ezgcd.cc 50.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
/* -*- mode:C++ ; compile-command: "g++-3.4 -I. -I.. -I../include -g -c ezgcd.cc -DHAVE_CONFIG_H -DIN_GIAC" -*- */

#include "giacPCH.h"
/*  Multivariate GCD for large data not covered by the heuristic GCD algo
 *  Copyright (C) 2000,7 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
using namespace std;
#include "threaded.h"
#include "ezgcd.h"
#include "sym2poly.h"
#include "gausspol.h"
#include "modpoly.h"
#include "monomial.h"
#include "derive.h"
#include "subst.h"
#include "solve.h"
#include "giacintl.h"

#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC

  static void add_dim(monomial<gen> & m,int d){
    index_t i(m.index.iref());
    for (int j=0;j<d;++j)
      i.push_back(0);
    m.index=i;
  }

  void change_dim(polynome & p,int dim){
    vector< monomial<gen> >::iterator it=p.coord.begin(),itend=p.coord.end();
    if (p.dim>=dim){
      p.dim=dim;
      for (;it!=itend;++it){
	it->index=index_t(it->index.begin(),it->index.begin()+dim);
      }
      return;
    }
    int delta_dim=dim-p.dim;
    p.dim=dim;
    for (;it!=itend;++it)
      add_dim(*it,delta_dim);
  }

  // returns q such that p=q [degree] and q has only terms of degree<degree
  // p=q[N] means that p-q vanishes at v at order N
  static polynome reduce(const polynome & p,const vecteur & v,int degree){
    int vsize=int(v.size());
    if (!vsize)
      return p;
    if (v==vecteur(vsize)){ 
      // trivial reduction, remove all terms of total deg >= degree
      polynome res(p.dim);
      vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
      for (;it!=itend;++it){
	if (total_degree(it->index)<degree)
	  res.coord.push_back(*it);
      }
      return res;
    }
    if (degree<=1){
      gen res=peval(p,v,0);
      if (is_zero(res))
	return polynome(p.dim);
      if (res.type==_POLY){
	polynome resp(*res._POLYptr);
	change_dim(resp,p.dim);
	return resp;
      }
      else
	return polynome(monomial<gen>(res,0,p.dim));
    }
    polynome pcur(p);
    polynome y(monomial<gen>(plus_one,1,1,p.dim));
    if (!is_zero(v.front()))
      y.coord.push_back(monomial<gen>(-v.front(),0,1,p.dim));
    polynome quo(y.dim),rem(y.dim);
    pcur.TDivRem1(y,quo,rem);
    rem=reduce(rem.trunc1(),vecteur(v.begin()+1,v.end()),degree);
    quo=reduce(quo,v,degree-1);
    return quo*y+rem.untrunc1();
  }

  static void reduce_poly(const polynome & p,const vecteur & v,int degree,polynome & res){
    res.coord.clear();
    res.dim=p.dim;
    vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    if (is_zero(v)){
      index_t::const_iterator jt,jtend;
      int otherdeg;
      for (;it!=itend;++it){
	jt=it->index.begin()+1;
	jtend=it->index.end();
	for (otherdeg=0;jt!=jtend;++jt){
	  otherdeg += *jt;
	}
	if (otherdeg<degree)
	  res.coord.push_back(*it);
      }
    }
    else {
      for (;it!=itend;){
	int d=it->index.front();
	polynome tmp(Tnextcoeff<gen>(it,itend));
	res=res+reduce(tmp,v,degree).untrunc1(d);
      }
    }
  }

  // Same as reduce but do it for every coefficient of p with
  // respect to the main variable
  polynome reduce_poly(const polynome & p,const vecteur & v,int degree){
    polynome res(p.dim);
    reduce_poly(p,v,degree,res);
    return res;
  }

  // reduce_divrem does a mixed division: euclidean w.r.t. the first var
  // and ascending power of X-v for the other vars
  // FIXME: this implementation does not work currently, except if other
  // depends only on the first var
  static bool reduce_divrem2(const polynome & a,const polynome & other,const vecteur & v,int n,polynome & quo,polynome & rem,bool allowrational=false) {
    int asize=int(a.coord.size());
    if (!asize){
      quo=a;
      rem=a; 
      return true;
    }
    int bsize=int(other.coord.size());
    if (bsize==0) {
#ifdef NO_STDEXCEPT
      return false;
#else
      setsizeerr(gettext("ezgcd.cc/reduce_divrem2"));
#endif
    }
    index_m a_max = a.coord.front().index;
    index_m b_max = other.coord.front().index;
    quo.coord.clear();
    quo.dim=a.dim;
    rem.dim=a.dim;
    if ( (bsize==1) && (b_max==b_max*0) ){
      rem.coord.clear();
      gen b=other.coord.front().value;
      if (is_one(b))
	quo = a ;
      else {
	std::vector< monomial<gen> >::const_iterator itend=a.coord.end();
	for (std::vector< monomial<gen> >::const_iterator it=a.coord.begin();it!=itend;++it)
	  quo.coord.push_back(monomial<gen>(rdiv(it->value,b,context0),it->index)); 
      }
      return true;
    }
    rem=a;
    if ( ! (a_max>=b_max) ){
      // test that the first power of a_max is < to that of b_max
      return (a_max.front()<b_max.front());
    }
    gen b(other.coord.front().value);
    while (a_max >= b_max){
      // errors should be trapped here and false returned if error occured
      gen q(rdiv(rem.coord.front().value,b,context0));
      if (!allowrational){
	if ( has_denominator(q) || 
	     (!is_zero(q*b - rem.coord.front().value)) )
	  return false;
      }
      // end error trapping
      quo.coord.push_back(monomial<gen>(q,a_max-b_max));
      tensor<gen> temp;
      reduce_poly(other.shift(a_max-b_max,q),v,n,temp);
      rem = rem-temp;
      if (rem.coord.size())
	a_max=rem.coord.front().index;
      else
	break;
    }
    return(true);    
  }

  bool reduce_divrem(const polynome & a,const polynome & other,const vecteur & v,int n,polynome & quo,polynome & rem) {
    quo.coord.clear();
    quo.dim=a.dim;
    rem.dim=a.dim;
    // if ( (a.dim<=1) || (a.coord.empty()) )
      return reduce_divrem2(a,other,v,n,quo,rem);
#if 0
    std::vector< monomial<gen> >::const_iterator it=other.coord.begin();
    int bdeg=it->index.front(),rdeg;
    tensor<gen> b0(Tnextcoeff<gen>(it,other.coord.end()));
    tensor<gen> r(a),q(b0.dim);
    while ( (rdeg=r.lexsorted_degree()) >=bdeg){
      it=r.coord.begin();
      tensor<gen> a0(Tnextcoeff<gen>(it,r.coord.end())),tmp(a0.dim);
      // FIXME: should make ascending power division
      if (!reduce_divrem(a0,b0,v,n,q,tmp) || !tmp.coord.empty())
	return false;
      q=q.untrunc1(rdeg-bdeg);
      quo=quo+q;
      r=r-reduce_poly(q*other,v,n);
      if (r.coord.empty())
	return true;
    }
    return true;
#endif
  }

  // increment last index in v up to k,
  // if last index is k-1
  // while index[size-pos] is k-pos increment pos
  // if pos reaches size return false (not possible anymore)
  // else increment index[size-pos] and set following ones to prev+1
  static bool next(vector<int> & v,int dim,int k){
    ++v.back();
    if (v.back()!=k)
      return true;
    int pos=2;
    for (;pos<=dim;++pos){
      if (v[dim-pos]!=k-pos)
	break;
    }
    if (pos>dim)
      return false;
    ++v[dim-pos];
    for (--pos;pos>0;--pos){
      v[dim-pos]=v[dim-pos-1]+1;
    }
    return true;
  }

  // pcur(x1,...,xk,0,...,0) 
  static void peval_xk_xn_zero(const polynome & pcur,int k,polynome & pcurx1x2){
    pcurx1x2.coord.clear();
    int dim=pcur.dim;
    pcurx1x2.dim=dim;
    vector< monomial<gen> >::const_iterator it=pcur.coord.begin(),itend=pcur.coord.end();
    for (;it!=itend;++it){
      int j=k;
      index_t::const_iterator i = it->index.begin()+j;
      for (;j<dim;++j,++i){
	if (*i)
	  break;
      }
      if (j==dim)
	pcurx1x2.coord.push_back(*it);
    }
  }

  // pcur(x1,...,xk,0,...,0) 
  static void truncate_xk_xn(polynome & pcur,int k){
    vector< monomial<gen> >::iterator it=pcur.coord.begin(),itend=pcur.coord.end();
    for (;it!=itend;++it){
      it->index=index_t(it->index.begin(),it->index.begin()+k);
    }
    pcur.dim=k;
  }

  static void untruncate_xk_xn(polynome & pcur,int dim){
    vector< monomial<gen> >::iterator it=pcur.coord.begin(),itend=pcur.coord.end();
    for (;it!=itend;++it){
      index_t i (dim);
      i=it->index.iref();
      for (int j=int(i.size());j<dim;++j)
	i.push_back(0);
      it->index = i;
    }
    pcur.dim=dim;
  }

  gen _coeff(const gen &,GIAC_CONTEXT);

  bool try_sparse_factor(const polynome & pcur,const factorization & v,int mult,factorization & f){
    /* Try sparse factorization 
       lcoeff(pcur,x1)^#factors-1 * pcur = product_#factors P_i
       where P_i has lcoeff(pcur,x1) as leading coeff in x1
       and same non zeros coeffs pattern as the factors of Fb
    */
    // count number of unknowns
    factorization::const_iterator vit=v.begin(),vitend=v.end();
    int unknowns=0;
    for (;vit!=vitend;++vit){
      if (vit->mult>1)
	break;
      unknowns += int(vit->fact.coord.size())-1; // lcoeff is known
    }
    if (unknowns>=giacmax(5,pcur.lexsorted_degree()/2) || unknowns==0)
      return false;
    polynome lcp(Tfirstcoeff(pcur));
    int dim=pcur.dim;
    vecteur lv(dim);
    for (int i=0;i<dim;++i){
      lv[i]=identificateur("x"+print_INT_(i));
    }
    gen mainvar(lv.front());
    gen lc=r2sym(lcp,lv,context0);
    vecteur la(unknowns);
    for (int i=0;i<unknowns;++i){
      la[i]=identificateur("a"+print_INT_(i));
    }
    vecteur la_val(la);
    int pos=0;
    // build product(P_i)
    gen product(1);
    vecteur Pis;
    for (vit=v.begin();vit!=vitend;++vit){
      const polynome & fact = vit->fact;
      vector< monomial<gen> >::const_iterator it=fact.coord.begin(),itend=fact.coord.end();
      gen Pi=lc*pow(mainvar,it->index.front());
      for (++it;it!=itend;++it){
	Pi += la[pos]*pow(mainvar,it->index.front());
	++pos;
      }
      Pis.push_back(Pi);
      product = product * Pi;
    }
    product=product-r2sym(pcur,lv,context0)*pow(lc,int(Pis.size())-1,context0);
    // solve equation wrt la
    gen systemeg=_coeff(gen(makevecteur(product,mainvar),_SEQ__VECT),context0);
    if (systemeg.type!=_VECT)
      return false;
    vecteur syst;
    const_iterateur it=systemeg._VECTptr->begin(),itend=systemeg._VECTptr->end();
    for (++it;it!=itend;++it){
      if (!is_zero(*it))
	syst.push_back(*it);
    }
    // to solve syst wrt la, we search all linear equations
    // if none return false, otherwise solve system, subst 
    while (!syst.empty()){
      int N=int(syst.size());
      vecteur linear;
      for (int i=0;i<N;++i){
	gen d1=derive(syst[i],la,context0);
	if (is_zero(derive(d1,la,context0)))
	  linear.push_back(syst[i]);
      }
      if (linear.empty())
	return false;
      vecteur indet(lv);
      lvar(linear,indet);
      indet=vecteur(indet.begin()+lv.size(),indet.end());
      vecteur sols=linsolve(linear,indet,context0);
      if (sols.size()!=indet.size() || is_undef(sols) || sols.empty())
	return false;
      la_val=subst(la_val,indet,sols,false,context0);
      gen tmp=recursive_normal(subst(syst,indet,sols,false,context0),context0);
      if (tmp.type!=_VECT)
	return false;
      syst.clear();
      const_iterateur it=tmp._VECTptr->begin(),itend=tmp._VECTptr->end();
      for (;it!=itend;++it){
	if (!is_zero(*it))
	  syst.push_back(*it);
      }
    }
    // subst la values
    Pis=subst(Pis,la,la_val,false,context0);
    for (unsigned int i=0;i<Pis.size();++i){
      gen tmp=sym2r(Pis[i],lv,context0),num,den;
      fxnd(tmp,num,den);
      if (num.type!=_POLY)
	return false;
      const polynome & N=*num._POLYptr;
      f.push_back(facteur<polynome>(N/lgcd(N),mult));
    }
    return true;
  }

  // pcur(x,x1,x2,...) with [x1,x2,...]=[t^n1,t^n2,...]
  void eval_tn(const polynome & pcur,const index_t & n,polynome & pt){
    pt.dim=2;
    pt.coord.clear();
    pt.coord.reserve(pcur.coord.size());
    vector< monomial<gen> >::const_iterator it=pcur.coord.begin(),itend=pcur.coord.end();
    index_t cur(2);
    for (;it!=itend;++it){
      const index_t & i=it->index.iref();
      index_t::const_iterator jt=i.begin(),jtend=i.end();
      index_t::const_iterator nt=n.begin();
      cur[0]=*jt;
      int curn=0;
      for (++jt;jt!=jtend;++jt,++nt)
	curn += (*jt)*(*nt);
      cur[1]=curn;
      pt.coord.push_back(monomial<gen>(it->value,cur));
    }
    pt.tsort();
  }

  // return true if none of the coefficients of p with same 1st degree are the same
  bool x_degrees(const polynome & p,vector<int> & d){
    d.clear();
    vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    int prev=-1;
    vecteur v;
    for (;it!=itend;++it){
      int cur=it->index.iref().front();
      if (cur!=prev){
	v=vecteur(1,it->value);
	d.push_back(cur);
	prev=cur;
      }
      else {
	if (equalposcomp(v,it->value))
	  return false;
	v.push_back(it->value);
      }
    }
    return true;
  }

  bool lex_or_coeff_sort(const monomial<gen> & a,const monomial<gen> & b){
    if (a.index.front()!=b.index.front())
      return a.index.front()>b.index.front();
    return is_strictly_greater(a.value,b.value,context0);
  }

