desolve.cc 62.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
/* -*- mode:C++ ; compile-command: "g++-3.4 -I.. -g -c desolve.cc  -DHAVE_CONFIG_H -DIN_GIAC" -*- */
#include "giacPCH.h"
/*
 *  Copyright (C) 2000, 2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
using namespace std;
#include <stdexcept>
#include <cmath>
#include "desolve.h"
#include "derive.h"
#include "intg.h"
#include "subst.h"
#include "usual.h"
#include "symbolic.h"
#include "unary.h"
#include "poly.h"
#include "sym2poly.h" // for equalposcomp
#include "tex.h"
#include "modpoly.h"
#include "series.h"
#include "solve.h"
#include "ifactor.h"
#include "prog.h"
#include "rpn.h"
#include "lin.h"
#include "intgab.h"
#include "giacintl.h"

#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC

  gen integrate_without_lnabs(const gen & e,const gen & x,GIAC_CONTEXT){
    // workaround for desolve(diff(y)*sin(x)=y*ln(y),x,y);
    // otherwise it returns ln(-1-cos(x))
    bool save_cv=complex_variables(contextptr);
    complex_variables(false,contextptr);
    gen res=integrate_gen(e,x,contextptr);
    if (lop(res,at_abs).empty() && lop(res,at_floor).empty()){
      complex_variables(save_cv,contextptr);
      return res;
    }
    bool save_do_lnabs=do_lnabs(contextptr);
    do_lnabs(false,contextptr);
    res=integrate_gen(e,x,contextptr);
    do_lnabs(save_do_lnabs,contextptr);
    complex_variables(save_cv,contextptr);
    return res;
  }

  gen gen_t(const vecteur & v,GIAC_CONTEXT){
#ifdef GIAC_HAS_STO_38
    identificateur id_t("t38_");
#else
    identificateur id_t(" t");
#endif
    gen tmp_t,t=t__IDNT;
    t=t._IDNTptr->eval(1,tmp_t,contextptr);
    if (t!=t__IDNT || equalposcomp(lidnt(v),t__IDNT))
      t=id_t;
    return t;
  }

  gen laplace(const gen & f0,const gen & x,const gen & s,GIAC_CONTEXT){
    if (x.type!=_IDNT)
      return gensizeerr(contextptr);
    if (f0.type==_VECT){
      vecteur v=*f0._VECTptr;
      for (int i=0;i<int(v.size());++i){
	v[i]=laplace(v[i],x,s,contextptr);
      }
      return gen(v,f0.subtype);
    }
    gen t(s);
    if (s==x){
#ifdef GIAC_HAS_STO_38
      t=identificateur("s38_");
#else
      t=identificateur(" t");
#endif
    }
    // check for negative powers of x in f
    gen f(f0);
    vecteur v(1,x);
    lvar(f,v);
    fraction ff=sym2r(f,v,contextptr);
    gen ffden=ff.den;
    int n=0;
    if (ffden.type==_POLY){
      polynome & ffdenp = *ffden._POLYptr;
      if (!ffdenp.coord.empty() && (n=ffdenp.coord.back().index.front()) ){
	// multiply by (-1)^n*x^n, do laplace, then integrate n times answer
	index_t idxt(v.size());
	idxt.front()=-n;
	ff=fraction(ff.num,ffden._POLYptr->shift(idxt));
	f=r2sym(ff,v,contextptr);
	if (n%2)
	  f=-f;
      }
    }
    if (!assume_t_in_ab(t,plus_inf,plus_inf,true,true,contextptr))
      return gensizeerr(contextptr);
    gen res=_integrate(gen(makevecteur(f*exp(-t*x,contextptr),x,0,plus_inf),_SEQ__VECT),contextptr);
    for (int i=1;i<=n;++i){
      if (is_undef(res))
	return res;
      res = _integrate(gen(makevecteur(res,t,0,t),_SEQ__VECT),contextptr);
      res += _integrate(gen(makevecteur(f/pow(-x,i),x,0,plus_inf),_SEQ__VECT),contextptr);
    }
    purgenoassume(t,contextptr);
    if (s==x)
      res=subst(res,t,x,false,contextptr);
    return ratnormal(res,contextptr);
    /*
    gen remains,res=integrate(f*exp(-t*x,contextptr),*x._IDNTptr,remains,contextptr);
    res=subst(-res,x,zero,false,contextptr);
    if (s==x)
      res=subst(res,t,x,false,contextptr);
    if (!is_zero(remains))
      res = res +symbolic(at_integrate,gen(makevecteur(remains,x,0,plus_inf),_SEQ__VECT));
    return res;
    */
  }
    
  static gen _laplace_(const gen & args,GIAC_CONTEXT){
    if (args.type!=_VECT)
      return laplace(args,vx_var,vx_var,contextptr);
    vecteur & v=*args._VECTptr;
    int s=int(v.size());
    if (s==2)
      return laplace( v[0],v[1],v[1],contextptr);
    if (s!=3)
      return gensizeerr(contextptr);
    return laplace( v[0],v[1],v[2],contextptr);    
  }
  // "unary" version
  gen _laplace(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    bool b=approx_mode(contextptr);
    approx_mode(false,contextptr);
#ifndef NSPIRE
    my_ostream * ptr=logptr(contextptr);
    logptr(0,contextptr);
    gen res=_laplace_(args,contextptr);
    logptr(ptr,contextptr);
#else
    gen res=_laplace_(exact(args,contextptr),contextptr);
#endif
    approx_mode(b,contextptr);
    if (b || has_num_coeff(args))
      res=simplifier(evalf(res,1,contextptr),contextptr);
    return res;
  }
  static const char _laplace_s []="laplace";
  static define_unary_function_eval (__laplace,&_laplace,_laplace_s);
  define_unary_function_ptr5( at_laplace ,alias_at_laplace,&__laplace,0,true);

  polynome cstcoeff(const polynome & p){
    vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
    for (;it!=itend;++it){
      if (it->index.front()==0)
	break;
    }
    return polynome(p.dim,vector< monomial<gen> >(it,itend));
  }

  // reduction of a fraction with multiple poles to single poles by integration
  // by part, use the relation
  // ilaplace(P'/P^(k+1))=laplacevar/k*ilaplace(1/P^k)
  pf<gen> laplace_reduce_pf(const pf<gen> & p_cst, tensor<gen> & laplacevar ){
    pf<gen> p(p_cst);
    assert(p.mult>0);
    if (p.mult==1)
      return p_cst;
    tensor<gen> fprime=p.fact.derivative();
    tensor<gen> d(fprime.dim),C(fprime.dim),u(fprime.dim),v(fprime.dim);
    egcdpsr(p.fact,fprime,u,v,d); // f*u+f'*v=d
    tensor<gen> usave(u),vsave(v);
    // int initial_mult=p.mult-1;
    while (p.mult>1){
      egcdtoabcuv(p.fact,fprime,p.num,u,v,d,C);
      p.mult--;
      p.den=(p.den/p.fact)*C*gen(p.mult);
      p.num=u*gen(p.mult)+v.derivative()+v*laplacevar;
      if ( (p.mult % 5)==1) // simplify from time to time
	TsimplifybyTlgcd(p.num,p.den);
      if (p.mult==1)
	break;
      u=usave;
      v=vsave;
    }
    return pf<gen>(p);
  }

  static gen pf_ilaplace(const gen & e0,const gen & x, gen & remains,GIAC_CONTEXT){
    vecteur vexp;
    gen res;
    lin(e0,vexp,contextptr); // vexp = coeff, arg of exponential
    const_iterateur it=vexp.begin(),itend=vexp.end();
    remains=0;
    for (;it!=itend;){
      gen coeff=*it;
      ++it;
      gen axb=*it,expa,expb;
      ++it;
      gen e=coeff*exp(axb,contextptr);
      if (!is_linear_wrt(axb,x,expa,expb,contextptr)){
	remains += e;
	continue;
      }
      if (is_strictly_positive(expa,contextptr))
	*logptr(contextptr) << gettext("Warning, exponential x coeff is positive ") << expa << endl;
      vecteur varx(lvarx(coeff,x));
      int varxs=int(varx.size());
      if (!varxs){ // Dirac function
	res += coeff*exp(expb,contextptr)*symbolic(at_Dirac,laplace_var+expa);
	continue;
      }
      if ( (varxs>1) || (varx.front()!=x) ) {
	remains += e;
	continue;
      }
      vecteur l;
      l.push_back(x); // insure x is the main var
      l.push_back(laplace_var); // s var as second var
      l=vecteur(1,l);
      alg_lvar(makevecteur(coeff,axb),l);
      gen glap=e2r(laplace_var,l,contextptr);
      if (glap.type!=_POLY)  return gensizeerr(gettext("desolve.cc/pf_ilaplace"));
      int s=int(l.front()._VECTptr->size());
      if (!s){
	l.erase(l.begin());
	s=int(l.front()._VECTptr->size());
      }
      gen r=e2r(coeff,l,contextptr);
      gen r_num,r_den;
      fxnd(r,r_num,r_den);
      if (r_num.type==_EXT){
	remains += e;
	continue;
      }
      if (r_den.type!=_POLY){ 
	remains += e;
	continue;
      }
      polynome den(*r_den._POLYptr),num(s);
      if (r_num.type==_POLY)
	num=*r_num._POLYptr;
      else
	num=polynome(r_num,s);
      polynome p_content(lgcd(den));
      factorization vden(sqff(den/p_content)); // first square-free factorization
      vector< pf<gen> > pfde_VECT;
      polynome ipnum(s),ipden(s),temp(s),tmp(s);
      partfrac(num,den,vden,pfde_VECT,ipnum,ipden);
      vector< pf<gen> >::iterator it=pfde_VECT.begin();
      vector< pf<gen> >::const_iterator itend=pfde_VECT.end();
      vector< pf<gen> > rest,finalde_VECT;
      for (;it!=itend;++it){
	pf<gen> single(laplace_reduce_pf(*it,*glap._POLYptr));
	gen extra_div=1;
	factor(single.den,p_content,vden,false,withsqrt(contextptr),complex_mode(contextptr),1,extra_div);
	partfrac(single.num,single.den,vden,finalde_VECT,temp,tmp);
      }
      it=finalde_VECT.begin();
      itend=finalde_VECT.end();
      gen lnpart(0),deuxaxplusb,sqrtdelta,exppart;
      polynome a(s),b(s),c(s);
      polynome d(s),E(s),lnpartden(s);
      polynome delta(s),atannum(s),alpha(s);
      vecteur lprime(l);
      if (lprime.front().type!=_VECT)  return gensizeerr(gettext("desolve.cc/pf_ilaplace"));
      lprime.front()=cdr_VECT(*(lprime.front()._VECTptr));
      bool uselog;
      for (;it!=itend;++it){
	int deg=it->fact.lexsorted_degree();
	switch (deg) {
	case 1: // 1st order
	  findde(it->den,a,b);	
	  lnpart=lnpart+rdiv(r2e(it->num,l,contextptr),r2e(firstcoeff(a),lprime,contextptr),contextptr)*exp(r2e(rdiv(-b,a,contextptr),lprime,contextptr)*laplace_var,contextptr);
	  break; 
	case 2: // 2nd order
	  findabcdelta(it->fact,a,b,c,delta);
	  exppart=exp(r2e(rdiv(-b,gen(2)*a,contextptr),lprime,contextptr)*laplace_var,contextptr);
	  uselog=is_positive(delta);
	  alpha=(it->den/it->fact).trunc1()*a;
	  findde(it->num,d,E);
	  atannum=a*E*gen(2)-b*d;
	  // cos part d/alpha*ln(fact)
	  lnpartden=alpha;
	  simplify(d,lnpartden);
	  if (uselog){
	    sqrtdelta=normal(sqrt(r2e(delta,lprime,contextptr),contextptr),contextptr);
	    gen racine=ratnormal(sqrtdelta/gen(2)/r2e(a,lprime,contextptr),contextptr);
	    lnpart=lnpart+rdiv(r2e(d,lprime,contextptr),r2e(lnpartden,lprime,contextptr),contextptr)*cosh(racine*laplace_var,contextptr)*exppart;
	    gen aa=ratnormal(r2e(atannum,lprime,contextptr)/r2e(alpha,lprime,contextptr)/sqrtdelta,contextptr);
	    lnpart=lnpart+aa*sinh(racine*laplace_var,contextptr)*exppart;
	  }
	  else {
	    sqrtdelta=normal(sqrt(r2e(-delta,lprime,contextptr),contextptr),contextptr);
	    gen racine=ratnormal(sqrtdelta/gen(2)/r2e(a,lprime,contextptr),contextptr);
	    lnpart=lnpart+rdiv(r2e(d,lprime,contextptr),r2e(lnpartden,lprime,contextptr),contextptr)*cos(racine*laplace_var,contextptr)*exppart;
	    gen aa=ratnormal(r2e(atannum,lprime,contextptr)/r2e(alpha,lprime,contextptr)/sqrtdelta,contextptr);
	    lnpart=lnpart+aa*sin(racine*laplace_var,contextptr)*exppart;
	  }
	  break; 
	default:
	  rest.push_back(pf<gen>(it->num,it->den,it->fact,1));
	  break ;
	}
      }
      vecteur ipnumv=polynome2poly1(ipnum,1);
      gen deno=r2e(ipden,l,contextptr);
      int nums=int(ipnumv.size());
      for (int i=0;i<nums;++i){
	gen tmp = rdiv(r2e(ipnumv[i],lprime,contextptr),deno,contextptr);
	tmp = tmp*symbolic(at_Dirac,(i==nums-1)?laplace_var:gen(makevecteur(laplace_var,nums-1-i),_SEQ__VECT));
	res += tmp;
      }
      remains += r2sym(rest,l,contextptr)*exp(axb,contextptr);
      if (is_zero(expa))
	res += lnpart*exp(expb,contextptr);
      else
	res += quotesubst(lnpart,laplace_var,laplace_var+expa,contextptr)*exp(expb,contextptr)*_Heaviside(laplace_var+expa,contextptr);
    }
    return res;
  }

  gen ilaplace(const gen & f,const gen & x,const gen & s,GIAC_CONTEXT){
    if (x.type!=_IDNT)
      return gensizeerr(contextptr);
    if (has_num_coeff(f))
      return ilaplace(exact(f,contextptr),x,s,contextptr);
    gen remains,res=linear_apply(f,x,remains,contextptr,pf_ilaplace);
    res=subst(res,laplace_var,s,false,contextptr);
    if (!is_zero(remains))
      res=res+symbolic(at_ilaplace,makevecteur(remains,x,s));
    return res;
  }
  // "unary" version
  gen _ilaplace(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type!=_VECT)
      return ilaplace(args,vx_var,vx_var,contextptr);
    vecteur & v=*args._VECTptr;
    int s=int(v.size());
    if (s==2)
      return ilaplace( v[0],v[1],v[1],contextptr);
    if (s!=3)
      return gensizeerr(contextptr);
    return ilaplace( v[0],v[1],v[2],contextptr);
  }
  static const char _ilaplace_s []="ilaplace";
  static define_unary_function_eval (__ilaplace,&_ilaplace,_ilaplace_s);
  define_unary_function_ptr5( at_ilaplace ,alias_at_ilaplace,&__ilaplace,0,true);

  static const char _invlaplace_s []="invlaplace";
  static define_unary_function_eval (__invlaplace,&_ilaplace,_invlaplace_s);
  define_unary_function_ptr5( at_invlaplace ,alias_at_invlaplace,&__invlaplace,0,true);

  static gen unable_to_solve_diffeq(){
    return gensizeerr(gettext("Unable to solve differential equation"));
  }

  gen diffeq_constante(int i,GIAC_CONTEXT){
#if 0 // def NSPIRE
    if (i<5){
      const char * tab[]={"o","p","q","r","s"};
      return gen(tab[i],contextptr);
    }
#endif
#ifdef GIAC_HAS_STO_38
    string s("G_"+print_INT_(i));
#else
    string s("c_"+print_INT_(i));
#endif
    return gen(s,contextptr);
  }

  // return -1 if f does not depend on y
  static int diffeq_order(const gen & f,const gen & y){
    vecteur ydepend(rlvarx(f,y));
    const_iterateur it=ydepend.begin(),itend=ydepend.end();
    // since we did a recursive lvar we dismiss all variables except
    // if they begin with derive
    int n=-1;
    for (;it!=itend;++it){
      if (*it==y)
	n=giacmax(n,0);
      if ( (it->type==_SYMB) && (it->_SYMBptr->sommet==at_derive) ){
	gen & g=it->_SYMBptr->feuille;
	int m=-1,nder=1;
	if ( (g.type==_VECT) && (!g._VECTptr->empty()) ){
	  m=diffeq_order(g._VECTptr->front(),y);
	  if (g._VECTptr->size()==3){
	    gen & gg=g._VECTptr->back();
	    if (gg.type==_INT_)
	      nder=gg.val;
	  }
	}
	else 
	  m=diffeq_order(g,y);
	if (m>=0)
	  n=giacmax(n,m+nder);
      }
    }
    return n;
  }

  // true if f is a linear differential equation
  // & returns the coefficient in v in descending order
  // v has size order+2 with last term=cst coeff of the diff equation
  static bool is_linear_diffeq(const gen & f_orig,const gen & x,const gen & y,int order,vecteur & v,int step_info,GIAC_CONTEXT){
    v.clear();
    gen f(f_orig),a,b,cur_y(y);
    gen t=gen_t(makevecteur(x,y,f_orig),contextptr);
    for (int i=0;i<=order;++i){
      gen ftmp(quotesubst(f,cur_y,t,contextptr));
      if (!is_linear_wrt(eval(ftmp,eval_level(contextptr),contextptr),t,a,b,contextptr))
	return false;
      if (!rlvarx(a,y).empty())
	return false;
      if (!i)
	v.push_back(b);
      v.push_back(a);
      cur_y=symb_derive(y,x,i+1);
    }
    reverse(v.begin(),v.end());
    if (step_info && v.size()>3)
      gprintf("Linear differential equation of coefficients %gen\nsecond member %gen",makevecteur(vecteur(v.begin(),v.end()-1),-v.back()),step_info,contextptr);
    return true;
  }

  static bool find_n_derivatives_function(const gen & f,const gen & x,int & nder,gen & fonction){
    if ( (f.type!=_SYMB) || (f._SYMBptr->sommet!=at_derive) ){
      nder=0;
      fonction=f;
      return true;
    }
    if (f._SYMBptr->feuille.type!=_VECT){
      if (!find_n_derivatives_function(f._SYMBptr->feuille,x,nder,fonction))
	return false;
      ++nder;
      return true;
    }
    vecteur & v=*f._SYMBptr->feuille._VECTptr;
    if ( (v.size()>1) && (v[1]!=x) )
      return false; // setsizeerr(contextptr);
    if (!find_n_derivatives_function(v[0],x,nder,fonction))
      return false;
    if ( (v.size()==3) && (v[2].type==_INT_) )
      nder += v[2].val;
    else
      nder += 1;
    return true;
  }

  static gen function_of(const gen & y_orig,const gen & x_orig){
    if ( (y_orig.type!=_SYMB) || (y_orig._SYMBptr->sommet!=at_of) )
      return gensizeerr(gettext("function_of"));
    vecteur & v =*y_orig._SYMBptr->feuille._VECTptr;
    if ( (v[1]!=x_orig) || (v[0].type!=_IDNT) )
      return gensizeerr(gettext("function_of"));
    return v[0];
  }

  static gen in_desolve_with_conditions(const vecteur & v_,const gen & x,const gen & y,const gen & solution_generale,const vecteur & parameters,const gen & f,int step_info,GIAC_CONTEXT){
    gen yy(y);
    vecteur v(v_);
    if (yy.type!=_IDNT)
      yy=function_of(y,x);
    if (is_undef(yy))
      return yy;
    // special handling for systems
    if (solution_generale.type==_VECT && v.size()==2){
      gen init=v[1],point=0;
      if (init.is_symb_of_sommet(at_equal) && init._SYMBptr->feuille.type==_VECT&& init._SYMBptr->feuille._VECTptr->size()>=2){
	point=(*init._SYMBptr->feuille._VECTptr)[0];
	init=(*init._SYMBptr->feuille._VECTptr)[1];
	if (!point.is_symb_of_sommet(at_of) || point._SYMBptr->feuille.type!=_VECT || point._SYMBptr->feuille._VECTptr->size()<2 || point._SYMBptr->feuille._VECTptr->front()!=y)
	  return gensizeerr("Bad initial condition");
	point=(*point._SYMBptr->feuille._VECTptr)[1];
      }
      gen systeme=subst(solution_generale,x,point,false,contextptr)-init;
      gen s=_solve(makesequence(systeme,parameters),contextptr);
      if (s.type!=_VECT)
	return gensizeerr("Bad initial condition");
      vecteur res;
      for (unsigned i=0;i<s._VECTptr->size();++i){
	gen tmp=subst(solution_generale,parameters,s[i],false,contextptr);
	tmp=ratnormal(tmp,contextptr);
	res.push_back(tmp);
      }
      return res;
    }
    if (solution_generale.type==_VECT)
      *logptr(contextptr) << gettext("Boundary conditions for parametric curve not implemented") << endl;
    // solve boundary conditions
    iterateur jt=v.begin()+1,jtend=v.end();
    for (unsigned ndiff=0;jt!=jtend;++ndiff,++jt){
      if (jt->type==_VECT && jt->_VECTptr->size()==2){
	if (ndiff)
	  *jt=symbolic(at_of,makesequence(symbolic(at_derive,makesequence(y,x,int(ndiff))),jt->_VECTptr->front()))-jt->_VECTptr->back();
	else
	  *jt=symbolic(at_of,makesequence(y,jt->_VECTptr->front()))-jt->_VECTptr->back();
      }
    }
    const_iterateur it=v.begin()+1,itend=v.end();
    vecteur conditions(remove_equal(it,itend));
    if (conditions.empty())
      return solution_generale;
    // conditions must be in terms of y(value) or derivatives
    vecteur condvar(rlvarx(conditions,yy));
    vecteur yvar; // will contain triplet (var,n,x) n=nth derivative, x point
    it=condvar.begin(),itend=condvar.end();
    int maxnder=0;
    for (;it!=itend;++it){
      if ( (it->type!=_SYMB) || (it->_SYMBptr->sommet!=at_of) )
	continue;
      vecteur & w=*it->_SYMBptr->feuille._VECTptr;
      int nder;
      gen fonction;
      if (!find_n_derivatives_function(w[0],x,nder,fonction))
	return gensizeerr(contextptr);
      if (fonction==y){
	if ( (w[1].type==_VECT) && (!w[1]._VECTptr->empty()))
	  yvar.push_back(makevecteur(*it,nder,w[1]._VECTptr->front()));
	else
	  yvar.push_back(makevecteur(*it,nder,w[1]));
      }
      if (nder>maxnder)
	maxnder=nder;
    }
    // compute all derivatives of the general solution
    vecteur derivatives(1,solution_generale);
    gen current=solution_generale;
    for (int i=1;i<=maxnder;++i){
      current=derive(current,x,contextptr);
      derivatives.push_back(current);
    }
    // evaluate at points of yvar making substition vectors
    it=yvar.begin(),itend=yvar.end();
    vecteur substin,substout;
    for (;it!=itend;++it){
      vecteur & w=*it->_VECTptr;
      substin.push_back(w[0]);
      substout.push_back(subst(derivatives[w[1].val],x,w[2],false,contextptr));
    }
    // replace in conditions
    conditions=*eval(subst(conditions,substin,substout,false,contextptr),eval_level(contextptr),contextptr)._VECTptr;
    // solve system over _c0..._cn-1
    int save_xcas_mode=xcas_mode(contextptr);
    xcas_mode(contextptr)=0;
    int save_calc_mode=calc_mode(contextptr);
    calc_mode(contextptr)=0;
    vecteur parameters_solutions=*_solve(gen(makevecteur(conditions,parameters),_SEQ__VECT),contextptr)._VECTptr;
    if (step_info)
      gprintf("General solution %gen\nSolving initial conditions\n%gen\nunknowns %gen\nSolutions %gen",makevecteur(solution_generale,conditions,parameters,parameters_solutions),step_info,contextptr);
    xcas_mode(contextptr)=save_xcas_mode;
    calc_mode(contextptr)=save_calc_mode;
    // replace _c0..._cn-1 in solution_generale
    it=parameters_solutions.begin(),itend=parameters_solutions.end();
    vecteur res;
    for (;it!=itend;++it){
      gen solgen=eval(subst(solution_generale,parameters,*it,false,contextptr),eval_level(contextptr),contextptr);
      // check if f is valid at points where conditions hold (3rd column of yvar)
      gen solgenchk=eval(subst(f,y,solgen,false,contextptr),1,contextptr);
      bool ok=true;
      for (unsigned i=0;i<yvar.size();++i){
	gen tmp=subst(solgenchk,x,yvar[i][2],false,contextptr);
	if (lidnt(tmp).empty() && !is_zero(simplify(tmp,contextptr))){
	  ok=false;
	  break;
	}
      }
      if (ok)
	res.push_back(solgen);
    }
    if (res.size()==1) 
      return res.front();
    return res;
  }

  static gen desolve_with_conditions(const vecteur & v,const gen & x,const gen & y,gen & f,int step_info,GIAC_CONTEXT){
    if (v.empty())
      return gensizeerr(contextptr);
    int ordre;
    vecteur parameters;
    gen solution_generale(desolve_f(v.front(),x,y,ordre,parameters,f,step_info,contextptr));
    if (solution_generale.type!=_VECT) 
      return in_desolve_with_conditions(v,x,y,solution_generale,parameters,f,step_info,contextptr);
    solution_generale.subtype=0; // otherwise desolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) fails on the Prime (?)
    if (parameters.empty())
      return solution_generale;
    iterateur it=solution_generale._VECTptr->begin(),itend=solution_generale._VECTptr->end();
    vecteur res;
    res.reserve(itend-it);
    for (;it!=itend;++it){
      if (it->type==_VECT) it->subtype=0;
      gen tmp=in_desolve_with_conditions(v,x,y,*it,parameters,f,step_info,contextptr);
      if (is_undef(tmp))
	return tmp;
      if (tmp.type==_VECT)
	res=mergevecteur(res,*tmp._VECTptr);
      else
	res.push_back(tmp);
    }
    return res;
  }

  static gen desolve_with_conditions(const vecteur & v,const gen & x,const gen & y,gen & f,GIAC_CONTEXT){
    int st=step_infolevel(contextptr);
    step_infolevel(0,contextptr);
    gen res=desolve_with_conditions(v,x,y,f,st,contextptr);
    step_infolevel(st,contextptr);
    return res;
  }

  // f must be a vector obtained using factors
  // x, y are 2 idnt
  // xfact and yfact should be initialized to 1
  // return true if f=xfact*yfact where xfact depends on x and yfact on y only
  bool separate_variables(const gen & f,const gen & x,const gen & y,gen & xfact,gen & yfact,int step_info,GIAC_CONTEXT){
    const_iterateur jt=f._VECTptr->begin(),jtend=f._VECTptr->end();
    for (;jt!=jtend;jt+=2){
      vecteur tmp(*_lname(*jt,contextptr)._VECTptr);
      if (equalposcomp(tmp,y)){
	if (equalposcomp(tmp,x))
	  return false;
	yfact=yfact*pow(*jt,*(jt+1),contextptr);
      }
      else
	xfact=xfact*pow(*jt,*(jt+1),contextptr);
    }
    if (step_info)
      gprintf("Separable variables d%gen/%gen=%gen*d%gen",makevecteur(y,yfact,xfact,x),step_info,contextptr);
    return true;
  }

  bool separate_variables(const gen & f,const gen & x,const gen & y,gen & xfact,gen & yfact,GIAC_CONTEXT){
    return separate_variables(f,x,y,xfact,yfact,step_infolevel(contextptr),contextptr);
  }

  void ggb_varxy(const gen & f_orig,gen & vx,gen & vy,GIAC_CONTEXT){
    vecteur lv=lidnt(f_orig);
    vx=vx_var;
    vy=y__IDNT_e;
#if 0
    if (calc_mode(contextptr)==1){
      vx=gen("ggbtmpvarx",contextptr);
      vy=gen("ggbtmpvary",contextptr);
    }
#endif
    for (unsigned i=0;i<lv.size();++i){
      string s=lv[i].print(contextptr);
      char c=s[s.size()-1];
      if (c=='x')
	vx=lv[i];
      if (c=='y')
	vy=lv[i];
    }
  }

  static gen desolve_cleanup(const gen & i,const gen & x,GIAC_CONTEXT){
    if (i.is_symb_of_sommet(at_prod)){
      gen f=i._SYMBptr->feuille;
      if (f.type==_VECT){
	vecteur w;
	for (int j=0;j<f._VECTptr->size();++j){
	  gen tmp=desolve_cleanup((*f._VECTptr)[j],x,contextptr);
	  if (!is_one(tmp))
	    w.push_back(tmp);
	}
	return _prod(w,contextptr);
      }
    }
    if (i.is_symb_of_sommet(at_abs) || i.is_symb_of_sommet(at_neg))
      return desolve_cleanup(i._SYMBptr->feuille,x,contextptr);
    if (is_zero(derive(i,x,contextptr)))
      return 1;
    return i;
  }

  // solve linear diff eq of order 1 a*y'+b*y+c=0
  static gen desolve_lin1(const gen &a,const gen &b,const gen & c,const gen & x,vecteur & parameters,int step_info,GIAC_CONTEXT){
    if (step_info)
      gprintf("Linear differential equation of order 1 a*y'+b*y+c=0\na=%gen, b=%gen, c=%gen",makevecteur(a,b,c),step_info,contextptr);
    if (a.type==_VECT){
      // y'+inv(a)*b(x)*y+inv(a)*c(x)=0
      // take laplace transform
      // p*Y-Y(0)+bsura*Y+csura=0
      // (p+bsura)*Y=Y(0)-csura
      int n=int(a._VECTptr->size());
      if (!ckmatrix(a) || !ckmatrix(b))
	return gensizeerr(contextptr);
      gen inva=inv(a,contextptr);
      gen bsura=inva*b,csura,cl;
      if (!is_zero(derive(bsura,x,contextptr)))
	return gensizeerr("Non constant linear differential system");
      if (c.type==_VECT){
	vecteur & cv=*c._VECTptr;
	for (unsigned i=0;i<cv.size();++i){
	  if (cv[i].type==_VECT && cv[i]._VECTptr->size()==1)
	    cv[i]=cv[i]._VECTptr->front();
	}
	csura=inva*c;
	cl=_laplace(makesequence(csura,x,x),contextptr);
      }
      else {
	if (!is_zero(c))
	  return gensizeerr("Invalid second member");
	cl=vecteur(n);
      }
      if (cl.type!=_VECT || int(cl._VECTptr->size())!=n)
	return gensizeerr("Invalid second member");	    
      for (int i=0;i<n;++i){
	parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	(*cl._VECTptr)[i] = parameters.back()- (*cl._VECTptr)[i];
      }
      cl=inv(bsura+x,contextptr)*cl;
      cl=ilaplace(cl,x,x,contextptr);
      return vecteur(1,ratnormal(cl,contextptr));
    }
    gen i=integrate_without_lnabs(rdiv(b,a,contextptr),x,contextptr);
    i=normal(lnexpand(i,contextptr),contextptr);
    i=exp(i,contextptr);
    if (step_info)
      gprintf("Homogeneous solution C/%gen",makevecteur(i),step_info,contextptr);
    i=expexpand(i,contextptr);
    i=simplify(i,contextptr);
    // cleanup general solution: remove cst factors and absolute values
    i=desolve_cleanup(i,x,contextptr);
    gen C=integrate_without_lnabs(ratnormal(rdiv(-c,a,contextptr)*i,contextptr),x,contextptr);
    if (step_info && C!=0)
      gprintf("Particuliar solution %gen",makevecteur(C),step_info,contextptr);
    parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
    gen res=ratnormal(_lin((C+parameters.back())/i,contextptr),contextptr);
    if (step_info)
      gprintf("General solution %gen",makevecteur(res),step_info,contextptr);
    return res;
  }

  bool desolve_linn(const gen & x,const gen & y,const gen & t,int n,vecteur & v,vecteur & parameters,gen & result,int step_info,GIAC_CONTEXT){
    // 1st order
    if (n==1){ // a(x)*y'+b(x)*y+c(x)=0
      // y'/y=-b/a -> y=C(x)exp(-int(b/a)) and a(x)*C'*exp()+c(x)=0
      gen & a=v[0];
      gen & b=v[1];
      gen & c=v[2];
      if (ckmatrix(a)){
	if (c.type!=_VECT && is_zero(c))
	  c=c*a;
	c=_tran(c,contextptr)[int(a._VECTptr->size())-1];
      }
      result=desolve_lin1(a,b,c,x,parameters,step_info,contextptr);
      return true;
    }
    // cst coeff?
    gen cst=v.back();
    v.pop_back();
    if (derive(v,x,contextptr)==vecteur(n+1,zero)){
      if (step_info)
	gprintf("Linear differential equation with constant coefficients\nOrder %gen, coefficients %gen",makevecteur(n,v),step_info,contextptr);
      // Yes!
      // simpler general solution for small order generic lin diffeq with cst coeff/squarefree case
      if (n<=3){
	vecteur rac=solve(horner(v,x,contextptr),x,1,contextptr);
	comprim(rac);
	if (n==2 && rac.size()==1){
	  parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	  parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	  gen sol = exp(rac.front()*x,contextptr)*(parameters[parameters.size()-2]*x+parameters.back());
	  if (step_info)
	    gprintf("Homogeneous solution %gen",makevecteur(sol),step_info,contextptr);
	  bool b=calc_mode(contextptr)==1;
	  if (b)
	    calc_mode(0,contextptr);
	  gen part=_integrate(makesequence(-cst/v.front()*exp(-rac.front()*x,contextptr),x),contextptr)*x+_integrate(makesequence(cst/v.front()*x*exp(-rac.front()*x,contextptr),x),contextptr);
	  if (step_info)
	    gprintf("Particuliar solution %gen",makevecteur(part),step_info,contextptr);
	  if (b)
	    calc_mode(1,contextptr);
	  part=simplify(part*exp(rac.front()*x,contextptr),contextptr);
	  result=sol+part;
	  if (step_info)
	    gprintf("General solution %gen",makevecteur(result),step_info,contextptr);
	  return true;
	}
	if (int(rac.size())==n){
	  gen sol; bool reel=true;
	  for (int j=0;j<n;){
	    if (j<n-1 && is_zero(ratnormal(rac[j]-conj(rac[j+1],contextptr),contextptr),contextptr)){
	      gen racr,raci;
	      reim(rac[j],racr,raci,contextptr);
	      if (is_strictly_positive(-raci,contextptr))
		raci=-raci;
	      parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	      parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	      sol += exp(racr*x,contextptr)*(parameters[parameters.size()-2]*cos(raci*x,contextptr)+parameters[parameters.size()-1]*sin(raci*x,contextptr));
	      j+=2;
	      continue;
	    }
	    if (reel && !is_zero(im(rac[j],contextptr)))
	      reel=false;
	    parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	    sol += parameters.back()*exp(rac[j]*x,contextptr);
	    j++;
	  }
	  if (step_info)
	    gprintf("Homogeneous solution %gen",makevecteur(sol),step_info,contextptr);
	  if (derive(cst,x,contextptr)==0 && !is_zero(v.back())){
	    result=sol-cst/v.back();
	    return true;
	  }
	  // variation des constantes
	  gen M_=_vandermonde(rac,contextptr),part=0;
	  if (ckmatrix(M_)){
	    matrice M=*M_._VECTptr;
	    vecteur c(n);
	    c[n-1]=-_trig2exp(cst,contextptr)/v.front();
	    c=linsolve(mtran(M),c,contextptr);
	    for (unsigned i=0;i<c.size();++i){
	      bool b=calc_mode(contextptr)==1;
	      if (b)
		calc_mode(0,contextptr);
	      gen tmp=_lin(c[i]*exp(-rac[i]*x,contextptr),contextptr);
	      tmp = _integrate(makesequence(tmp,x),contextptr);
	      part += _lin(tmp*exp(rac[i]*x,contextptr),contextptr);
	      if (b)
		calc_mode(1,contextptr);
	    }
	    if (reel && is_zero(im(cst,contextptr)))
	      part=re(part,contextptr);
	    //part=recursive_ratnormal(part,contextptr);
	    part=simplify(part,contextptr);
	  }
	  if (step_info)
	    gprintf("Particuliar solution %gen",makevecteur(part),step_info,contextptr);
	  result=sol+part;
	  return true;
	}
      } // end n<=3
      gen laplace_cst=_laplace(makesequence(-cst,x,t),contextptr);
      if (!is_undef(laplace_cst)){
	vecteur lopei=mergevecteur(lop(laplace_cst,at_Ei),lop(laplace_cst,at_integrate));
	if (lopei.empty()){
	  gen arbitrary,tmp;
	  for (int i=n-1;i>=0;--i){
	    parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	    tmp=tmp*t+parameters.back();
	    arbitrary=arbitrary+v[i]*tmp;
	  }
	  arbitrary=(laplace_cst+arbitrary)/symb_horner(v,t);
	  arbitrary=ilaplace(arbitrary,t,x,contextptr);
	  result=arbitrary;
	  return true;
	}
      }
    }
    if (n==2){ // a(x)*y''+b(x)*y'+c(x)*y+d(x)=0
      gen & a=v[0];
      gen & b=v[1];
      gen & c=v[2];
      gen & d=cst;
      gen u=-b/a,V=-c/a,w=-d/a,
	k=simplify(u*u/4-derive(u,x,contextptr)/2+V,contextptr);
      // y''=u*y'+V*y+w  (with u,V,w functions of x)
      // Pseudo-code from fhub on HP Museum Forum
      /* 
	 k:=u^2/4-u'/2+V 
	 if k==const or k*x^2=const then 
	 if k=const 
	 then s:=x; t:=e^(int(u,x)/2); 
	 else u:=u*x+1; k:=u^2/4+V*x^2; s:=ln(x); t:=x^(u/2); 
	 endif;
	 if k=0 then u:=t*s; V:=t; 
	 elseif k>0 then u:=t*e^(sqrt(k)*s); V:=t*e^(-sqrt(k)*s); 
	 else u:=t*cos(sqrt(-k)*s); V:=t*sin(sqrt(-k)*s); 
	 endif;
	 w:=w/(u*V'-V*u'); w:=V*int(u*w,x)-u*int(V*w,x);
	 solution: y=c1*u+c2*V+w 
	 endif
      */
      bool cst=is_zero(derive(k,x,contextptr));
      bool x2=is_zero(derive(ratnormal(u*x,contextptr),x,contextptr)) && is_zero(derive(ratnormal(v*x*x,contextptr),x,contextptr));
      if (cst || x2){
	gen s,t;
	if (cst){
	  s=x; 
	  t=simplify(exp(integrate_without_lnabs(u,x,contextptr)/2,contextptr),contextptr);
	}
	else {
	  u=u*x+1; 
	  u=simplify(u,contextptr);
	  k=simplify(u*u/4+V*x*x,contextptr); 
	  s=ln(x,contextptr); t=pow(x,u/2,contextptr);
	}
	if (is_zero(k)){
	  u=t*s; V=t;
	}
	else {
	  if (is_strictly_positive(-k,contextptr)){
	    gen tmp=sqrt(-k,contextptr)*s;
	    u=t*cos(tmp,contextptr); 
	    V=t*sin(tmp,contextptr);
	  }
	  else {
	    if (s.is_symb_of_sommet(at_ln)){
	      gen tmp=pow(s._SYMBptr->feuille,sqrt(k,contextptr),contextptr);
	      u=t*tmp;
	      V=t/tmp;
	    }
	    else {
	      gen tmp=sqrt(k,contextptr)*s;
	      u=t*exp(tmp,contextptr); 
	      V=t*exp(-tmp,contextptr); 
	    }
	  }
	}
	w=simplify(w/(u*derive(V,x,contextptr)-V*derive(u,x,contextptr)),contextptr); 
	w=V*integrate_without_lnabs(u*w,x,contextptr)-
	  u*integrate_without_lnabs(V*w,x,contextptr);
	parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));	
	result=w+parameters[parameters.size()-2]*u+parameters[parameters.size()-1]*V;
	return true;
      }
      // IMPROVE: if a, b, c are polynomials, search for a polynomial solution
      // of the homogeneous equation, if found we can solve the diffeq
      if (lvarxwithinv(makevecteur(a,b,c),x,contextptr)==vecteur(1,x)){
	vecteur l=vecteur(1,x);
	gen a0(a),b0(b);
	a=_coeff(makesequence(a,x),contextptr);
	b=_coeff(makesequence(b,x),contextptr);
	c=_coeff(makesequence(c,x),contextptr);
	if (a.type==_VECT && b.type==_VECT && c.type==_VECT){
	  int A=int(a._VECTptr->size())-1,B=int(b._VECTptr->size())-1,C=int(c._VECTptr->size())-1,N=-1;
	  if (C==B-1){
	    gen n=-c._VECTptr->front()/b._VECTptr->front();
	    if (n.type==_INT_ && n.val>N){
	      if (A-2<C || n==1)
		N=n.val;
	    }
	    if (A-2==C){
	      // a*n*(n-1)+b*n+c=a*n^2+(b-1)*n+c=0
	      gen aa=a._VECTptr->front(),bb=b._VECTptr->front()-1,cc=c._VECTptr->front();
	      gen delta=(sqrt(bb*bb-4*aa*cc,contextptr)+bb)/2;
	      if (delta.type==_INT_ && delta.val>N)
		N=delta.val;
	    }
	  }
	  if (A-2==B-1 && C<B-1){
	    gen n=-b._VECTptr->front()/a._VECTptr->front()+1;
	    if (n.type==_INT_ && n.val>N)
	      N=n.val;
	  }
	  if (C==A-2 && B-1<C){
	    gen delta=(1+sqrt(1+4*c._VECTptr->front()/a._VECTptr->front(),contextptr))/2;
	    if (delta.type==_INT_ && delta.val>N)
	      N=delta.val;
	  }
	  if (N>=0){
	    int nrows=giacmax(giacmax(B,C+1),N==1?0:A)+N;
	    // search a solution sum(y_k*x*k,k,0,N)
	    matrice m(nrows);
	    for (int i=0;i<nrows;++i)
	      m[i]=vecteur(N+1);
	    // a*y''
	    for (int i=0;i<a._VECTptr->size();++i){
	      int j=int(a._VECTptr->size())-i-1;
	      for (int k=2;k<=N;++k){
		(*m[j+k-2]._VECTptr)[k] += k*(k-1)*a[i];
	      }
	    }
	    // b*y'
	    for (int i=0;i<b._VECTptr->size();++i){
	      int j=int(b._VECTptr->size())-i-1;
	      for (int k=1;k<=N;++k){
		(*m[j+k-1]._VECTptr)[k] += k*b[i];
	      }
	    }
	    // c*y
	    for (int i=0;i<c._VECTptr->size();++i){
	      int j=int(c._VECTptr->size())-i-1;
	      for (int k=0;k<=N;++k){
		(*m[j+k]._VECTptr)[k] += c[i];
	      }
	    }
	    m=mker(m,contextptr);
	    if (!m.empty()){
	      gen sol=m.front();
	      if (sol.type==_VECT){
		vecteur v=*sol._VECTptr;
		reverse(v.begin(),v.end());
		sol=symb_horner(-v,x);
		*logptr(contextptr) << "Polynomial solution found " << sol << endl;
		// now solve equation a*y''+b*y'+c*y+d=0 with y=sol*z
		// a*sol*z''+(2*a*sol'+b*sol)*z'=d
		gen res=desolve_lin1(a0*sol,2*a0*derive(sol,x,contextptr)+b0*sol,d,x,parameters,step_info,contextptr);
		res=_integrate(makesequence(res,x),contextptr);
		parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
		res += parameters.back();
		res=res*sol;
		result=res;
		return true;
	      }
	    }
	  }
	}
      }
    } // end 2nd order eqdiff
    return false;
  }

  gen desolve_f(const gen & f_orig,const gen & x_orig,const gen & y_orig,int & ordre,vecteur & parameters,gen & fres,int step_info,GIAC_CONTEXT){
    // if x_orig.type==_VECT || y_orig.type==_VECT, they should be evaled
    if (x_orig.type!=_VECT && eval(x_orig,1,contextptr)!=x_orig)
      return gensizeerr("Independant variable assigned. Run purge("+x_orig.print(contextptr)+")\n");
    if (y_orig.type!=_VECT && eval(y_orig,1,contextptr)!=y_orig)
      return gensizeerr("Dependant variable assigned. Run purge("+y_orig.print(contextptr)+")\n");
    gen x(x_orig);
    if ( (x_orig.type==_VECT) && (x_orig._VECTptr->size()==1) )
      x=x_orig._VECTptr->front();
    if (x.type!=_IDNT){
      gen vx,vy;
      ggb_varxy(f_orig,vx,vy,contextptr);
      if (x_orig.type==_VECT)
	return desolve_with_conditions(makevecteur(f_orig,x_orig,y_orig),vx,vy,fres,step_info,contextptr);
      else
	return desolve_with_conditions(makevecteur(f_orig,makevecteur(x_orig,y_orig)),vx,vy,fres,step_info,contextptr);
    }
    if (y_orig.type==_VECT) // FIXME: differential system
      return gensizeerr(contextptr);
    gen f=remove_and(f_orig,at_and);
    if (f.type==_VECT){
      vecteur fv=*f._VECTptr;
      return desolve_with_conditions(fv,x,y_orig,fres,step_info,contextptr);
    }
    gen y(y_orig),yof(y_orig),partic(undef);
    if (y_orig.is_symb_of_sommet(at_equal)){
      // particular solution provided
      y=y_orig._SYMBptr->feuille[0];
      partic=eval(y_orig._SYMBptr->feuille[1],1,contextptr);
    }
    if (y.type==_IDNT){
      yof=symb_of(y,gen(vecteur(1,x),_SEQ__VECT));
      f=quotesubst(f,yof,y,contextptr);
      f=quotesubst(f,y,yof,contextptr);
    }
    else 
      y=function_of(y_orig,x);
    if (is_undef(y))
      return y;
    gen save_vx=vx_var;
    vx_var=x;
    int save=calc_mode(contextptr);
    calc_mode(0,contextptr);
    f=remove_equal(eval(f,eval_level(contextptr),contextptr));
    if (ckmatrix(f)){
      vecteur v = *f._VECTptr;
      for (int i=0;i<v.size();++i){
	v[i].subtype=0;
      }
      f=v;
    }
    calc_mode(save,contextptr);
    fres=f=quotesubst(f,yof,y,contextptr);
    vx_var=save_vx;
    // Here f= f(derive(y,x),y) for a 1st order equation
    int n=diffeq_order(f,y);
    if (n==0)
      return solve(f,y,0,contextptr);
    if (n<=0)
      return gensizeerr(contextptr);
    vecteur v;
    gen t=gen_t(makevecteur(x,y,f),contextptr);
    if (is_linear_diffeq(f,x,y,n,v,step_info,contextptr)){
      gen result;
      if (n>1 && !is_undef(partic)){
	// reduce order by one
	vecteur s(n,partic);
	for (int i=1;i<n;++i){
	  s[i]=derive(s[i-1],x,contextptr);
	}
	vecteur w(n+1);
	w[n]=v[n+1]; // cst coeff
	for (int l=0;l<n;++l){
	  gen tmp=0;
	  for (int j=0;j<=l;++j){
	    tmp += v[j]*comb(n-j,l-j)*s[l-j];
	  }
	  w[l]=tmp;
	}
	if (desolve_linn(x,y,t,n-1,w,parameters,result,step_info,contextptr)){
	  result=integrate_without_lnabs(result,x,contextptr);
	  parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	  result = partic*(result+parameters.back());
	  return result;
	}
      }
      if (desolve_linn(x,y,t,n,v,parameters,result,step_info,contextptr))
	return result;
    }
    vecteur substin(n);
    vecteur substout(n);
    for (int i=0;i<n;++i){
      substin[i]=symb_derive(y,x,i+1);
      substout[i]=identificateur(" y"+print_INT_(i));
    }
    gen ff=quotesubst(f,substin,substout,contextptr);
    if (is_zero(derive(ff,y,contextptr))){ // y incomplete
      if (step_info)
	gprintf("y-incomplete",vecteur(0),step_info,contextptr);
      for (int i=0;i<n;++i){
	substout[i]=symb_derive(y,x,i);
      }
      f=quotesubst(f,substin,substout,contextptr);
      int tmp;
      gen sol=desolve(f,x,y,tmp,parameters,contextptr);
      if (is_undef(sol)) return sol;
      parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
      gen p(parameters.back());
      if (sol.type==_VECT)
	p=vecteur(sol._VECTptr->size(),p);
      sol=integrate_without_lnabs(sol,x,contextptr)+p;
      return sol;
    }
    if (n==1) { // 1st order 
      vecteur sol;
      parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
      f=quotesubst(f,symb_derive(y,x),t,contextptr);
      // f is an expression of x,y,t where t stands for y'
      gen fa,fb,fc,fd,faa,fab;
      // Test for Lagrange/Clairault-like eqdiff, 
      if (x.type==_IDNT && y.type==_IDNT && is_linear_wrt(f,y,fc,fd,contextptr) && is_linear_wrt(fd,x,fa,fb,contextptr)){
	// Clairault: fa must be cst*t and fc must be cst (must simplify fa and fc)
	// f=y*fc+(fa*x+fb)
	fd=gcd(fc,fa);
	fa=normal(fa/fd,contextptr); fb=normal(fb/fd,contextptr); fc=normal(fc/fd,contextptr); 	
	if (is_linear_wrt(fa,t,faa,fab,contextptr) && is_zero(fab) && derive(faa,makevecteur(x,y,t),contextptr)==vecteur(3,0) && derive(fc,makevecteur(x,y,t),contextptr)==vecteur(3,0) && derive(fb,makevecteur(x,y),contextptr)==vecteur(2,0)){
	  // 0=f=fc*y+fd = fc*y+fa*x+fb = fc*y+faa*x*y'+fb
	  // -> y=-faa/fc*x*y' -fb/fc
	  if (is_one(ratnormal(-faa/fc,contextptr))){
	    if (step_info)
	      gprintf("Order 1 Clairault differential equation",vecteur(0),step_info,contextptr);
	    // y=x*y'-fb/fc
	    gen fm=ratnormal(-fb/fc,contextptr);
	    gen fmp=derive(fm,t,contextptr);
	    sol.push_back(parameters.back()*x+subst(fm,t,parameters.back(),false,contextptr));
	    sol.push_back(makevecteur(-fmp,-t*fmp+fm));
	    return sol;
	  }
	}
	// Lagrange-> fa/fb/fc dependent de t uniquement, if fb==0 -> separate var or homogeneous
	if (is_zero(derive(makevecteur(fa,fb,fc),x,contextptr)) && !is_zero(fb)){
	  if (step_info)
	    gprintf("Order 1 Lagrange differential equation",vecteur(0),step_info,contextptr);
	  // y+fa/fc*x+fb/fc=0
	  fa=fa/fc; fb=fb/fc;
	  // y+fa*x+fb=0
	  // t=dy/dx, dy/dt=t*dx/dt => t*dx/dt+fa'*x+fb'+fa*dx/dt
	  // linear equation 1st order (fa+t)*dx/dt+fa'*x+fb'=0
	  gen res=desolve_lin1(fa+t,derive(fa,t,contextptr),derive(fb,t,contextptr),t,parameters,step_info,contextptr);
	  vecteur sing(solve(t+fa,t,3,contextptr));
	  for (int i=0;i<int(sing.size());++i){
	    sing[i]=subst(-fa*x-fb,t,sing[i],false,contextptr);
	  }
	  // should deparametrize like for homogeneous if possible
#ifdef NO_STDEXCEPT	  
	  vecteur newsol=solve(res-x,*t._IDNTptr,3,contextptr);
	  if (is_undef(newsol)){
	    newsol.clear();
	    *logptr(contextptr) << "Unable to solve implicit equation "<< res-x << "=0 in " << t << endl;
	  }
#else
	  vecteur newsol;
	  try {
	    newsol=solve(res-x,*t._IDNTptr,3,contextptr);
	  } catch(std::runtime_error & err){
	    newsol.clear();
	    *logptr(contextptr) << "Unable to solve implicit equation "<< res-x << "=0 in " << t << endl;
	  }
#endif
	  if (newsol.empty())
	    sing.push_back(makevecteur(res,-fa*res-fb));
	  else {
	    for (int i=0;i<int(newsol.size());++i){
	      sing.push_back(subst(-fa*x-fb,t,newsol[i],false,contextptr));
	    }
	  }
	  return sing;
	}
      } // end Lagrange-Clairault
      vecteur v(solve(f,t,3,contextptr)); // now solve y'=v[i](y)
      const_iterateur it=v.begin(),itend=v.end();
      for (;it!=itend;++it){
	// Separable variables?
	f=factors(*it,x,contextptr); // Factor then split factors
        gen xfact(plus_one),yfact(plus_one);
	if (separate_variables(f,x,y,xfact,yfact,step_info,contextptr)){ // y'/yfact=xfact
	  gen pr=integrate_without_lnabs(inv(yfact,contextptr),y,contextptr);
#if 1
	  vecteur prv=lop(lvarx(pr,y),at_ln);
	  gen pra,prb;
	  if (!prv.empty() && prv[0].is_symb_of_sommet(at_ln) && is_linear_wrt(pr,prv[0],pra,prb,contextptr)){
	    pr=_lncollect(pra*(symbolic(at_ln,parameters.back()*prv[0]._SYMBptr->feuille))+prb,contextptr);
	  }
	  else
	    pr=parameters.back()+pr;
#else	  
	  if (has_op(pr,*at_ln))
	    pr=_lncollect(pr,contextptr); // hack to solve y'=y*(1-y)
	  if (pr.is_symb_of_sommet(at_ln))
	    pr=symbolic(at_ln,parameters.back()*pr._SYMBptr->feuille);
	  else
	    pr=parameters.back()+pr;
#endif
	  gen implicitsol=pr-integrate_without_lnabs(xfact,x,contextptr);
#ifdef NO_STDEXCEPT	  
	  vecteur newsol=solve(implicitsol,*y._IDNTptr,3,contextptr);
	  if (is_undef(newsol)){
	    newsol.clear();
	    *logptr(contextptr) << "Unable to solve implicit equation "<< implicitsol << "=0 in " << y << endl;
	  }
#else
	  vecteur newsol;
	  int cm=calc_mode(contextptr);
	  calc_mode(0,contextptr);
	  try {
	    newsol=solve(implicitsol,*y._IDNTptr,3,contextptr);
	  } catch(std::runtime_error & err){
	    newsol.clear();
	    *logptr(contextptr) << "Unable to solve implicit equation "<< implicitsol << "=0 in " << y << endl;
	  }
	  calc_mode(cm,contextptr);
#endif
	  sol=mergevecteur(sol,newsol);
	  continue;
	} // end separate variables
	if (is_zero(derive(*it,x,contextptr))){ // x incomplete
	  if (step_info)
	    gprintf("Order 1 x-incomplete differential equation",vecteur(0),step_info,contextptr);
	  if (debug_infolevel)
	    *logptr(contextptr) << gettext("Incomplete") << endl;
	  gen pr=integrate_without_lnabs(inv(*it,contextptr),y,contextptr)+parameters.back();
	  sol=mergevecteur(sol,solve(pr-x,*y._IDNTptr,3,contextptr));
	  continue;
	}
	// check for a linear substitution -> like an x incomplete
	fa=derive(*it,x,contextptr); fb=derive(*it,y,contextptr);
	fc=simplify(fa/fb,contextptr);
	if (is_zero(derive(fc,x,contextptr)) && is_zero(derive(fc,y,contextptr))){
	  gen eff=subst(*it,y,y-fc*x,false,contextptr); // does not depend on x
	  gen pr=integrate_without_lnabs(inv(eff+fc,contextptr),y,contextptr)+parameters.back();
	  pr=subst(pr,y,y+fc*x,false,contextptr);
	  vecteur l1=lop(lvarx(pr,y),at_floor);
	  if (!l1.empty()){
	    vecteur l2(l1.size());
	    pr=subst(pr,l1,l2,false,contextptr);
	  }
	  vecteur sol1=solve(pr-x,*y._IDNTptr,3,contextptr);
	  sol=mergevecteur(sol,sol1);
	  continue;
	}
	// homogeneous?
	gen tplus(t);
	gen tmpsto=sto(doubleassume_and(vecteur(2,0),0,1,false,contextptr),tplus,contextptr);
	if (is_undef(tmpsto))
	  return tmpsto;
	f=quotesubst(*it,makevecteur(x,y),makevecteur(tplus*x,tplus*y),contextptr);
	f=recursive_normal(f-*it,contextptr);
	purgenoassume(tplus,contextptr);
	if (is_zero(f)){
	  if (step_info)
	    gprintf("Order 1 Homogeneous differential equation",vecteur(0),step_info,contextptr);
	  if (debug_infolevel)
	    *logptr(contextptr) << gettext("Homogeneous differential equation") << endl;
	  tmpsto=sto(doubleassume_and(vecteur(2,0),0,1,false,contextptr),x,contextptr);
	  if (is_undef(tmpsto))
	    return tmpsto;
	  f=recursive_normal(quotesubst(*it,y,tplus*x,contextptr)-tplus,contextptr);
	  purgenoassume(x,contextptr);
	  // y=tx -> t'x=f
	  // Singular solutions f(t)=0
	  vecteur singuliere(multvecteur(x,solve(f,t,complex_mode(contextptr) + 2,contextptr)));
	  sol=mergevecteur(sol,singuliere);
	  // Non singular: t'/f(t)=1/x
	  gen pr=parameters.back()*_simplify(exp(integrate_without_lnabs(inv(f,contextptr),t,contextptr),contextptr),contextptr);
	  // Try to find t in x=pr
	  vecteur v=protect_solve(x-pr,*t._IDNTptr,1,contextptr);
	  if (!v.empty() && !is_undef(v)){
	    *logptr(contextptr) << "solve(" << pr << "=" << x << "," << t << ") returned " << v << ".\nIf solutions were missed consider paramplot(" << makevecteur(pr,t*pr) << "," << t << ")" << endl;
	    for (unsigned j=0;j<v.size();++j){
	      sol.push_back(x*v[j]);
	    }
	  }
	  else
	    sol.push_back(gen(makevecteur(pr,t*pr),_CURVE__VECT));
	  continue;
	}
	// exact? y'=*it=f(x,y) -> N dy + M dx=0 where -M/N=y'
	gen M,N;
	f=_fxnd(*it,contextptr);
	M=-f[0];
	N=f[1];
	// find an integrating factor P such that d_x(P*N)=d_y(P*M)
	// If P depends on x then N*d_x(P)+Pd_x(N)=Pd_y(M) -> 
	// d_x(P)/P=(d_y(M)-d_x(N))/N should depend on x only
	// If P depends on y then P d_x(N)=Pd_y(M)+Md_y(P)
	// d_y(P)/P=(d_x(N)-d_y(M))/M
	// Then solve P*Ndy+P*Mdx=dF
	f=normal((derive(M,y,contextptr)-derive(N,x,contextptr))/N,contextptr);
	if (is_zero(derive(f,y,contextptr))){
	  gen P=simplify(exp(integrate_without_lnabs(f,x,contextptr),contextptr),contextptr);
	  // D_y(F)=P*N
	  gen F=P*integrate_without_lnabs(N,y,contextptr);
	  if (step_info)
	    gprintf("Order 1 Integrating factor %gen",makevecteur(P),step_info,contextptr);
	  // D_x(F)=P*M
	  parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	  F=F+integrate_without_lnabs(normal(P*M-derive(F,x,contextptr),contextptr),x,contextptr)+parameters.back();
	  sol=mergevecteur(sol,solve(F,*y._IDNTptr,3,contextptr));
	  continue;
	}
	f=normal((derive(N,x,contextptr)-derive(M,y,contextptr))/M,contextptr);
	if (is_zero(derive(f,x,contextptr))){
	  gen P=simplify(exp(integrate_without_lnabs(f,y,contextptr),contextptr),contextptr);
	  gen F=P*integrate_without_lnabs(M,x,contextptr);
	  // D_y(F)=P*N
	  if (step_info)
	    gprintf("Order 1 Integrating factor %gen",makevecteur(P),step_info,contextptr);
	  F=F+integrate_without_lnabs(normal(P*N-derive(F,y,contextptr),contextptr),y,contextptr)+diffeq_constante(int(parameters.size()),contextptr);
	  sol=mergevecteur(sol,solve(F,*y._IDNTptr,3,contextptr));
	  continue;
	}
	// Bernoulli?
	// y'=a(x)*y+b(x)*y^k
	// Let z=y^(1-k)
	// z'=(1-k)*y^(-k)*y'=(1-k)*[a(x)*z+b(x)]
	// Solve for z then for y
	f=subst(*it,y,2*y,false,contextptr);
	f=factors(f-2*(*it),vx_var,contextptr); // should be (2^k-2)*b(x)*y^k
	xfact=plus_one;
	yfact=plus_one;
	if (separate_variables(f,x,y,xfact,yfact,step_info,contextptr)){
	  // xfact should be (2^k-2)*b(x) and yfact=y^k
	  if ( (yfact.type==_SYMB) && (yfact._SYMBptr->sommet==at_pow) &&
	       (yfact._SYMBptr->feuille._VECTptr->front()==y) ){
	    if (step_info)
	      gprintf("Order 1 Bernoulli differential equation",vecteur(0),step_info,contextptr);
	    gen k=yfact._SYMBptr->feuille._VECTptr->back();
	    gen B=normal(xfact/(pow(plus_two,k,contextptr)-plus_two),contextptr);
	    gen A=normal((*it-B*pow(y,k,contextptr))/y,contextptr);
	    gen b=(k-1)*A;
	    gen c=(k-1)*B;
	    gen i=simplify(integrate_without_lnabs(b,x,contextptr),contextptr);
	    gen C=integrate_without_lnabs(-c*exp(i,contextptr),x,contextptr);
	    f= (C+parameters.back())*exp(-i,contextptr);
	    gen sol1=pow(f,inv(1-k,contextptr),contextptr);
	    sol.push_back(sol1);
	    // FIXME: we should add other roots of unity in complex mode
	    if (k.type==_INT_ && k.val %2)
	      sol.push_back(-sol1);
	  }
	}
	// Ricatti f=*it quadratic in y
	gen P,Q,R;
	if (is_quadratic_wrt(*it,y,R,Q,P,contextptr)){
	  if (step_info)
	    gprintf("Order 1 Riccati differential equation",vecteur(0),step_info,contextptr);
	  gen result;
	  // y'=P+Q*y+R*y^2=q0+q1*y+q2*y^2
	  if (!is_undef(partic)){
	    // z'+(q1+2*q2*partic)*z+q2=0
	    result=desolve_lin1(1,Q+2*R*partic,R,x,parameters,step_info,contextptr);
	    return makevecteur(partic,partic+inv(result,contextptr));
	  }
	  // let y=-1/(R*F)*dF/dx, then F''-(1/R*R'+Q)*F'+R*P*F=0
	  vecteur v(makevecteur(1,-normal(Q+derive(R,x,contextptr)/R,contextptr),normal(R*P,contextptr),0));
	  if (desolve_linn(x,y,t,2,v,parameters,result,step_info,contextptr)){
	    result=lnexpand(ln(result,contextptr),contextptr);
	    result=-derive(result,x,contextptr)/R;
	    result=ratnormal(result,contextptr);
	    gen lastp=parameters.back();
	    parameters.pop_back();
	    gen partic=subst(result,lastp,0,false,contextptr);
	    partic=ratnormal(partic,contextptr);
	    result=subst(result,lastp,1,false,contextptr);
	    result=ratnormal(result,contextptr);
	    //result=-derive(result,x,contextptr)/(R*result);
	    return makevecteur(partic,result);
	  }
	}
      } // end for (;it!=itend;)
      return sol;
    } // end if n==1
    if (n==2){
      // y''=f(y,y'), set u=y' -> u'=f(y,u)/u
      gen der1=substout[0],der2=substout[1];
      gen soly2=_cSolve(makesequence(symb_equal(ff,0),der2),contextptr);
      vecteur paramsave=parameters;
      if (soly2.type==_VECT && !is_undef(soly2)){
	vecteur sol;
	const vecteur & soly2v = *soly2._VECTptr;
	for (unsigned i=0;i<soly2v.size();++i){
	  gen soly2c=soly2v[i];
	  gen a,b,c;
	  if (is_quadratic_wrt(soly2c,der1,a,b,c,contextptr)
	      && is_zero(c) && is_zero(derive(a,x,contextptr)) 
	      && is_zero(derive(b,y,contextptr)) ){
	    parameters=paramsave;
	    parameters.push_back(diffeq_constante(int(parameters.size()),contextptr));
	    gen usolj=parameters.back()*exp(integrate_without_lnabs(b,x,contextptr),contextptr)*exp(integrate_without_lnabs(a,y,contextptr),contextptr);
	    gen ysol=desolve(symb_equal(symbolic(at_derive,makesequence(y,x)),usolj),x,y,ordre,parameters,contextptr);
	    if (is_undef(ysol))
	      return unable_to_solve_diffeq();
	    sol=mergevecteur(sol,gen2vecteur(ysol));
	    continue;
	  }
	  if (is_zero(derive(soly2c,x,contextptr))){ // x-incomplete
	    if (step_info)
	      gprintf("Order 2 x-incomplete differential equation",vecteur(0),step_info,contextptr);
	    // desolve(u'=soly2c/der1,y,u)
	    parameters=paramsave;
	    gen usol=desolve(symb_equal(symbolic(at_derive,makesequence(der1,y)),soly2c/der1),y,der1,ordre,parameters,contextptr);
	    if (is_undef(usol))
	      return unable_to_solve_diffeq();
	    if (usol.type!=_VECT)
	      usol=vecteur(1,usol);
	    vecteur paramsavein=parameters;
	    for (unsigned j=0;j<usol._VECTptr->size();++j){
	      parameters=paramsavein;
	      gen usolj=(*usol._VECTptr)[j];
	      gen ysol=desolve(symb_equal(symbolic(at_derive,makesequence(y,x)),usolj),x,y,ordre,parameters,contextptr);
	      if (is_undef(ysol))
		return unable_to_solve_diffeq();
	      sol=mergevecteur(sol,gen2vecteur(ysol));
	    }
	    continue;
	  } // end x-incomplete
	  gen res(string2gen(gettext("Unable to solve differential equation"),false));
	  res.subtype=1;
	  sol.push_back(res);
	} 
	ordre=2;
	return sol;
      }
    }
    return unable_to_solve_diffeq();
  }
  gen ggbputinlist(const gen & g,GIAC_CONTEXT){
    if (g.type==_VECT || calc_mode(contextptr)!=1)
      return g;
    return makevecteur(g);
  }
  static gen point2vecteur(const gen & g_,GIAC_CONTEXT){
    if (!g_.is_symb_of_sommet(at_point))
      return g_;
    gen g=g_._SYMBptr->feuille;
    gen x,y;
    if (g.type==_VECT){
      if (g._VECTptr->size()!=2)
	return gensizeerr(contextptr);
      x=g._VECTptr->front();
      y=g._VECTptr->back();
    }
    else
      reim(g,x,y,contextptr);
    g=makevecteur(x,y);
    return g;
  }
  // "unary" version
  gen _desolve(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    int ordre;
    vecteur parameters;
    if (args.type!=_VECT || args.subtype!=_SEQ__VECT || (!args._VECTptr->empty() && is_equal(args._VECTptr->back()) && args._VECTptr->back()._SYMBptr->feuille[0].type!=_IDNT)){
      // guess x and y
      vecteur lv(lop(args,at_of));
      vecteur f;
      if (lv.size()>=1 && lv[0]._SYMBptr->feuille.type==_VECT && (f=*lv[0]._SYMBptr->feuille._VECTptr).size()==2){
	if (f[1].type==_IDNT || f[1].is_symb_of_sommet(at_at)){
	  return desolve(args,f[1],f[0],ordre,parameters,contextptr);
	}
      }
      gen vx,vy;
      lv=lidnt(evalf(args,1,contextptr));
      if (lv.size()==2){
	vx=lv[0];
	vy=lv[1];
	lv=lvar(apply(args,equal2diff));
	lv=lop(lv,at_derive);
	lv=lidnt(lv);
	if (lv.size()==1 && vx==lv.front())
	  swapgen(vx,vy);
	return _desolve(makesequence(args,vx,vy),contextptr);
      }
      ggb_varxy(args,vx,vy,contextptr);
      return _desolve(makesequence(args,vx,vy),contextptr);
    }
    vecteur v=*args._VECTptr;
    int s=int(v.size());
    for (int i=0;i<s;++i){
      v[i]=apply(v[i],point2vecteur,contextptr);
    }
    if (s==3 && v[1].type==_VECT && v[2].type==_VECT)
      swapgen(v[1],v[2]);
    if (s==2 && v[1].type==_VECT && v[1]._VECTptr->size()==2){
      gen a=eval(v[1]._VECTptr->front(),1,contextptr);
      gen b=eval(v[1]._VECTptr->back(),1,contextptr);
      v[1]=a;
      v.insert(v.begin()+2,b);
      ++s;
    }
    if (s==2){
      if ( (v[1].type==_SYMB && v[1]._SYMBptr->sommet==at_of && v[1]._SYMBptr->feuille.type==_VECT &&v [1]._SYMBptr->feuille._VECTptr->size()==2 ) )
	return desolve(v[0],(*v[1]._SYMBptr->feuille._VECTptr)[1],(*v[1]._SYMBptr->feuille._VECTptr)[0],ordre,parameters,contextptr);
      return ggbputinlist(desolve( v[0],vx_var,v[1],ordre,parameters,contextptr),contextptr);
    }
    gen f;
    if (s==4)
      return ggbputinlist(desolve_with_conditions(makevecteur(v[0],v[3]),v[1],v[2],f,contextptr),contextptr);
    if (s==5)
      return ggbputinlist(desolve_with_conditions(makevecteur(v[0],v[3],v[4]),v[1],v[2],f,contextptr),contextptr);
    if (s!=3)
      return gensizeerr(contextptr);
    return ggbputinlist(desolve( v[0],v[1],v[2],ordre,parameters,contextptr),contextptr);    
  }
  static const char _desolve_s []="desolve";
  static define_unary_function_eval (__desolve,&_desolve,_desolve_s);
  define_unary_function_ptr5( at_desolve ,alias_at_desolve,&__desolve,1,true);

  static const char _dsolve_s []="dsolve";
  static define_unary_function_eval_quoted (__dsolve,&_desolve,_dsolve_s);
  define_unary_function_ptr5( at_dsolve ,alias_at_dsolve,&__dsolve,_QUOTE_ARGUMENTS,true);

  gen ztrans(const gen & f,const gen & x,const gen & s,GIAC_CONTEXT){
    if (x.type!=_IDNT)
      return gensizeerr(contextptr);
    gen t(s);
    if (s==x){
#ifdef GIAC_HAS_STO_38
      t=identificateur("z38_");
#else
      t=identificateur(" tztrans");
#endif
    }
    if (!assume_t_in_ab(t,plus_inf,plus_inf,true,true,contextptr))
      return gensizeerr(contextptr);
    gen tmp=expand(f*pow(t,-x,contextptr),contextptr);
    gen res=_sum(gen(makevecteur(tmp,x,0,plus_inf),_SEQ__VECT),contextptr);
    purgenoassume(t,contextptr);
    if (s==x)
      res=subst(res,t,x,false,contextptr);
    return ratnormal(res,contextptr);
  }

  gen desolve(const gen & f_orig,const gen & x_orig,const gen & y_orig,int & ordre,vecteur & parameters,GIAC_CONTEXT){
    gen f;
    gen x(x_orig),y(y_orig);
    if (x.is_symb_of_sommet(at_unquote))
      x=eval(x,1,contextptr);
    if (y.is_symb_of_sommet(at_unquote))
      y=eval(y,1,contextptr);
    int st=step_infolevel(contextptr);
    step_infolevel(0,contextptr);
    gen res=desolve_f(f_orig,x,y,ordre,parameters,f,st,contextptr);
    step_infolevel(st,contextptr);
    return res;
  }

  // "unary" version
  gen _ztrans(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type!=_VECT)
      return ztrans(args,vx_var,vx_var,contextptr);
    vecteur & v=*args._VECTptr;
    int s=int(v.size());
    if (s==2)
      return ztrans( v[0],v[1],v[1],contextptr);
    if (s!=3)
      return gensizeerr(contextptr);
    return ztrans( v[0],v[1],v[2],contextptr);    
  }
  static const char _ztrans_s []="ztrans";
  static define_unary_function_eval (__ztrans,&_ztrans,_ztrans_s);
  define_unary_function_ptr5( at_ztrans ,alias_at_ztrans,&__ztrans,0,true);

  static gen invztranserr(GIAC_CONTEXT){
    return gensizeerr(gettext("Inverse z-transform of non rational functions not implemented or unable to fully factor rational function"));
  }

  // limited to rational fractions
  gen invztrans(const gen & f,const gen & x,const gen & s,GIAC_CONTEXT){
    if (x.type!=_IDNT)
      return gensizeerr(contextptr);
    gen t(s);
    if (s==x){
#ifdef GIAC_HAS_STO_38
      t=identificateur("s38_");
#else
      t=identificateur(" tinvztrans");
#endif
    }
    vecteur varx(lvarx(f,x));
    int varxs=int(varx.size());
    gen res;
    if (varxs==0)
      res=f*_Kronecker(t,contextptr);
    else {
      if (varxs>1)
	return invztranserr(contextptr);
      res=f/x;
      vecteur l;
      l.push_back(x); // insure x is the main var
      l.push_back(t); // s var as second var
      l=vecteur(1,l);
      alg_lvar(res,l);
      vecteur lprime(l);
      if (lprime.front().type!=_VECT)  return gensizeerr(gettext("desolve.cc/invztrans"));
      lprime.front()=cdr_VECT(*(lprime.front()._VECTptr));
      gen glap=e2r(s,l,contextptr);
      if (glap.type!=_POLY)  return gensizeerr(gettext("desolve.cc/invztrans"));
      int dim=int(l.front()._VECTptr->size());
      if (!dim){
	l.erase(l.begin());
	dim=int(l.front()._VECTptr->size());
      }
      gen r=e2r(res,l,contextptr);
      res=0;
      gen r_num,r_den;
      fxnd(r,r_num,r_den);
      if (r_num.type==_EXT)
	return invztranserr(contextptr);
      if (r_den.type!=_POLY)
	return invztranserr(contextptr);
      polynome den(*r_den._POLYptr),num(dim);
      if (r_num.type==_POLY)
	num=*r_num._POLYptr;
      else
	num=polynome(r_num,dim);
      polynome p_content(lgcd(den));
      den=den/p_content;
      factorization vden; gen an;
      gen extra_div;
      if (!cfactor(den,an,vden,true,extra_div))
	return invztranserr(contextptr);
      vector< pf<gen> > pfde_VECT;
      polynome ipnum(dim),ipden(dim);
      partfrac(num,den,vden,pfde_VECT,ipnum,ipden);
      if (!is_zero(ipnum))
	*logptr(contextptr) << gettext("Warning, z*argument has a non-zero integral part") << endl;
      vector< pf<gen> >::iterator it=pfde_VECT.begin();
      vector< pf<gen> >::const_iterator itend=pfde_VECT.end();
      gen a,A,B;
      polynome b,c;
      for (;it!=itend;++it){
	if (it->fact.lexsorted_degree()>1)
	  return invztranserr(contextptr);
	findde(it->fact,b,c);
	a=-gen(c)/gen(b); // pole
	B=r2e(Tfirstcoeff(it->den),l,contextptr);
	if (is_zero(a)){
	  int mult=it->mult;
	  gen res0;
	  vecteur vnum;
	  polynome2poly1(it->num,1,vnum);
	  for (int i=0;i<mult;++i){
	    res0 += r2e(vnum[i],lprime,contextptr)*symbolic(at_Kronecker,s-i); // symb_when(symb_equal(s,i),1,0) will not be handled correctly by ztrans
	  }
	  res += res0/B;
	}
	else {
	  // it->num/it->den in terms of 1/(z-a), a/(z-a)^2, a^2/(z-a)^3, etc.
	  gen cur=r2e(it->num,l,contextptr);
	  A=r2e(a,lprime,contextptr);
	  gen z_minus_a=x-A,res0;
	  for (int i=it->mult-1;i>=0;--i){
	    gen tmp=_quorem(makesequence(cur,z_minus_a,x),contextptr);
	    if (is_undef(tmp)) return tmp;
	    gen rem=tmp[1];
	    cur=tmp[0];
	    rem=rem/pow(A,i,contextptr)/factorial(i);
	    for (int j=0;j<i;++j)
	      rem = rem * (s-j);
	    res0 += rem;
	  }
	  res0 = res0 * pow(A,s,contextptr);
	  res += res0/B;
	}
      }
      res=res/r2e(p_content,l,contextptr);
    }
    if (s==x)
      res=subst(res,t,x,false,contextptr);
    res=ratnormal(res,contextptr);
    // replace discrete Kronecker by Heaviside in some very simple situations
    vecteur vD=lop(res,at_Kronecker);
    gen A,B,a,b;
    if (vD.size()==1 && is_linear_wrt(res,vD.front(),A,B,contextptr) && is_linear_wrt(vD.front()._SYMBptr->feuille,s,a,b,contextptr)){
      // res==A*Kronecker(a*x+b)+B
      if (is_one(a) && is_zero(b)){
	gen B0=subst(B,s,0,false,contextptr);
	if (is_zero(ratnormal(B0+A,contextptr)))
	  res=B*symbolic(at_Heaviside,s-1);
      }
    }
    return res;
  }
  
  gen _invztrans(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type!=_VECT)
      return invztrans(args,vx_var,vx_var,contextptr);
    vecteur & v=*args._VECTptr;
    int s=int(v.size());
    if (s==2)
      return invztrans( v[0],v[1],v[1],contextptr);
    if (s!=3)
      return gensizeerr(contextptr);
    return invztrans( v[0],v[1],v[2],contextptr);        
  }
  static const char _invztrans_s []="invztrans";
  static define_unary_function_eval (__invztrans,&_invztrans,_invztrans_s);
  define_unary_function_ptr5( at_invztrans ,alias_at_invztrans,&__invztrans,0,true);

  gen _Kronecker(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return args;
    if (args.type==_VECT) 
      return apply(args,_Kronecker,contextptr);
    if (!is_integer(args))
      return symbolic(at_Kronecker,args);
    if (is_zero(args))
      return 1;
    else
      return 0;
  }
  static const char _Kronecker_s []="Kronecker";
  static define_unary_function_eval (__Kronecker,&_Kronecker,_Kronecker_s);
  define_unary_function_ptr5( at_Kronecker ,alias_at_Kronecker,&__Kronecker,0,true);


#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC