=mtran(cuts);
vecteur rv(*cuts.back()._VECTptr);
cuts.pop_back();
cuts=mtran(cuts);
int nc=m.size(),ncuts=cuts.size();
m=mtran(mergevecteur(mtran(m),*_matrix(makesequence(ncuts,nc,0),contextptr)._VECTptr));
cuts=mtran(mergevecteur(mtran(cuts),multvecteur(gen(-1),midn(ncuts))));
m=mergevecteur(m,cuts);
b=mergevecteur(b,rv);
simplex_prepare(m,b,contextptr);
simplex_twophase(m,b,obj,soln,optimum,contextptr);
return true;
}
matrice copy_matrix(matrice & m) {
matrice m_copy;
for (const_iterateur it=m.begin();it!=m.end();++it) {
vecteur v(*it->_VECTptr);
m_copy.push_back(v);
}
return m_copy;
}
static int node_count;
void branch_and_bound(matrice & m_orig,vecteur & b_orig,vecteur & obj,vector<int> & varsign,
vector<int> & vartype,vecteur & soln_relaxed,vecteur & incumbent,gen & optimum,
gen & itol,bool use_affscale,int depth,int depthlimit,int nodelimit,GIAC_CONTEXT) {
if ((depthlimit>0 && depth>depthlimit) || (nodelimit>0 && node_count>=nodelimit))
return;
int nv=int(obj.size()),nc=m_orig.size(); // number of variables
int ns=int(m_orig.front()._VECTptr->size())-nv;
int k=-1;
gen fr,min_fr(0);
for (int i=0;i<nv;++i) {
if (vartype[i]==0) // ith variable is continuous, skip
continue;
fr=_abs(soln_relaxed[i]-_round(soln_relaxed[i],contextptr),contextptr);
if (is_strictly_greater(fr,min_fr,contextptr)) {
k=i;
min_fr=fr;
}
}
if (k<0) // no variable to branch on
return;
vector<int> nxt;
gen xk=soln_relaxed[k];
vecteur bounds=makevecteur(_ceil(xk,contextptr),_floor(xk,contextptr));
vecteur solnv(2),optv(2),mv(2),bv(2);
// solve two subproblems
matrice idn(midn(nv+ns));
for (int i=0;i<2;++i) {
matrice m(copy_matrix(m_orig));
vecteur b(b_orig),soln;
for (int j=0;j<nc;++j) {
m[j]._VECTptr->push_back(gen(0));
}
vecteur c(*idn[k]._VECTptr);
c.push_back(gen(2*i-1));
m.push_back(c);
b.push_back(bounds[i]);
if (i==0 && is_strictly_positive(bounds[i],contextptr)) {
int l=0;
for (vector<int>::const_iterator it=varsign.begin();it!=varsign.end();++it) {
if (*it==0 && (k==l || k==l+1)) {
c=*idn[k+(k==l?1:-1)]._VECTptr;
c.push_back(gen(0));
m=mergevecteur(vecteur(1,c),m);
b=mergevecteur(vecteur(1,gen(0)),b);
}
l+=*it==0?2:1;
}
}
if (use_affscale) {
optv[i]=affscale(m,b,obj,soln,false,contextptr);
soln=*_epsilon2zero(soln,contextptr)._VECTptr;
}
else {
matrice M(simplex_twophase(m,b,obj,soln,optv[i],contextptr));
simplex_gomory(M,m,b,obj,vartype,soln,optv[i],contextptr);
}
if (!soln.empty() && !is_inf(_abs(optv[i],contextptr)) &&
(incumbent.empty() || is_strictly_greater(optv[i],optimum,contextptr))) {
if (exactify_solution(soln,vartype,itol,contextptr)) { // update incumbent solution
incumbent=soln;
optimum=optv[i];
}
else { // mark this branch for further searching
nxt.push_back(i);
mv[i]=m;
bv[i]=b;
solnv[i]=soln;
}
}
++node_count;
if (nodelimit>0 && node_count>=nodelimit)
return;
}
// start with the branch that has higher upper bound
if (nxt.size()==2 && is_strictly_greater(optv[1],optv[2],contextptr))
reverse(nxt.begin(),nxt.end());
// test marked branches recursively
for (vector<int>::const_iterator it=nxt.begin();it!=nxt.end();++it) {
branch_and_bound(*mv[*it]._VECTptr,*bv[*it]._VECTptr,obj,varsign,vartype,*solnv[*it]._VECTptr,
incumbent,optimum,itol,use_affscale,depth+1,depthlimit,nodelimit,contextptr);
}
}
bool is_realcons(const gen & g,GIAC_CONTEXT) {
if (g.type==_VECT) {
vecteur & v = *g._VECTptr;
for (vecteur::const_iterator it=v.begin();it!=v.end();++it) {
if (!is_realcons(*it,contextptr))
return false;
}
return true;
}
return (is_inf(_abs(g,contextptr)) || _evalf(g,contextptr).type==_DOUBLE_);
}
bool lincomb_coeff(const gen & e_orig,const vecteur & v,vecteur & c,gen & r,GIAC_CONTEXT) {
gen e(e_orig),a;
c=vecteur(0);
for (vecteur::const_iterator it=v.begin();it!=v.end();++it) {
a=gen(0);
if (is_constant_wrt(e,*it,contextptr) || (is_linear_wrt(e,*it,a,e,contextptr) && is_realcons(a,contextptr)))
c.push_back(a);
else return false;
}
return is_realcons(r=e,contextptr);
}
bool interval2vecteur(const gen & g,vecteur & v,GIAC_CONTEXT) {
if (g.type!=_SYMB || !g.is_symb_of_sommet(at_interval))
return false; // g is not an interval
v=*g._SYMBptr->feuille._VECTptr;
return is_realcons(v,contextptr);
}
vector<int> findvars(const vecteur & v, const vecteur & vars) {
vector<int> indexes;
for (vecteur::const_iterator it=v.begin();it!=v.end();++it) {
if ((*it).type==_IDNT) {
// the variable is specified as an identifier
// find its index in 'vars'
int i=0;
for (;i<int(vars.size());++i) {
if (vars[i]==*it) {
indexes.push_back(i);
break;
}
}
}
else if (is_integer(*it))
// the variable is already specified as an index
indexes.push_back(int((*it).val)-1);
}
return indexes;
}
gen _lpsolve(const gen & g,GIAC_CONTEXT) {
if (g.type==_STRNG && g.subtype==-1) return g;
if (g.type!=_VECT || g.subtype!=_SEQ__VECT || g._VECTptr->size()<2)
return gensizeerr(contextptr);
vecteur & gv = *g._VECTptr,constr,vars;
vars=*_lname(gv[0],contextptr)._VECTptr; // detect variable names from the objective function
int ibd; // position of the parameter 'bd' (or 'opts', if 'bd' is not given)
if (gv[1].type==_VECT) { // the parameter 'constr' is given
constr=*gv[1]._VECTptr;
vecteur constr_vars=*_lname(gv[1],contextptr)._VECTptr; // scan variables in constraints
// detect variables not appearing in the objective function
for (vecteur::const_iterator it=constr_vars.begin();it!=constr_vars.end();++it) {
if (!contains(vars,*it))
vars.push_back(*it);
}
ibd=2;
} else // the parameter 'constr' is not given
ibd=1;
vecteur lr,bconstr,cvars,ivars,bvars,pvars,nvars,initp;
int dl=0,nl=0; // branch&bound tree depth/node limit
gen itol(0);
bool maximize=false;
bool all_nonneg=false;
bool all_integer=false;
bool all_binary=false;
bool use_affscale=false;
// check if any boundaries or options are set
for (vecteur::const_iterator it=gv.begin()+ibd;it!=gv.end();++it) {
if (is_integer(*it)) {
switch(it->val) {
case _LP_MAXIMIZE:
maximize=true;
break;
}
}
else if (it->is_symb_of_sommet(at_equal)) {
// parse the argument in form "option=value"
vecteur ops(*it->_SYMBptr->feuille._VECTptr);
if (ops[0].type==_IDNT && interval2vecteur(ops[1],lr,contextptr)) {
// the boundaries for variable ops[0] are set
if (!is_zero(lr[0]) && !is_inf(-lr[0]))
bconstr.push_back(symbolic(at_superieur_egal,makevecteur(ops[0],lr[0])));
if (!is_zero(lr[1]) && !is_inf(lr[1]))
bconstr.push_back(symbolic(at_inferieur_egal,makevecteur(ops[0],lr[1])));
if (is_positive(lr[0],contextptr))
// variable is nonnegative
pvars.push_back(ops[0]);
else if (!is_strictly_positive(lr[1],contextptr))
nvars.push_back(ops[0]);
}
if (ops[0]==at_assume) { // parse assumptions
if (is_integer(ops[1])) {
switch(ops[1].val) {
case _ZINT:
case _LP_INTEGER: // all variables are integer
all_integer=true;
ivars=vars;
break;
case _LP_BINARY: // all variables are binary
all_nonneg=true;
all_binary=true;
bvars=vars;
break;
case _NONNEGINT:
case _LP_NONNEGINT: // all variables are nonnegative integers
all_nonneg=true;
all_integer=true;
ivars=vars;
break;
case _LP_NONNEGATIVE: // all variables are nonnegative
all_nonneg=true;
break;
}
}
}
if (is_integer(ops[0])) {
switch(ops[0].val) {
case _LP_VARIABLES: // specify continuous variables
if (interval2vecteur(ops[1],lr,contextptr) && is_integer_vecteur(lr)) {
for (int i=int(lr[0].val);i<=int(lr[1].val);++i) {
cvars.push_back(gen(i));
}
}
else if (ops[1].type==_VECT)
cvars=*ops[1]._VECTptr;
break;
case _LP_INTEGERVARIABLES: // specify integer variables
if (interval2vecteur(ops[1],lr,contextptr) && is_integer_vecteur(lr)) {
for (int i=int(lr[0].val);i<=int(lr[1].val);++i) {
ivars.push_back(gen(i));
}
}
else if (ops[1].type==_VECT)
ivars=*ops[1]._VECTptr;
break;
case _LP_BINARYVARIABLES: // specify binary variables
if (interval2vecteur(ops[1],lr,contextptr) && is_integer_vecteur(lr)) {
for (int i=int(lr[0].val);i<=int(lr[1].val);++i) {
bvars.push_back(gen(i));
}
}
else if (ops[1].type==_VECT)
bvars=*ops[1]._VECTptr;
break;
case _LP_DEPTHLIMIT: // specify branch&bound tree depth limit
if (is_integer(ops[1]))
dl=ops[1].val;
break;
case _LP_NODE_LIMIT: // specify branch&bound tree node limit
if (is_integer(ops[1]))
nl=ops[1].val;
break;
case _LP_INTEGER_TOLERANCE: // specify integer tolerance for MIP
if (_evalf(ops[1],contextptr).type==_DOUBLE_ && is_positive(ops[1],contextptr))
itol=ops[1];
break;
case _LP_INITIAL_POINT: // specify initial point for affine scaling algorithm
if (ops[1].type==_VECT)
initp=*ops[1]._VECTptr;
use_affscale=true;
break;
case _LP_MAXIMIZE: // maximize=true/false for maximization/minimization
maximize=is_one(ops[1]);
break;
case _LP_METHOD:
if (is_integer(ops[1])) {
switch (ops[1].val) {
case _LP_SIMPLEX:
use_affscale=false;
break;
case _LP_INTERIOR_POINT:
use_affscale=true;
break;
}
}
break;
}
}
}
}
gen obj_ct(0); // the constant term of the objective function
int nv=0; // number of variables
vector<int> sv,varsign; // ith is 1 for variable xi nonnegative, -1 for negative and 0 for unconstrained
matrice m;
vecteur b,obj_orig;
if (gv[0].type==_VECT && vars.size()==0) {
// the problem is given in matrix form
// objective: c=[c1,c2,...,cn], maximize/minimize c.x
obj_orig=*gv[0]._VECTptr;
nv=obj_orig.size(); // number of variables
int n=constr.size();
if ((nv==0 && n==0) || (n!=0 && n!=4 && n!=2))
// improper specification of constraints, stop
return gensizeerr(contextptr);
if (n>0) {
// constraints: [A,b,Aeq,beq] such that A.x<=b and/or Aeq.x=beq
m=*constr[0]._VECTptr; // matrice A
sv=vector<int>(m.size(),-1);
b=*constr[1]._VECTptr; // vecteur b
if (m.size()!=b.size())
return gendimerr(contextptr);
if (n==4) { // there are equation constraints
vecteur &Aeq=*constr[2]._VECTptr,&beq=*constr[3]._VECTptr;
if (!ckmatrix(Aeq) || Aeq.size()!=beq.size())
return gendimerr(contextptr);
if (!Aeq.empty()) {
m=mergevecteur(Aeq,m);
b=mergevecteur(beq,b);
}
}
if (!ckmatrix(m))
return gendimerr(contextptr);
if (nv==0) {
nv=m.front()._VECTptr->size();
obj_orig=vecteur(nv,gen(0));
}
if (nv!=int(m.front()._VECTptr->size()))
return gendimerr(contextptr);
}
varsign=vector<int>(nv,all_nonneg ? 1 : 0);
// check if the third argument is a vector of bounds for variables
// [bl,bu] such that bl<=x<=bu
if (int(gv.size())>ibd &&
gv[ibd].type==_VECT &&
ckmatrix(*gv[ibd]._VECTptr) &&
int(gv[ibd]._VECTptr->front()._VECTptr->size())==nv &&
int(gv[ibd]._VECTptr->size())==2) {
// set boundaries to the variables
vecteur & bl = *(*gv[ibd]._VECTptr)[0]._VECTptr;
vecteur & bu = *(*gv[ibd]._VECTptr)[1]._VECTptr;
matrice idn(midn(nv));
for (int i=0;i<nv;++i) {
if (!is_zero(bl[i]) && !is_inf(-bl[i])) {
m.push_back(*idn[i]._VECTptr);
sv.push_back(1);
b.push_back(bl[i]);
}
if (!is_inf(bu[i])) {
m.push_back(*idn[i]._VECTptr);
sv.push_back(-1);
b.push_back(bu[i]);
}
if (!all_nonneg) {
if (is_positive(bl[i],contextptr))
varsign[i]=1;
else if (!is_strictly_positive(bu[i],contextptr))
varsign[i]=-1;
}
}
}
}
else if ((gv[0].type==_SYMB || is_zero(gv[0])) && vars.size()>0) {
// the problem is given in symbolic form
// objective: c1*x1+c2*x2+...+cn*xn
// constraints: a list of linear equations and inequalities
gen r;
if (!lincomb_coeff(gv[0],vars,obj_orig,obj_ct,contextptr)) {
cout << "Error: the objective function must be linear" << endl;
return gentypeerr(contextptr);
}
nv=vars.size();
varsign=vector<int>(nv,all_nonneg?1:0);
constr=mergevecteur(constr,bconstr);
// write the constraints in matrix form
for (vecteur::const_iterator it=constr.begin();it!=constr.end();++it) {
vecteur sides(*((*it)._SYMBptr->feuille._VECTptr)),c,bnd;
if (it->is_symb_of_sommet(at_equal) && interval2vecteur(sides[1],bnd,contextptr)) {
// a bounded expression was given as constraint
if (!lincomb_coeff(sides[0],vars,c,r,contextptr)) {
cout << "Error: all constraints must be linear" << endl;
return gentypeerr(contextptr);
}
m=mergevecteur(m,vecteur(2,c));
sv.push_back(1);
sv.push_back(-1);
b=mergevecteur(b,subvecteur(bnd,vecteur(2,r)));
continue;
}
// turn constraint to vector form
gen d=sides[0]-sides[1];
if (!lincomb_coeff(d,vars,c,r,contextptr)) {
cout << "Error: all constraints must be linear" << endl;
return gentypeerr(contextptr);
}
if (it->is_symb_of_sommet(at_equal)) {
m=mergevecteur(vecteur(1,c),m);
b=mergevecteur(vecteur(1,-r),b);
continue;
}
else if (it->is_symb_of_sommet(at_inferieur_egal)) {
if (d.type==_IDNT && find(vars.begin(),vars.end(),d)!=vars.end())
nvars.push_back(d);
else {
sv.push_back(-1);
m.push_back(c);
b.push_back(-r);
}
}
else if (it->is_symb_of_sommet(at_superieur_egal)) {
if (d.type==_IDNT && find(vars.begin(),vars.end(),d)!=vars.end())
pvars.push_back(d);
else {
sv.push_back(1);
m.push_back(c);
b.push_back(-r);
}
}
else {
cout << "Error: unrecognized relation type, it should be either >=, <= or =" << endl;
return gentypeerr(contextptr);
}
}
// update varsign
vector<int> vp=findvars(pvars,vars),vn=findvars(nvars,vars);
for (vector<int>::const_iterator vit=vp.begin();vit!=vp.end();++vit) {
varsign[*vit]=1;
}
for (vector<int>::const_iterator vit=vn.begin();vit!=vn.end();++vit) {
varsign[*vit]=-1;
}
} else // the problem is given improperly, stop
return gentypeerr(contextptr);
if (m.empty()) {
cout << "Error: no constraints found" << endl;
return gensizeerr(contextptr);
}
vecteur obj(obj_orig);
vector<int> vartype(nv,(all_integer || all_binary) ? 1 : 0);
vector<int> vi=findvars(ivars,vars),vb=findvars(bvars,vars);
for (vector<int>::const_iterator it=vi.begin();it!=vi.end();++it) {
vartype[*it]=1;
}
for (vector<int>::const_iterator it=vb.begin();it!=vb.end();++it) {
vartype[*it]=1;
varsign[*it]=1; // binary variables are always nonnegative
// append constraint of type xb<=1
m.push_back(midn(nv)[*it]);
sv.push_back(-1);
b.push_back(gen(1));
}
vector<int> vc=findvars(cvars,vars);
for (vector<int>::const_iterator it=vc.begin();it!=vc.end();++it) {
vartype[*it]=0;
}
int nc=m.size(),ns=sv.size();
bool has_initp=use_affscale && !initp.empty();
if (has_initp) {
if (int(initp.size())!=nv)
return gendimerr(contextptr);
initp=mergevecteur(initp,vecteur(ns,gen(1)));
}
m=mtran(m);
// add slack/surplus variables
matrice idn(midn(nc));
for (int i=nc-ns;i<nc;++i) {
m.push_back(multvecteur(gen(-sv[i-nc+ns]),*idn[i]._VECTptr));
}
// turn not-positive variables to nonnegative
for (int i=0;i<nv;++i) {
if (varsign[i]<0) {
obj[i]=-obj[i];
m[i]=-m[i];
}
}
// replace unrestricted variables with the difference of two nonnegative variables
for (int i=nv-1;i>=0;--i) {
if (varsign[i]==0) {
m.insert(m.begin()+i,-*m[i]._VECTptr);
obj.insert(obj.begin()+i,-obj[i]);
vartype.insert(vartype.begin()+i,vartype[i]);
if (has_initp) {
if (is_positive(initp[i],contextptr)) {
initp[i]+=gen(1);
initp.insert(initp.begin()+i,gen(1));
}
else {
initp[i]=-initp[i]+gen(1);
initp.insert(initp.begin()+i+1,gen(1));
}
}
}
}
m=mtran(m);
nv=obj.size();
// solve the problem
vecteur soln;
gen optimum;
if (!maximize)
obj=-obj;
if (use_affscale) {
soln=initp;
m=*_evalf(m,contextptr)._VECTptr;
b=*_evalf(b,contextptr)._VECTptr;
obj=*_evalf(obj,contextptr)._VECTptr;
optimum=affscale(m,b,obj,soln,true,contextptr);
}
else {
simplex_prepare(m,b,contextptr);
simplex_twophase(m,b,obj,soln,optimum,contextptr);
}
if (soln.empty())
return soln;
if (is_inf(_abs(optimum,contextptr)))
return makevecteur(maximize?optimum:-optimum,vecteur(0));
if (!exactify_solution(soln,vartype,itol,contextptr)) { // apply branch & bound method
vecteur isoln;
gen ioptimum;
node_count=0;
cut_count=0;
if (use_affscale)
itol=_max(makesequence(gen(epsilon(contextptr)*100),itol),contextptr);
branch_and_bound(m,b,obj,varsign,vartype,soln,isoln,ioptimum,itol,use_affscale,0,dl,nl,contextptr);
cout << "branch and bound summary: " << node_count << " subproblems examined";
if (use_affscale)
cout << endl;
else
cout << ", " << cut_count << " GMI cut" << (cut_count==1?"":"s") << " added" << endl;
soln=isoln;
optimum=ioptimum;
if (soln.empty()) // no feasible integer solution
return soln;
}
if (!is_exactly_zero(itol)) {
soln=*_evalf(soln,contextptr)._VECTptr;
optimum=_evalf(optimum,contextptr);
}
if (!maximize)
optimum=-optimum;
// recreate variables
int i=0;
soln.resize(nv);
for (vector<int>::const_iterator it=varsign.begin();it!=varsign.end();++it) {
switch (*it) {
case 0:
soln[i+1]-=soln[i];
soln.erase(soln.begin()+i);
break;
case -1:
soln[i]=-soln[i];
break;
}
++i;
}
vecteur v=vars.empty()?soln:*_zip(makesequence(at_equal,vars,soln),contextptr)._VECTptr;
if ((gv[0].type==_VECT && int(gv[0]._VECTptr->size())==0) || is_zero(gv[0]))
return _simplify(v,contextptr);
return makevecteur(_simplify(optimum+obj_ct,contextptr),_simplify(v,contextptr));
}
static const char _lpsolve_s []="lpsolve";
static define_unary_function_eval (__lpsolve,&_lpsolve,_lpsolve_s);
define_unary_function_ptr5(at_lpsolve,alias_at_lpsolve,&__lpsolve,0,true)
#ifndef NO_NAMESPACE_GIAC
}
#endif // ndef NO_NAMESPACE_GIAC