  bool try_sparse_factor_bi(polynome & pcur,int mult,factorization & f){
    int dim=pcur.dim;
    if (dim<=2)
      return false;
    /* Try sparse factorization using bivariate images of a factor of
       pcur(x,x1,x2,...) with [x1,x2,...]=[t^n1,t^n2,...]
       where n1,n2,...=1,1,... then 2,1,... then 1,2,...
    */
    polynome lcp(Tfirstcoeff(pcur)),lcpt;
    polynome pt,ptcont;
    index_t n(dim-1,1);
    for (;;){
      eval_tn(pcur,n,pt);
      pt=pt/Tlgcd(pt);
      eval_tn(lcp,n,lcpt);
#if POLY_SPARSE_BI
      factorization ft;
      gen extra_div_t;
      factor(pt,ptcont,ft,false,false,false,1,extra_div_t);
      if (ft.size()==1){
	f.push_back(facteur<polynome>(pcur,mult));
	return true;
      }
      factorization::const_iterator vit=ft.begin(),vitend=ft.end();
#else
      vecteur lv(makevecteur(vx_var,gen("t",context0)));
      gen dbg=_poly2symb(makesequence(pt,lv),context0);
      dbg=_factors(dbg,context0) ;
      if (dbg.type!=_VECT) return false;
      vecteur v=*dbg._VECTptr;
      if (v.size()==2){
	f.push_back(facteur<polynome>(pcur,mult));
	return true;
      }
      iterateur vit=v.begin(),vitend=v.end();
#endif
      // factor must be distinct from other factors 
      // by one of the degrees in x
      // select which factor will be reconstructed: 
      // multby=lcpt/lcoeff(factor of ft) must be as simple as possible
      // Once selected, the factor will be normalized by * by multby
      vector<int> seldegs;
      polynome multby,selp;
      for (;vit!=vitend;++vit){
#if POLY_SPARSE_BI
	if (vit->mult>1) break;
	const polynome & p=vit->fact;
#else
	++vit;
	if (*vit!=1) break;
	gen pg=_symb2poly(makesequence(*(vit-1),lv),context0);
	if (pg.type!=_POLY) break;
	const polynome & p = *pg._POLYptr;
#endif
	index_t D=p.degree();
	double ratio=p.coord.size()/(double(D[0])*D[1]);
	if (ratio>0.2)
	  return false;
	vector<int> degs;
	bool b=x_degrees(p,degs);
	if (degs==seldegs) break;
	polynome multbynew=lcpt/Tfirstcoeff(p);
	if (seldegs.empty() || (b && multbynew.coord.size()<multby.coord.size())){
	  if (!b){ 
	    // some coeffs are the same, dilate randomly 
	    // using -1, 1, 2, -2
	    vecteur lv(dim);
	    for (int i=0;i<dim;++i){
	      lv[i]=identificateur("x"+print_INT_(i));
	    }
	    gen pcurg=_poly2symb(makesequence(pcur,lv),context0);
	    vecteur lw(lv);
	    vecteur dilate=vranm(dim,4,context0);
	    for (int k=1;k<dim;++k){
	      int c=dilate[k].val;
	      switch (c){
	      case 0:
		dilate[k]=2;
		break;
	      case 1: case 2:
		dilate[k]=-1;
		break;
	      case 3:
		dilate[k]=2;
		break;
	      }
	    }
	    for (int k=1;k<dim;++k)
	      lw[k]=dilate[k]*lv[k];
	    pcurg=subst(pcurg,lv,lw,false,context0);
	    pcurg=_symb2poly(makesequence(pcurg,lv),context0);
	    if (pcurg.type!=_POLY)
	      return false;
	    polynome pcur_dilated=*pcurg._POLYptr;
	    factorization f_dilated;
	    if (!try_sparse_factor_bi(pcur_dilated,mult,f_dilated))
	      return false;
	    factorization::const_iterator fit=f_dilated.begin(),fitend=f_dilated.end();
	    for (;fit!=fitend;++fit){
	      pcurg=_poly2symb(makesequence(fit->fact,lv),context0);
	      for (int k=1;k<dim;++k)
		lw[k]=lv[k]/dilate[k];
	      pcurg=subst(pcurg,lv,lw,false,context0);
	      pcurg=_symb2poly(makesequence(pcurg,lv),context0);
	      if (pcurg.type!=_POLY)
		return false;
	      f.push_back(facteur<polynome>(*pcurg._POLYptr,fit->mult));
	    }
	    return true;
	  }
	  seldegs=degs;
	  multby=multbynew;
	  selp=multby*p;
	}
      }
      if (vit!=vitend){
	++n[0];
	if (n[0]>=4)
	  return false;
	continue;
      }
      // we will deduce x1^ in monomials by comparing with the same factor
      // of the bivariate factorization with n1=2 instead of n1=1
      // then x2^ with n1=1 and n2=2
      // If one bivariate image has less monomials than another one it is an unlucky n, use another one
      // If one bivariate image has more monomials, then we must throw everything and restart with this bivariate image
      // Once all monomials are done we should get a factor of pcur 
      // by extracting the primitive part of this factor
      sort(selp.coord.begin(),selp.coord.end(),lex_or_coeff_sort);
      polynome curp,recon(selp); recon.dim=pcur.dim;
      int increment=1,i=0;
      for (;i<n.size();){
	index_t n1(n);
	n1[i] += increment;
	int ni=n[i],n1i=n1[i];
	eval_tn(pcur,n1,pt);
	pt=pt/Tlgcd(pt);
#if POLY_SPARSE_BI
	factor(pt,ptcont,ft,false,false,false,1,extra_div_t);
	vit=ft.begin();vitend=ft.end();
#else
	dbg=_poly2symb(makesequence(pt,lv),context0);
	dbg=_factors(dbg,context0) ;
	if (dbg.type!=_VECT) return false;
	v=*dbg._VECTptr;
	iterateur vit=v.begin(),vitend=v.end();
#endif
	// lcoeff normalization
	eval_tn(lcp,n1,lcpt);
	// serch in factorization for seldeg x-degree pattern
	curp.coord.clear();
	for (;vit!=vitend;++vit){
#if POLY_SPARSE_BU
	  if (vit->mult>1){vit=vitend;} break;
	  const polynome & p=vit->fact;
#else
	  ++vit;
	  if (*vit!=1) break;
	  gen pg=_symb2poly(makesequence(*(vit-1),lv),context0);
	  if (pg.type!=_POLY) break;
	  const polynome & p = *pg._POLYptr;
#endif
	  vector<int> degs;
	  if (!x_degrees(p,degs)) break;
	  if (degs==seldegs){
	    curp=lcpt/Tfirstcoeff(p)*p;
	    break;
	  }
	}
	if (vit==vitend || curp.coord.empty()) break; // not found or not sqrfree
	// compare with selp
	if (curp.coord.size()<selp.coord.size()){ // unlucky
	  ++increment;
	  if (increment>3)
	    break;
	  continue;
	}
	sort(curp.coord.begin(),curp.coord.end(),lex_or_coeff_sort);
	if (curp.coord.size()>selp.coord.size()){
	  // selp was unlucky, restart
	  recon=selp=curp;
	  n=n1;
	  break;
	}
	// selp and curp size match, now compare monomial by monomial
	// and extract x[i] exponent in recon
	vector< monomial<gen> >::iterator rt=recon.coord.begin(),rtend=recon.coord.end(),st=selp.coord.begin(),ct=curp.coord.begin();
	for (;rt!=rtend;++rt,++st,++ct){
	  if (st->index[0]!=ct->index[0])
	    break;
	  int idx0=st->index[1];
	  int idx1=ct->index[1];
	  index_t I=rt->index.iref();
	  int delta=(idx1-idx0)/(n1i-ni);
	  if (i==0)
	    I[1]=delta;
	  else
	    I.push_back(delta);
	  if (i==n.size()-2){
	    for (int j=0;j<=i;++j){
	      idx1 -= I[j+1]*n1[j];
	    }
	    I.push_back(idx1/n1[i+1]);
	  }
	  rt->index=I;
	}
	if (rt!=rtend)
	  break;
	increment=1;
	if (i==n.size()-2) ++i;
	++i;
      }
      if (i<n.size()){
	// restart search
	++n[i];
	if (n[i]>=4)
	  return false;
	continue;
      }
      recon.tsort();
      // divide by reconstructed factor and restart factorization
      recon=recon/Tlgcd(recon);
      polynome quo,rem;
      if (!pcur.TDivRem(recon,quo,rem,false) || !is_zero(rem))
	return false;
      f.push_back(facteur<polynome>(recon,mult));
      pcur=quo;
      return try_sparse_factor_bi(pcur,mult,f);
    } // end endless for
  }

  void poly_truncate(const polynome & q,polynome & q1,int j){
    q1.coord.clear();
    vector< monomial<gen> >::const_iterator jt=q.coord.begin(),jtend=q.coord.end();
    for (;jt!=jtend;++jt){
      if (jt->index.total_degree()<j)
	q1.coord.push_back(*jt);
    }
  }

  // multiply keep only if total degree < maxdeg
  void mulpoly_truncate(const polynome & p,const polynome & q,polynome &res,int maxdeg){
    res.coord.clear();
    int dim=p.dim;
    polynome p1(dim),q1(dim),tmp(dim);
    for (int i=0;i<maxdeg;++i){
      // p1 total degree i of p, q1 total degree<maxdeg-i of q
      int j=maxdeg-i;
      // create p1 and q1
      p1.coord.clear();
      vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
      for (;it!=itend;++it){
	if (it->index.total_degree()==i)
	  p1.coord.push_back(*it);
      }
      poly_truncate(q,q1,j);
      // multiply, 
      mulpoly(p1,q1,tmp,0);
      // add to res
      p1.coord.clear();
      tmp.TAdd(res,p1);
      p1.coord.swap(res.coord);
    }
  }
	  
  // keep only monomials of total_degree==j without first degree
  void poly_truncate1(const polynome & q,polynome & q1,int j){
    q1.coord.clear();
    vector< monomial<gen> >::const_iterator it=q.coord.begin(),itend=q.coord.end();
    index_t::const_iterator jt,jtend;
    for (;it!=itend;++it){
      jt=it->index.begin()+1;
      jtend=it->index.end();
      int otherdeg;
      for (otherdeg=*jt,++jt;jt!=jtend;++jt){
	otherdeg += *jt;
      }
      if (otherdeg==j)
	q1.coord.push_back(*it);
    }
  }

  void other_deg(const polynome & p,vector<int> & pdeg){
    pdeg.reserve(p.coord.size()); pdeg.clear();
    vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    for (;it!=itend;++it){
      index_t::const_iterator jt,jtend;
      jt=it->index.begin()+1;
      //jtend=jt+dim-1;
      jtend=it->index.end();
      int otherdeg;
      for (otherdeg=*jt,++jt;jt<jtend;++jt){
	otherdeg += *jt;
      }
      pdeg.push_back(otherdeg);
    }
  }

  // multiply keep only if total degree excluding 1st deg == maxdeg
  void mulpoly_truncate1(const polynome & p,const polynome & q,polynome &res,int deg,polynome & p1,polynome & q1,polynome & tmp,vector<int> & pdeg,vector<int> & qdeg){
    bool eq=deg>=0;
    int maxdeg=eq?deg:-deg;
    res.coord.clear();
    int dim=p.dim;
    int ps=int(p.coord.size()),qs=int(q.coord.size());
    p1.coord.reserve(ps);
    other_deg(p,pdeg);
    other_deg(q,qdeg);
    const vector< monomial<gen> > & pcoord=p.coord;
    const vector< monomial<gen> > & qcoord=q.coord;
    for (int i=0;i<=maxdeg;++i){
      // p1 total degree <=i of p or ==i if deg>0, 
      // q1 total degree==maxdeg-i of q
      int j=maxdeg-i;
      // create p1 and q1
      p1.coord.clear();
      for (int k=0;k<ps;++k){
	int otherdeg=pdeg[k];
	if (eq?otherdeg==i:otherdeg<=i)
	  p1.coord.push_back(pcoord[k]);
      }
      q1.coord.clear();
      for (int k=0;k<qs;++k){
	if (qdeg[k]==j)
	  q1.coord.push_back(qcoord[k]);
      }
      // multiply, 
      mulpoly(p1,q1,tmp,0);
      // add to res
      p1.coord.clear();
      tmp.TAdd(res,p1);
      p1.coord.swap(res.coord);
    }
  }

	  
  bool try_hensel_lift_factor(const polynome & pcur,const polynome & F0,const factorization & v0,int mult,factorization & f){
    int dim=pcur.dim;
    int s=int(v0.size());
    polynome lcp(Tfirstcoeff(pcur));
    if (lcp.coord.back().index.back()!=0)
      return false;
    gen lcpb=lcp.coord.back().value;
    vector<polynome> lcoeffs(s,lcp);
    bool lcoeff_known=false;
    factorization::const_iterator F0it=v0.begin(),F0itend=v0.end();
    vector<modpoly> F0fact;
    for (;F0it!=F0itend;++F0it){
      if (F0it->mult>1)
	break;
      F0fact.push_back(modularize(F0it->fact,0,0));
      if (is_undef(F0fact.back()))
	return false;
    }
    if (pcur.dim>2 && lcp.coord.size()>1){
      // try bivariate factorization to compute a priori the leadings coefficients
      // that is factor pcur(x1,x2,0,...,0) = product p_i(x1,x2)
      // then factor lcoeff(pcur)(x2,x3,..,xn) = product q_j(x2,..,xn)
      // the lcoeff(pcur) corresponding to lcoeff(p_i)(x2) divides
      // the product of the q_j such that either q_j(x2,0,...,0) is constant
      // or gcd(q_j(x2,0,...,0),lcoeff(p_i)(x2)) is not constant
      // then we know multiples of the lcoeffs, we can therefore replace s, F0it, F0itend, lcoeffs
      polynome pcurx1x2;
      peval_xk_xn_zero(pcur,2,pcurx1x2);
      factorization fx1x2,flcoeff;
      vector<polynome> flcoeff0;
      polynome pcurx1x2cont=lgcd(pcurx1x2);
      gen extra_div=1;
      // if pcurx1x2cont is not 1, the following code may fail
      // example f:=3/5*a^2*b^2*c^2+129/20*a^2*b*c^3+18/5*a^2*b*c^2*d-1443/40*a^2*b*c^2+387/10*a^2*c^3*d-387*a^2*c^3-9/20*a^2*c^2*d+9/2*a^2*c^2-273/5*a*b^2*c^2*d+3/5*a*b^2*c^2-11739/20*a*b*c^3*d+129/20*a*b*c^3-18/5*a*b*c^2*d^2+1857/40*a*b*c^2*d-1443/40*a*b*c^2-387/10*a*c^3*d^2+4257/10*a*c^3*d-387*a*c^3+9/20*a*c^2*d^2-99/20*a*c^2*d+9/2*a*c^2+54*b^2*c^2*d^2-54*b^2*c^2*d+1161/2*b*c^3*d^2-1161/2*b*c^3*d-27/4*b*c^2*d^2+27/4*b*c^2*d; factor(f);
      if (
	  // is_one(pcurx1x2cont)
	  is_zero(pcurx1x2cont.lexsorted_degree())
	  ){
	truncate_xk_xn(pcurx1x2,2);
	if (lgcd(pcurx1x2).coord.size()>1)
	  return false;
	if (!factor(pcurx1x2,pcurx1x2cont,fx1x2,true,false,false,1,extra_div) || extra_div!=1)
	  return false;
	// fx1x2 contains factorization of pcur(x1,x2,0,...0)
	// now find factorization of lcoeff(pcur)(x2,...,xn)
	polynome pcur_lcoeff(Tfirstcoeff(pcur)),pcur_lcoeffcont,pcur_lcoeff_sqfftest;
	peval_xk_xn_zero(pcur_lcoeff,2,pcur_lcoeff_sqfftest);
	pcur_lcoeff_sqfftest=pcur_lcoeff_sqfftest.trunc1();
	// if (gcd(pcur_lcoeff_sqfftest,pcur_lcoeff_sqfftest.derivative()).lexsorted_degree()) return false;
	if (!factor(pcur_lcoeff.trunc1(),pcur_lcoeffcont,flcoeff,false,false,false,1,extra_div) || extra_div!=1)
	  return false;
	factorization::iterator jt=flcoeff.begin(),jtend=flcoeff.end();
	polynome constante(pcur_lcoeffcont.untrunc1()*pcurx1x2cont),tmp;
	for (;jt!=jtend;++jt){
	  jt->fact=jt->fact.untrunc1();
	  peval_xk_xn_zero(jt->fact,2,tmp); // should only depend on x2
	  if (Tis_constant(tmp))
	    constante=constante*pow(jt->fact,jt->mult);
	  //else 
	  flcoeff0.push_back(tmp);
	} // flcoeff0 contains the list of factors of lcoeff(pcur) evaled at 0
	F0it=fx1x2.begin();
	F0itend=fx1x2.end();
	s=int(F0itend-F0it);
	F0fact.clear();
	lcoeffs.clear();
	modpoly piF(1,1);
	for (;F0it!=F0itend;++F0it){
	  if (F0it->mult>1)
	    break;
	  polynome p (F0it->fact); // depends on x1 and x2
	  untruncate_xk_xn(p,dim);
	  peval_xk_xn_zero(p,1,tmp); // make x2=0
	  truncate_xk_xn(tmp,1);
	  modpoly Fi(modularize(tmp,0,0));
	  if (is_undef(Fi))
	    return false;
	  if (gcd(piF,Fi,0).size()>1)
	    return false;
	  piF=piF*Fi;
	  F0fact.push_back(Fi);
	  // corresponding lcoeff
	  p=Tfirstcoeff(p);
	  polynome tmp2=constante;
	  for (jt=flcoeff.begin(),jtend=flcoeff.end();jt!=jtend;++jt){
	    for (int m=jt->mult;m>0;--m){
	      polynome G(flcoeff0[jt-flcoeff.begin()]);
	      if (Tis_constant(simplify(p,G)))
		break;
	      else {
		tmp2 = tmp2 * jt->fact;
		// mark jt->fact as used
		--jt->mult;
	      }
	    }
	  }
	  lcoeffs.push_back(tmp2);
	}
	lcoeff_known=true;
      } // if is_one(pcurx1x2cont)
    }
    if (F0it!=F0itend)
      return false;
    // ok each factor of F0=pcur|0 is square free, they are prime together
    // if lcp has too much terms it will take too long, because
    // we must multiply by product(lcoeffs)/lcp
    // next check was >100 but then heuristic factorization fails
    // (should also depends on the size of the coeffs and number of variables...)
    if (!lcoeff_known && pow(lcp,s-1).coord.size()>1000)
      return false;
    // we will lift pcur*product(lcoeffs)/lcp = product_i F0fact[i]*lcoeffs[i](b)/lcoeff(F0fact[i])
    for (int i=0;i<s;++i){
      gen lcoeff=F0fact[i].front();
      mulmodpoly(F0fact[i],lcoeffs[i].coord.back().value/lcoeff,F0fact[i]);
    }
    polynome pcur_adjusted(pcur);
    if (!is_one(lcp)){
      if (lcoeff_known){
	polynome temp(lcoeffs[0]);
	for (int i=1;i<s;++i){
	  temp = temp * lcoeffs[i];
	}
	temp = temp / lcp;
	pcur_adjusted = pcur_adjusted * temp;
      }
      else {
	for (int i=1;i<s;++i){
	  pcur_adjusted =pcur_adjusted*lcoeffs[i];
	}
      }
    }
    // Perhaps the check on lcp should be made here with pcur_adjusted
    vector<modpoly> u;
    if (!egcd(F0fact,0,u))
      return false;// sum_j U_j * product_{i \neq j} F0fact_i = 1
    // factor out common deno
    // sum_j U_j * product_{i \neq j} F0fact_i = D
    vecteur den(s);
    gen D(1);
    for (int i=0;i<s;++i){
      lcmdeno(u[i],den[i],context0);
      D=lcm(D,den[i]);
    }
    for (int i=0;i<s;++i)
      mulmodpoly(u[i],D/den[i],u[i]);
    vector<polynome> P(s),P0(s),U(s);
    vecteur b(pcur_adjusted.dim-1);
    for (int i=0;i<s;++i){
      U[i].dim=pcur_adjusted.dim;
      P[i].dim=pcur_adjusted.dim;
      P0[i].dim=pcur_adjusted.dim;
      modpoly::const_iterator it=F0fact[i].begin(),itend=F0fact[i].end();
      int deg=int(itend-it)-1;
      P[i]=lcoeffs[i].trunc1().untrunc1(deg);
      for (int n=0;it!=itend;++it,++n){
	if (!is_zero(*it)){
	  if (n)
	    P[i].coord.push_back(monomial<gen>(*it,deg-n,1,pcur_adjusted.dim));
	  P0[i].coord.push_back(monomial<gen>(*it,deg-n,1,pcur_adjusted.dim));
	}
      }
      U[i].dim=pcur_adjusted.dim;
      it=u[i].begin(); itend=u[i].end();
      deg=int(itend-it)-1;
      for (int n=0;it!=itend;++it,++n){
	if (!is_zero(*it))
	  U[i].coord.push_back(monomial<gen>(*it,deg-n,1,pcur_adjusted.dim));
      }
      // CERR << Tcontent(U[i]) << endl;
    }
    polynome quo(dim),rem(dim),tmp(dim);
    // we have now pcur_adjusted = product P_i + O(total_degree>=1)
    int Total=pcur_adjusted.total_degree();
    // lift to pcur_adjusted = product P_i + O(total_degree>=k+1)
    // for deg from 1 to total_degree(pcur_adjusted)
    // P_i += (pcur_adjusted-product P_i) * U_j mod total_degree(k+1)
#if 1 // def EZGCD_DEGONLY
    if (is_zero(b)){
      polynome tmp4(dim),tmp5(dim),tmp6(dim),prod(dim);
      vector<int> tmpi1,tmpi2;
      for (int deg=1;deg<=Total;++deg){
	prod=P[s-2];
	for (int i=s-3;i>=0;--i){
	  // reduce_poly(prod * P[i],b,deg+1,prod); // keep up to deg
	  tmp.coord.clear();
	  mulpoly_truncate1(prod,P[i],tmp,-deg,tmp4,tmp5,tmp6,tmpi1,tmpi2);
	  prod.coord.swap(tmp.coord);
	  //if (prod!=prod1) CERR << "err " << deg << endl;
	} // end loop on i
	mulpoly_truncate1(prod,P[s-1],tmp,deg,tmp4,tmp5,tmp6,tmpi1,tmpi2);
	prod.coord.swap(tmp.coord);
	poly_truncate1(pcur_adjusted,tmp,deg);
	prod = tmp - prod;
	if (prod.coord.empty()){
	  // check total degrees
	  int tdeg=0;
	  for (int i=0;i<s;++i)
	    tdeg += P[i].total_degree();
	  if (tdeg==Total){ 
	    if (deg!=Total){
	      prod=P[s-1];
	      for (int i=s-2;i>=0;--i){
		// prod = prod * P[i]; 
		tmp.coord.clear();
		mulpoly(prod,P[i],tmp,0);
		prod.coord.swap(tmp.coord);
	      }
	      // N.B. prod==pcur_adjusted does not always work!
	      if ((prod-pcur_adjusted).coord.empty())
		deg=Total;
	    }
	    if (deg==Total){
	      for (int i=0;i<s;++i){
		f.push_back(facteur<polynome>(P[i]/lgcd(P[i]),mult));
	      }
	      return true;
	    }
	  }
	  continue;
	}
	//CERR << Tcontent(prod) << endl;
	for (int i=0;i<s;++i){
	  // U[i] depends only on 1st var no need to reduce
	  mulpoly(prod,U[i],rem,0);
	  //CERR << "deg " << deg << " " << Tcontent(rem) << endl;
	  if (!divrem1(rem,P0[i],quo,tmp,0) && !rem.TDivRem1(P0[i],quo,tmp,true,0))
	    return false;
	  rem.coord.swap(tmp.coord); // poly_truncate1(tmp,rem,deg);
	  // divide by D
	  vector< monomial<gen> >::const_iterator r1=rem.coord.begin(),r2=rem.coord.end();
	  Div<gen>(r1,r2,D,rem.coord);
	  P[i] = P[i] + rem;
	}
      }
    } // end if (is_zero(b))
    else
#endif
    for (int deg=1;deg<=Total;++deg){
      polynome prod(P[s-1]);
      for (int i=s-2;i>=0;--i){
	// reduce_poly(prod * P[i],b,deg+1,prod); // keep up to deg
	tmp.coord.clear();
	mulpoly(prod,P[i],tmp,0);
	reduce_poly(tmp,b,deg+1,prod);
      }
      prod = reduce_poly(pcur_adjusted,b,deg+1) - prod;
      if (prod.coord.empty()){
	// check total degrees
	int tdeg=0;
	for (int i=0;i<s;++i)
	  tdeg += P[i].total_degree();
	if (tdeg==Total){ 
	  if (deg!=Total){
	    prod=P[0];
	    for (int i=1;i<s;++i){
	      // prod = prod * P[i]; 
	      tmp.coord.clear();
	      mulpoly(prod,P[i],tmp,0);
	      swap(tmp,prod);
	    }
	    // N.B. prod==pcur_adjusted does not always work!
	    if ((prod-pcur_adjusted).coord.empty())
	      deg=Total;
	  }
	  if (deg==Total){
	    for (int i=0;i<s;++i){
	      f.push_back(facteur<polynome>(P[i]/lgcd(P[i]),mult));
	    }
	    return true;
	  }
	}
	continue;
      }
      //CERR << Tcontent(prod) << endl;
      for (int i=0;i<s;++i){
	// U[i] depends only on 1st var no need to reduce
	mulpoly(prod,U[i],rem,0);
	//CERR << "deg " << deg << " " << Tcontent(rem) << endl;
	if (!divrem1(rem,P0[i],quo,tmp,0) && !rem.TDivRem1(P0[i],quo,tmp,true,0))
	  return false;
	reduce_poly(tmp,b,deg+1,rem);
	// divide by D
	vector< monomial<gen> >::const_iterator r1=rem.coord.begin(),r2=rem.coord.end();
	Div<gen>(r1,r2,D,rem.coord);
	P[i] = P[i] + rem;
      }
    } // end for
    // FIXME combine factors 
    if (s==2){
      f.push_back(facteur<polynome>(pcur,mult));
      return true;
    }
    int nfact=s;
    index_t pcur_deg(pcur_adjusted.degree());
    vector<int> test(1);
    for (int k=1;k<=nfact/2;){
      if (debug_infolevel)
	COUT << CLOCK() << "Testing combination of " << k << " factors" << endl;
      // FIXME check on cst coeff
      if (1){
	polynome prodP(P[test[0]]);
	for (int i=1;i<k;++i){
	  mulpoly(prodP,P[test[i]],rem,0);
	  reduce_poly(rem,b,Total+1,prodP);
	}
	if (divrem1(pcur_adjusted,prodP,quo,rem,1) && rem.coord.empty()){
	  // factor found
	  pcur_adjusted=quo;
	  f.push_back(facteur<polynome>(prodP/lgcd(prodP),mult));
	  for (int i=k-1;i>=0;--i){
	    P.erase(P.begin()+test[i]);
	  }
	  nfact -= k;
	  for (int i=0;i<k;++i)
	    test[i]=i;
	  continue;
	}
      }
      if (!next(test,k,nfact)){
	++k;
	test=vector<int>(k);
	for (int i=0;i<k;++i)
	  test[i]=i;
      }
    }
    f.push_back(facteur<polynome>(pcur_adjusted/lgcd(pcur_adjusted),mult));
    return true;
  }

  // find u,v,d s.t. u*p+v*q=d by Hensel lift
  bool try_hensel_egcd(const polynome & p,const polynome & q,polynome &u,polynome &v,polynome & d){
    // check # of variables
    //if (p.dim<=1 || p.dim!=q.dim)
      return false;
    // check that 0 is a good evaluation point (same degree, gcd==1)
    vecteur b(1,0);
    polynome p0(1),q0(1);
    find_good_eval(p,q,p0,q0,b,(debug_infolevel>=2));
    if (!is_zero(b))
      return false;
    int pdeg=p.lexsorted_degree(),qdeg=q.lexsorted_degree();
    if (p0.lexsorted_degree()!=pdeg || q0.lexsorted_degree()!=qdeg)
      return false;
    gen g=gcd(pdeg,qdeg);
    if (g.type==_POLY && g._POLYptr->lexsorted_degree())
      return false;
    // Bezout at other variables==0
    polynome u0(1),v0(1),d0(1);
    egcd(p0,q0,u0,v0,d0); // d0 must be constant
    // now p*u0+q*v0-d0=O(1) where O(k) means of order >= k wrt other variables
    // p*uk+q*vk-d0=O(k) -> p*(uk+uk1)+q*(v+vk1)-d0=O(k+1)
    // with uk1 and vk1=O(k+1)
    // we have p0*uk1+q0*vk1=d0-p*uk-q*vk=yk
    // hence uk1=yk*u0/d0 % q0, vk1=yk*v0/d0 % p0
    // rational (Pade-like) reconstruction uk=fraction of polynomials 
    // with max degree wrt other variables <=k/2
    // once both fractions corresp. to uk and vk stabilizes, check identity
  }

  // Hensel linear or quadratic lift
  // FIXME Quadratic lift currently works only if lcp is constant
  // Lift the equality p(b)=qb*rb [where b is a vecteur like for peval
  // assumed to have p.dim-1 coordinates] to p=q*r mod (X-b)^deg
  // Assuming that lcoeff(q)=lcp, lcoeff(r)=lcp, lcoeff(p)=lcp^2
  // If you want to find factors of a poly P such that P(b)=Qb*Rb, 
  // if lcp is the leading coeff of P
  // then p=P*lcp, qb=Qb*lcp(b)/lcoeff(Qb), rb=Rb*lcp(b)/lcoeff(Rb)
  bool hensel_lift(const polynome & p, const polynome & lcp, const polynome & qb, const polynome & rb, const vecteur & b,polynome & q, polynome & r,bool linear_lift,double maxop){
    if (maxop)
      linear_lift=true; // otherwise please adjust number of operations to do!
    double nop=0;
    int dim=p.dim;
    int deg=total_degree(p);
    if ( (qb.dim!=1) || (rb.dim!=1) || (dim==1) ){
#ifdef NO_STDEXCEPT
      return false;
#else
      setsizeerr(gettext("Bad dimension for qb or rb or b or degrees"));
#endif
    }
    polynome qu(1),ru(1),qbd(1);
    egcd(qb,rb,qu,ru,qbd);
    if (!Tis_constant(qbd)){
#ifdef NO_STDEXCEPT
      return false;
#else
      setsizeerr(gettext("qb and rb not prime together!"));
#endif
    }
    gen qrd(qbd.coord.front().value);
    // now we have qu*qb+ru*rb=qrd with 1-d polynomials
    change_dim(qu,dim);
    change_dim(ru,dim);
    // adjust dim & leading coeff of q and r by removing current leading coeff
    // and replace by lcp
    q=qb;
    r=rb;
    change_dim(q,dim);
    change_dim(r,dim);
    polynome q0(q),r0(r);
    index_t qshift(q.dim);
    qshift[0]=q.lexsorted_degree();
    q=q+(lcp-Tfirstcoeff<gen>(q)).shift(qshift);
    qshift[0]=r.lexsorted_degree();
    r=r+(lcp-Tfirstcoeff<gen>(r)).shift(qshift);    
    polynome p_qr(dim);
    for (int n=1;;){
      // qu*q+ru*r=qrd [n] (it's exact at the loop begin)
      // p=q*r [n] where [n] means of total valuation >= n
      // at the beginning n=1
      // enhanced at order 2*n by adding q',r' of valuation >=n
      // p-(q+q')*(r+r')=p-q*r - (r'q+q'r)-q'*r'
      // hence if we put r', q' such that p-q*r=(r'q+q'r) [2n]
      // we are done. Since p-q*r is of order [n], we get the solution
      // r'=qu*(p-qr)/qrd and q'=ru*(p-qr)/qrd
      if (debug_infolevel)
	CERR << "// Hensel " << n << " -> " << deg << endl;
      if (n>deg)
	return false;
      if (linear_lift)
	++n;
      else
	n=2*n;
      if (maxop>0){
	nop += double(q.coord.size())*r.coord.size();
	if (debug_infolevel)
	  CERR << "EZGCD " << nop << ":" << maxop << endl;
	if (nop>maxop)
	  return false;
      }
      p_qr=reduce_poly(p-q*r,b,deg);
      if (is_zero(p_qr))
	return true;
      if (n>deg)
	n=deg;
      p_qr=reduce_poly(p_qr,b,n);
      polynome qprime(reduce_poly(ru*p_qr,b,n)),qquo(qprime.dim),qrem(qprime.dim);
      polynome rprime(reduce_poly(qu*p_qr,b,n)),rquo(rprime.dim),rrem(qprime.dim);
      // reduction of qprime and rprime with respect to the main variable
      // we know that
      // (*) degree(p_qr) < degree(qr)
      // where degree is the degree wrt the main variable
      // since the leading coeffs of q and r are still adjusted
      // Then there is a unique solution to (*) with
      // degree(qprime)<degree(q), degree(rprime)<degree(r)
      if (linear_lift){
	reduce_divrem(qprime,q0,b,n,qquo,qrem);
	reduce_divrem(rprime,r0,b,n,rquo,rrem);
      }
      else {
	reduce_divrem(qprime,q,b,n,qquo,qrem);
	reduce_divrem(rprime,r,b,n,rquo,rrem);
      }
      // reduction of qprime and rprime with respect to the other variables
      // maybe we should check that q and r below have integer coeff
      q=q+inv(qrd,context0)*qrem; 
      r=r+inv(qrd,context0)*rrem;
      if (!linear_lift && (n<=deg/2)){
	// Now we modify qu and ru so that
	// (qu+qu')*q+(ru+ru')*r=qrd [2n]
	// therefore qu'*q+ru'*r=qrd-(qu*q+ru*r) [2n]
	// hence qu'= qu*[qrd-(qu*q+ru*r)]/qrd, ru'=ru*[qrd-(qu*q+ru*r)]/qrd
	p_qr=polynome(monomial<gen>(qrd,0,dim))-reduce_poly(qu*q+ru*r,b,n);
	qprime=reduce_poly(qu*p_qr,b,n);
	rprime=reduce_poly(ru*p_qr,b,n);
	reduce_divrem(qprime,r,b,n,qquo,qrem);
	reduce_divrem(rprime,q,b,n,rquo,rrem);
	qu=qu+inv(qrd,context0)*qrem; // should check that qu and ru have integer coeff
	ru=ru+inv(qrd,context0)*rrem;
      }
    }
  }

  // Replace the last coordinates of p with b instead of the first
  gen peval_back(const polynome & p,const vecteur & b){
    int pdim=p.dim,bdim=int(b.size());
    vector<int> cycle(pdim);
    int deltad=pdim-bdim;
    for (int i=0;i<bdim;++i)
      cycle[i]=i+deltad;
    for (int i=bdim;i<pdim;++i)
      cycle[i]=i-bdim;
    polynome pp(p);
    pp.reorder(cycle);
    int save=debug_infolevel;
    if (debug_infolevel)
      --debug_infolevel;
    gen res(peval(pp,b,0));
    debug_infolevel=save;
    return res;
  }

  polynome peval_1(const polynome & p,const vecteur &v,const gen & mod){
#if defined(NO_STDEXCEPT) && !defined(RTOS_THREADX) && !defined(VISUALC)
    assert(p.dim==signed(v.size()+1));
#else
    if (p.dim!=signed(v.size()+1))
      setsizeerr(gettext("peval_1"));
#endif
    polynome res(1);
    index_t i(1);
    std::vector< monomial<gen> >::const_iterator it=p.coord.begin();
    std::vector< monomial<gen> >::const_iterator itend=p.coord.end();
    for (;it!=itend;){
      i[0]=it->index.front();
      polynome pactuel(Tnextcoeff<gen>(it,itend));
      gen g(peval(pactuel,v,mod));
      if ( (g.type==_POLY) && (g._POLYptr->dim==0) )
	g=g._POLYptr->coord.empty()?0:g._POLYptr->coord.front().value;
      if (!is_zero(g))
	res.coord.push_back(monomial<gen>(g,i));
    }
    return res;
  }

  polynome unmodularize(const vector<int> & a){
    if (a.empty())
      return polynome(1);
    polynome res(1);
    vector< monomial<gen> > & v=res.coord;
    index_t i;
    int deg=int(a.size())-1;
    i.push_back(deg);
    vector<int>::const_iterator it=a.begin();
    vector<int>::const_iterator itend=a.end();
    for (;it!=itend;++it,--i[0]){
      if (*it)
	v.push_back(monomial<gen>(*it,i));
    }
    return res;
  }

  static bool convert_from_truncate(const vector< T_unsigned<int,hashgcd_U> > & p,hashgcd_U var,polynome & P){
    P.dim=1;
    P.coord.clear();
    vector< T_unsigned<int,hashgcd_U> >::const_iterator it=p.begin(),itend=p.end();
    P.coord.reserve(itend-it);
    index_t i(1);
    for (;it!=itend;++it){
      i.front()=it->u/var;
      P.coord.push_back(monomial<gen>(gen(it->g),i));
    }
    return true;
  }

  // return true if a good eval point has been found
  bool find_good_eval(const polynome & F,const polynome & G,polynome & Fb,polynome & Gb,vecteur & b,bool debuglog,const gen & mod){
    int Fdeg=int(F.lexsorted_degree()),Gdeg=int(G.lexsorted_degree()),nvars=int(b.size());
    gen Fg,Gg;
    int essai=0;
    int dim=F.dim;
    if ( //false &&
	mod.type==_INT_ && mod.val){
      int modulo=mod.val;
      std::vector<hashgcd_U> vars(dim);
      vector< T_unsigned<int,hashgcd_U> > f,g,fb,gb;
      index_t d(dim);
      if (convert(F,G,d,vars,f,g,modulo)){
	vector<int> bi(dim-1);
	vecteur2vector_int(b,modulo,bi);
	for (;;++essai){
	  if (modulo && essai>modulo)
	    return false;
	  peval_x2_xn<int,hashgcd_U>(f,bi,vars,fb,modulo);
	  if (&F==&G)
	    gb=fb;
	  else
	    peval_x2_xn(g,bi,vars,gb,modulo);	  
	  if (!fb.empty() && !gb.empty() && int(fb.front().u/vars.front())==Fdeg && int(gb.front().u/vars.front())==Gdeg){
	    // convert back fb and gb and return true
	    convert_from_truncate(fb,vars.front(),Fb);
	    convert_from_truncate(gb,vars.front(),Gb);
	    return true;
	  }
	  for (int i=0;i<dim-1;++i)
	    bi[i]=std_rand() % modulo;
	}
      }
    }
    for (;;++essai){
      if (!is_zero(mod) && essai>mod.val)
	return false;
      if (debuglog)
	CERR << "Find_good_eval " << CLOCK() << " " << b << endl;
      Fb=peval_1(F,b,mod);
      if (debuglog)
	CERR << "Fb= " << CLOCK() << " " << gen(Fb) << endl;
      if (&F==&G)
	Gb=Fb;
      else {
	Gb=peval_1(G,b,mod);
      }
      if (debuglog)
	CERR << "Gb= " << CLOCK() << " " << gen(Gb) << endl;
      if ( (Fb.lexsorted_degree()==Fdeg) && (Gb.lexsorted_degree()==Gdeg) ){
	if (debuglog)
	  CERR << "FOUND good eval" << CLOCK() << " " << b << endl;
	return true;
      }
      b=vranm(nvars,0,0); // find another random point
    }
  }

  // It is probably required that 0 is a good evaluation point to
  // have an efficient algorithm
  // max_gcddeg is used when ezgcd was not successfull to find
  // the gcd even with 2 evaluations leading to the same gcd degree
  // in this case ezgcd calls itself with a bound on the gcd degree
  // is_sqff is true if we know that F_orig or G_orig is squarefree
  // is_primitive is true if F_orig and G_orig is primitive
  bool ezgcd(const polynome & F_orig,const polynome & G_orig,polynome & GCD,bool is_sqff,bool is_primitive,int max_gcddeg,double maxop){
    if (debug_infolevel)
      CERR << "// Starting EZGCD dimension " << F_orig.dim << endl;
    if (F_orig.dim<2){
#ifdef NO_STDEXCEPT
      return false;
#else
      setsizeerr(gettext("Args must be multivariate polynomials"));
#endif
    }
    int Fdeg=F_orig.lexsorted_degree(),Gdeg=G_orig.lexsorted_degree();
    polynome F(F_orig.dim),G(F_orig.dim),cF(F_orig.dim),cG(F_orig.dim),cFG(F_orig.dim);
    if (is_primitive){
      cFG=polynome(monomial<gen>(plus_one,0,F_orig.dim));
      cF=cFG;
      cG=cFG;
      F=F_orig;
      G=G_orig;
    }
    else {
      cF=Tlgcd(F_orig);
      cG=Tlgcd(G_orig);
      cFG=gcd(cF.trunc1(),cG.trunc1()).untrunc1();
      F=F_orig/cF;
      G=G_orig/cG;
    }
    if (Tis_constant(F) || Tis_constant(G) ){
      GCD=cFG;
      return true;
    }
    polynome lcF(Tfirstcoeff(F)),lcG(Tfirstcoeff(G));
    double nop=double(lcF.coord.size())*double(F.coord.size())+double(lcG.coord.size())*double(G.coord.size());
    if (maxop>0){
      if (maxop<nop/10)
	return false;
    }
    vecteur b(F.dim-1);
    polynome Fb(1),Gb(1),Db(1);
    int old_gcddeg;
    for (;;){
      if (debug_infolevel)
	CERR << "// Back to EZGCD dimension " << F_orig.dim << endl;
      find_good_eval(F,G,Fb,Gb,b);
      Db=gcd(Fb,Gb);
      old_gcddeg=Db.lexsorted_degree();
      if (debug_infolevel)
	CERR << "// Eval at " << b << " gcd  degree " << old_gcddeg << endl;
      if (!old_gcddeg){
	GCD=cFG;
	return true;
      }
      if ( (!max_gcddeg) || (old_gcddeg<max_gcddeg) )
	break;
    }
    polynome new_Fb(1),new_Gb(1),quo(F.dim),rem(F.dim);
    for (;;){
      vecteur new_b(vranm(F.dim-1,0,0));
      find_good_eval(F,G,new_Fb,new_Gb,new_b);
      if (b==new_b)
	continue;
      polynome new_Db(gcd(new_Fb,new_Gb));
      int new_gcddeg=new_Db.lexsorted_degree();
      if (debug_infolevel)
	CERR << "// Eval at " << new_b << " gcd  degree " << new_gcddeg << endl;
      if (!new_gcddeg){
	GCD=cFG;
	return true;
      }
      if (new_gcddeg>old_gcddeg) // bad evaluation point
	continue;
      if (new_gcddeg==old_gcddeg) // might be a good guess!
	break;
      old_gcddeg=new_gcddeg;
      Db=new_Db;
      Fb=new_Fb;
      Gb=new_Gb;
      b=new_b;
    }
    // Found two times the same degree, try to lift!
    if ( (Fdeg<=Gdeg) && (old_gcddeg==Fdeg) ){
      if (G.TDivRem1(F,quo,rem) && rem.coord.empty()){
	GCD= F*cFG;
	return true;
      }
    }
    if ( (Gdeg<Fdeg) && (old_gcddeg==Gdeg)  ){
      if (G.TDivRem1(F,quo,rem) && rem.coord.empty()){
	GCD=G*cFG;
	return true;
      }
    }
    if (debug_infolevel)
      CERR << "// EZGCD degree " << old_gcddeg << endl;
    if ( (old_gcddeg==Fdeg) || (old_gcddeg==Gdeg) )
      return false;
    // this algo is fast if 0 is a good eval & the degree of the gcd is small
    if (!is_zero(b))
      return false;
    //if ( (old_gcddeg>4) && (old_gcddeg>Fdeg/4) && (old_gcddeg>Gdeg/4) )
    //  return false;
    polynome cofacteur(Fb/Db);
    if (Tis_constant(gcd(cofacteur,Db))){
      // lift Fb/Db *Db, more precisely insure that lc of each factor
      // is lcF(b)
      gen lcFb(peval_back(lcF,b));
      if (lcFb.type==_POLY)
	lcFb=lcFb._POLYptr->coord.front().value;
      Db=(lcFb*Db)/Db.coord.front().value;
      cofacteur=(lcFb*cofacteur)/cofacteur.coord.front().value;
      polynome liftF(F*lcF);
      polynome D(F_orig.dim),cofacteur_F(F_orig.dim),quo,rem;
      if (hensel_lift(liftF,lcF,cofacteur,Db,b,cofacteur_F,D,!Tis_constant(lcF),maxop) ){
	D=D/Tlgcd(D);
	if (F.TDivRem1(D,quo,rem) && is_zero(rem) && G.TDivRem1(D,quo,rem) && is_zero(rem)){
	  GCD=D*cFG;
	  return true;
	}
      }
      return false;
    }
    cofacteur=Gb/Db;
    if (Tis_constant(gcd(cofacteur,Db))){
      // lift Gb/Db *Db, more precisely insure that lc of each factor
      // is lcG(b)
      gen lcGb(peval_back(lcG,b));
      if (lcGb.type==_POLY)
	lcGb=lcGb._POLYptr->coord.front().value;
      Db=(lcGb*Db)/Db.coord.front().value;
      cofacteur=(lcGb*cofacteur)/cofacteur.coord.front().value;
      polynome liftG(G*lcG);
      polynome D(G_orig.dim),cofacteur_G(G_orig.dim),quo,rem;
      if (hensel_lift(liftG,lcG,cofacteur,Db,b,cofacteur_G,D,!Tis_constant(lcG),maxop) ){
	D=D/Tlgcd(D);
	if (F.TDivRem1(D,quo,rem) && is_zero(rem) && G.TDivRem1(D,quo,rem) && is_zero(rem)){
	  GCD=D*cFG;
	  return true;
	}
      }
      return false;
    }
    // FIXME find an integer j such that (F+jG)/D_b is coprime with D_b
    return false;
  }

  // algorithm=0 for HEUGCD, 1 for PRS, 2 for EZGCD, 3 for MODGCD
  static gen heugcd_psrgcd_ezgcd_modgcd(const gen & args,int algorithm,GIAC_CONTEXT){
    vecteur & v=*args._VECTptr;
    gen p1(v[0]),p2(v[1]),n1,n2,d1,d2;
    vecteur lv;
    if ( (v.size()==3) && (v[2].type==_VECT) )
      lv=*v[2]._VECTptr;
    lvar(p1,lv);
    lvar(p2,lv);
    p1=e2r(p1,lv,contextptr);
    fxnd(p1,n1,d1);
    p2=e2r(p2,lv,contextptr);
    fxnd(p2,n2,d2);
    gen res,np_simp,nq_simp,d_content;
    polynome p,q,p_gcd;
    if ( (n1.type!=_POLY) || (n2.type!=_POLY) )
      res=gcd(n1,n2,contextptr);
    else {
      polynome pres;
      bool result=false;
      switch(algorithm){
      case 0:
	p_gcd.dim=n1._POLYptr->dim;
	result=gcdheu(*n1._POLYptr,*n2._POLYptr,p,np_simp,q,nq_simp,p_gcd,d_content,true);
	pres=p_gcd*d_content;
	break;
      case 1:
	pres=gcdpsr(*n1._POLYptr,*n2._POLYptr);
	result=true;
	break;
      case 2:
	result=ezgcd(*n1._POLYptr,*n2._POLYptr,pres);
	break;
      case 3:
	result=gcd_modular_algo(*n1._POLYptr,*n2._POLYptr,pres,false);
	break;
      }
      if (result)
	res=pres;
      else
	return gensizeerr(gettext("GCD not successfull"));
    }
    return r2e(res,lv,contextptr);
  }

  gen _ezgcd(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if ( (args.type!=_VECT) || (args._VECTptr->size()<2) )
      return symbolic(at_ezgcd,args);
    return heugcd_psrgcd_ezgcd_modgcd(args,2,contextptr);
  }
  static const char _ezgcd_s []="ezgcd";
  static define_unary_function_eval (__ezgcd,&giac::_ezgcd,_ezgcd_s);
  define_unary_function_ptr5( at_ezgcd ,alias_at_ezgcd,&__ezgcd,0,true);
  
  gen _modgcd(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if ( (args.type!=_VECT) || (args._VECTptr->size()<2) )
      return symbolic(at_modgcd,args);
    return heugcd_psrgcd_ezgcd_modgcd(args,3,contextptr);
  }
  static const char _modgcd_s []="modgcd";
  static define_unary_function_eval (__modgcd,&giac::_modgcd,_modgcd_s);
  define_unary_function_ptr5( at_modgcd ,alias_at_modgcd,&__modgcd,0,true);
  
  gen _heugcd(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if ( (args.type!=_VECT) || (args._VECTptr->size()<2) )
      return symbolic(at_heugcd,args);
    return heugcd_psrgcd_ezgcd_modgcd(args,0,contextptr);
  }
  static const char _heugcd_s []="heugcd";
  static define_unary_function_eval (__heugcd,&giac::_heugcd,_heugcd_s);
  define_unary_function_ptr5( at_heugcd ,alias_at_heugcd,&__heugcd,0,true);

  gen _psrgcd(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if ( (args.type!=_VECT) || (args._VECTptr->size()<2) )
      return symbolic(at_psrgcd,args);
    return heugcd_psrgcd_ezgcd_modgcd(args,1,contextptr);
  }
  static const char _psrgcd_s []="psrgcd";
  static define_unary_function_eval (__psrgcd,&giac::_psrgcd,_psrgcd_s);
  define_unary_function_ptr5( at_psrgcd ,alias_at_psrgcd,&__psrgcd,0,true);


#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC