alg_ext.cc
57.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
// -*- mode:C++ ; compile-command: "g++ -I.. -I../include -DHAVE_CONFIG_H -DIN_GIAC -DGIAC_GENERIC_CONSTANTS -fno-strict-aliasing -g -c alg_ext.cc -Wall" -*-
#include "giacPCH.h"
/*
* Copyright (C) 2000,14 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
using namespace std;
#include <cmath>
#include <cstdlib>
#include <stdexcept>
#include <errno.h>
#include <map>
#include "gen.h"
#include "gausspol.h"
#include "identificateur.h"
#include "poly.h"
#include "usual.h"
#include "sym2poly.h"
#include "vecteur.h"
#include "modpoly.h"
#include "alg_ext.h"
#include "vecteur.h"
#include "solve.h"
#include "subst.h"
#include "plot.h"
#include "derive.h"
#include "ezgcd.h"
#include "prog.h"
#include "intg.h"
#include "csturm.h"
#include "lin.h"
#include "ti89.h"
#include "giacintl.h"
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
bool islesscomplex(const gen & a,const gen & b){
if (a==b)
return false;
return a.islesscomplexthan(b);
}
// symbolic_rootof_list() protected with a mutex in multi-thread environment
bool comparegen::operator ()(const gen & a,const gen & b) const {
if (a.type==_INT_ && b.type==_INT_)
return a.val<b.val;
gen A1,A2,B1,B2;
if (a.type==_VECT && a._VECTptr->size()==2 && (A1=a._VECTptr->front()).type==_INT_ && (A2=a._VECTptr->back()).type==_INT_ && b.type==_VECT && b._VECTptr->size()==2 && (B1=b._VECTptr->front()).type==_INT_ && (B2=b._VECTptr->back()).type==_INT_){
return (A1.val!=B1.val)?A1.val<B1.val:A2.val<B2.val;
}
return a.islesscomplexthan(b);
}
rootmap & symbolic_rootof_list(){
static rootmap * ans= new rootmap;
return *ans;
}
rootmap & proot_list(){
static rootmap * ans= new rootmap;
return *ans;
}
rootmap & galoisconj_list(){
static rootmap * ans= new rootmap;
return *ans;
}
#ifdef HAVE_LIBPTHREAD
static pthread_mutex_t rootof_mutex = PTHREAD_MUTEX_INITIALIZER;
static int rootof_trylock(){
return pthread_mutex_trylock(&rootof_mutex);
}
static void rootof_unlock(){
pthread_mutex_unlock(&rootof_mutex);
}
#else
static int rootof_trylock(){ return 0; }
static void rootof_unlock(){ }
#endif
// get Galois conjugates in the same number field from cache
bool galoisconj_cached(const vecteur & v,vecteur & res){
if (rootof_trylock())
return false;
res.clear();
rootmap::iterator ritend=galoisconj_list().end(),rit=galoisconj_list().find(v);
if (rit!=ritend && rit->second.type==_VECT)
res=*rit->second._VECTptr;
rootof_unlock();
return !res.empty();
}
// cache list of Galois conjugates
bool galoisconj_cache(const vecteur & v,const vecteur & res){
if (rootof_trylock())
return false;
rootmap::iterator ritend=galoisconj_list().end(),rit=galoisconj_list().find(v);
if (rit==ritend)
galoisconj_list()[v]=res;
rootof_unlock();
return true;
}
vecteur galoisconj(const vecteur & v,GIAC_CONTEXT){
vecteur res;
if (galoisconj_cached(v,res))
return res;
gen g=symb_horner(v,vx_var);
if (pari_galoisconj(g,res,contextptr))
return res;
if (int(v.size())>MAX_COMMON_ALG_EXT_ORDER_SIZE) return res;
// factor v over rootof(v) if degree is small
g=_factors(makesequence(g,rootof(g,contextptr)),contextptr);
if (g.type!=_VECT) return res;
vecteur w=*g._VECTptr;
for (int i=0;i<int(w.size())-1;i+=2){
gen a,b;
if (is_linear_wrt(w[i],vx_var,a,b,contextptr) && !is_zero(a)){
res.push_back(-b/a);
}
}
galoisconj_cache(v,res);
return res;
}
gen _galoisconj(const gen & args,GIAC_CONTEXT){
gen g=args;
if (g.type==_SYMB)
g=_symb2poly(args,contextptr);
if (g.type!=_VECT) return gensizeerr(contextptr);
return galoisconj(*g._VECTptr,contextptr);
}
static const char _galoisconj_s []="galoisconj";
static define_unary_function_eval (__galoisconj,&giac::_galoisconj,_galoisconj_s);
define_unary_function_ptr5( at_galoisconj ,alias_at_galoisconj,&__galoisconj,0,true);
// if true, g is a rootof such that conj(rootof(w))=g
bool conj_in_nf(const vecteur & w,gen & g,GIAC_CONTEXT){
gen r1=rootof(w,contextptr);
vecteur c=galoisconj(w,contextptr);
gen pow10=pow(10,14,contextptr);
int maxdigits=1000;
if (c.size()<w.size()-1)
maxdigits=50;
#ifndef HAVE_LIBMPFR
maxdigits=14;
#endif
gen borne=100;
for (int ndigits=14;ndigits<=maxdigits;ndigits*=2){
gen R1=conj(_evalf(makesequence(r1,ndigits),contextptr),contextptr);
for (int i=0;i<int(c.size());++i){
gen r2=c[i];
gen R2=_evalf(makesequence(r2,ndigits),contextptr);
if (is_greater(borne*abs(R1,contextptr),abs(R1-R2,contextptr)*pow10,contextptr)){
g=r2;
return true;
}
}
pow10=pow10*pow10;
borne=borne*borne;
}
return false;
}
bool proot_cached(const vecteur & v,double eps,vecteur & res){
if (rootof_trylock())
return false;
res.clear();
double oldeps=1e300;
rootmap::iterator ritend=proot_list().end(),rit=proot_list().find(v);
if (rit!=ritend && rit->second.type==_VECT){
res=*rit->second._VECTptr;
if (res.size()==2 && res.front().type==_VECT && res.back().type==_DOUBLE_){
oldeps=res.back()._DOUBLE_val;
res=*res.front()._VECTptr;
}
else
res.clear();
}
rootof_unlock();
return !res.empty() && oldeps<=eps;
}
bool proot_cache(const vecteur & v,double eps,const vecteur & res){
if (rootof_trylock())
return false;
rootmap::iterator ritend=proot_list().end(),rit=proot_list().find(v);
if (rit!=ritend){
if (rit->second.type!=_VECT || rit->second._VECTptr->size()!=2 || rit->second._VECTptr->front().type!=_VECT || rit->second._VECTptr->back().type!=_DOUBLE_ || rit->second._VECTptr->back()._DOUBLE_val>eps)
rit->second=makevecteur(res,eps);
}
else
proot_list()[v]=makevecteur(res,eps);
rootof_unlock();
return true;
}
gen algebraic_EXTension(const gen & a_,const gen & v){
gen a(a_);
if (a.type==_VECT && !a._VECTptr->empty() && is_zero(a._VECTptr->front())){
a=trim(*a._VECTptr,0);
}
if (is_zero(a) )
return 0;
if (a.type==_VECT){
if (a._VECTptr->empty())
return zero;
if (a._VECTptr->size()==1)
return a._VECTptr->front();
}
gen res;
#ifdef SMARTPTR64
* ((ulonglong * ) &res) = ulonglong(new ref_algext) << 16;
#else
res.__EXTptr=new ref_algext;
#endif
res.type=_EXT;
*(res._EXTptr+1) = v;
if (a.type==_FRAC){
*res._EXTptr = a._FRACptr->num;
return fraction(res,a._FRACptr->den);
}
*res._EXTptr = a;
return res;
}
gen in_select_root(const vecteur & a,bool reel,GIAC_CONTEXT,double eps){
if (a.empty() || is_undef(a))
return undef;
gen current(a.front());
double max_re(re(current,contextptr).evalf_double(1,contextptr)._DOUBLE_val),max_im(im(current,contextptr).evalf_double(1,contextptr)._DOUBLE_val);
const_iterateur it=a.begin(),itend=a.end();
for (;it!=itend;++it){
double cur_re(re(*it,contextptr).evalf_double(1,contextptr)._DOUBLE_val),cur_im(im(*it,contextptr).evalf_double(1,contextptr)._DOUBLE_val);
if (cur_re > (1+eps)*max_re ){
current=*it;
max_re=cur_re;
max_im=cur_im;
}
else { // same argument
if ( std::abs(cur_re-max_re)<eps*max_re && (cur_im>max_im) ){
current=*it;
max_im=cur_im;
}
}
}
if (reel && is_strictly_positive(-im(current,contextptr),contextptr))
current=conj(current,contextptr);
return current;
}
gen select_root(const vecteur & v,GIAC_CONTEXT){
int n=decimal_digits(contextptr);
if (n<12) n=12;
double eps=std::pow(0.1,n);
int rprec=int(n*3.3);
vecteur a=proot(v,eps,rprec);
gen r=in_select_root(a,is_real(v,contextptr),contextptr);
return r;
}
gen alg_evalf(const gen & a,const gen &b,GIAC_CONTEXT){
if (a.type==_FRAC)
return rdiv(alg_evalf(a._FRACptr->num,b,contextptr),alg_evalf(a._FRACptr->den,b,contextptr),contextptr);
gen a1=a.evalf(1,contextptr),b1=b.evalf(1,contextptr);
if (a1.type!=_VECT)
return a1;
if (b1.type!=_VECT)
return algebraic_EXTension(a1,b1);
gen r(select_root(*b1._VECTptr,contextptr));
if (is_undef(r))
return algebraic_EXTension(a1,b1);
return horner(*a1._VECTptr,r);
}
gen ext_reduce(const gen & a, const gen & v){
if (a.type==_FRAC)
return fraction(ext_reduce(a._FRACptr->num,v),ext_reduce(a._FRACptr->den,v));
if (a.type!=_VECT)
return a;// algebraic_EXTension(a,v);
if (a._VECTptr->empty())
return zero;
if (a._VECTptr->size()==1)
return a._VECTptr->front();
if (v.type==_VECT){
if (a._VECTptr->size()<v._VECTptr->size())
return algebraic_EXTension(a,v);
#if 1
// special code for quadratic extension, if v=[1,0,-a]
if (v._VECTptr->size()==3 && v[0]==1 && v[1]==0){
gen x=-v[2],r1,r0;
if (a._VECTptr->size()==3){
r0=a._VECTptr->front()*x+a._VECTptr->back();
r1=(*a._VECTptr)[1];
}
else {
const_iterateur it=a._VECTptr->begin(),itend=a._VECTptr->end()-1;
for (;it<itend;){
r0 = r0*x+(*it);
++it;
r1 = r1*x+(*it);
++it;
}
if (it==itend)
r0 = r0*x+(*it);
else swapgen(r0,r1);
}
if (r1==0)
return r0;
gen c=new ref_vecteur(2);
c._VECTptr->front()=r1;
c._VECTptr->back()=r0;
return algebraic_EXTension(c,v);
}
gen c=new ref_vecteur;
vecteur & rem=*c._VECTptr;
modpoly quo;
environment env;
DivRem(*a._VECTptr,*v._VECTptr,0,quo,rem);
if (rem.empty()) return 0;
if (rem.size()==1) return rem.front();
return algebraic_EXTension(c,v);
#endif
return algebraic_EXTension((*a._VECTptr) % (*v._VECTptr),v);
}
if (v.type==_FRAC)
return horner(*a._VECTptr,*v._FRACptr,true);
if (v.type!=_EXT)
return gentypeerr(gettext("ext_reduce"));
gen va=*v._EXTptr,vb=*(v._EXTptr+1);
if (va.type==_FRAC)
return ext_reduce(horner(*a._VECTptr,*va._FRACptr,true),vb);
if (va.type!=_VECT){
if (vb.type!=_VECT)
return gensizeerr(gettext("alg_ext.cc/ext_reduce"));
return algebraic_EXTension( (*a._VECTptr) % (*vb._VECTptr),v);
}
return ext_reduce(horner(*a._VECTptr,gen(*va._VECTptr,_POLY1__VECT)),vb);
}
gen ext_reduce(const gen & e){
#ifdef DEBUG_SUPPORT
if (e.type!=_EXT){
gensizeerr(gettext("alg_ext.cc/ext_reduce"));
CERR << gettext("alg_ext.cc/ext_reduce");
return e;
}
#endif
if ( (e._EXTptr->type==_VECT) && ((e._EXTptr+1)->type==_VECT) &&
(e._EXTptr->_VECTptr->size()<(e._EXTptr+1)->_VECTptr->size()) )
return e;
return ext_reduce(*(e._EXTptr),*(e._EXTptr+1));
}
static bool polynome2vecteur(const polynome & p,int na,int nb,vecteur & v){
v=vecteur(na*nb,zero);
int i,j;
if (p.dim!=2){
#ifdef NO_STDEXCEPT
return false;
#else
setsizeerr(gettext("alg_ext.cc/polynome2vecteur"));
return false;
#endif
}
vector< monomial<gen> >::const_iterator it=p.coord.begin(),itend=p.coord.end();
for (;it!=itend;++it){
i=it->index.front();
j=it->index.back();
// cerr << nb*(na-i-1)+nb-j-1 << " " << na*nb << endl;
v[nb*(na-i-1)+nb-j-1]=it->value;
}
return true;
}
bool is_known_rootof(const vecteur & v,gen & symroot,GIAC_CONTEXT){
const_iterateur it=v.begin(),itend=v.end();
for (;it!=itend;++it){
if (it->type!=_INT_)
return false;
}
if (rootof_trylock())
return false;
rootmap::iterator ritend=symbolic_rootof_list().end(),rit=symbolic_rootof_list().find(v);
if (rit!=ritend)
symroot=rit->second;
rootof_unlock();
if (rit!=ritend)
return true;
if (v.size()==3){
vecteur w;
identificateur x(" x");
in_solve(symb_horner(v,x),x,w,0,contextptr);
if (w.empty())
return false;
symroot=w.front();
return true;
}
return false;
}
// replace _EXT == to ext by g in v
static vecteur replace_ext(const vecteur & v,const vecteur &ext,const gen & g,GIAC_CONTEXT){
vecteur res;
const_iterateur it=v.begin(),itend=v.end();
res.reserve(int(itend-it));
for (;it!=itend;++it){
gen numtmp=*it,dentmp=1;
if (it->type==_FRAC){
numtmp=it->_FRACptr->num;
dentmp=it->_FRACptr->den;
}
// if numtmp is an ext, it must be the same ext as a
if (numtmp.type==_EXT){
if (*(numtmp._EXTptr+1)!=ext)
return vecteur(1,gensizeerr(gettext("Invalid _EXT in replace_ext")));
res.push_back(horner(*numtmp._EXTptr,g)/dentmp);
}
else
res.push_back(evalf_double(*it,1,contextptr));
}
return res;
}
// given theta1 and theta2 with minimal poly va and vb (inside gen ga and gb)
// find k / Q[theta1+ k*theta2 ] contains theta1 and theta2
// return the minimal poly of theta=theta1+k*theta2
// and return in a and b theta1 and theta2 as ext (in terms of theta)
gen common_minimal_POLY(const gen & ga,const gen & gb, gen & a,gen & b,int & k,GIAC_CONTEXT){
const vecteur & va=*ga._VECTptr;
const vecteur & vb=*gb._VECTptr;
int na=int(va.size()-1),nb=int(vb.size()-1);
if (nb==1){
k=0;
vecteur un(2,zero);
un[0]=plus_one;
gen vag(va);
a=algebraic_EXTension(un,vag);
gen tmp=-vb[1];
if (tmp.type!=_POLY)
b=tmp;
else {
if (tmp._POLYptr->coord.empty())
b=zero;
else
b=tmp._POLYptr->coord.front().value;
}
return vag;
}
// create minimal polynomial of theta1/theta2 as 2-d polynomials
// with main variable respectively a and b
// (since pb is used for reduction after var reordering of p)
polynome pa(2),pb(2);
const_iterateur it=va.begin(),itend=va.end();
for (int d=na;it!=itend;++it,--d){
if (!is_zero(*it))
pa.coord.push_back(monomial<gen>(*it,d,1,2)); // deg=d, var=1, dim=2
}
it=vb.begin(),itend=vb.end();
int k_init=0;
for (int d=nb;it!=itend;++it,--d){
if (!is_zero(*it)){
gen numtmp=*it,dentmp=1;
if (it->type==_FRAC){
numtmp=it->_FRACptr->num;
dentmp=it->_FRACptr->den;
}
polynome pbadd(pb.dim);
// if numtmp is an ext, it must be the same ext as a
if (numtmp.type==_EXT){
pbadd=poly12polynome(*(numtmp._EXTptr->_VECTptr),1,1).untrunc1(d);
k_init=1;
}
else
pbadd.coord.push_back(monomial<gen>(numtmp,d,1,2));
pb = pb + pbadd/dentmp;
}
}
if (k_init){
vecteur v1=*evalf_double(va,1,contextptr)._VECTptr;
if (is_fully_numeric(v1)){
// when theta2 depends on theta1, theta1+k*theta2 is not necessarily
// the largest root, because the numeric value of v2 depends
// on the selected root of v1
//
// we should compute k*theta1+theta2 for a sufficiently large
// value of k to insure largest root, e.g.
// this implies computing approx value of theta1 and theta2
//
vecteur rac=real_proot(v1,1e-12,contextptr);
if (rac.empty()){
vecteur rac1=proot(v1,1e-12);
gen theta1=in_select_root(rac1,is_real(v1,contextptr),contextptr);
// replace _EXT in vb by r1 and evaluate numerically
vecteur v2=replace_ext(vb,va,theta1,contextptr);
if (!v2.empty() && is_undef(v2))
return v2.front();
// find theta2
if (is_fully_numeric(v2)){
vecteur rac2=proot(v2,1e-12);
if (!rac2.empty() && !is_undef(rac2)){
gen theta2=in_select_root(rac2,is_real(v2,contextptr),contextptr);
int racs=int(rac1.size());
for (int i=0;i<racs;++i){
gen r1=rac1[i],K;
if (r1==theta1)
continue;
v2=replace_ext(vb,va,r1,contextptr);
if (!v2.empty() && is_undef(v2))
return v2.front();
#ifndef NO_STDEXCEPT
try {
#endif
gen r2=select_root(v2,contextptr);
K=(r2-theta2)/(theta1-r1); // must be <= k
if (is_undef(K))
K=0;
#ifndef NO_STDEXCEPT
}
catch (std::runtime_error & ){
K=0;
}
#endif
// so that r2-theta2 <= k*theta1-k*r1
// or k*r1+r2 <= k*theta1+theta2
K=_floor(re(K,contextptr),contextptr)+1;
if (is_positive(K,contextptr) && K.type!=_INT_)
return gensizeerr(gettext("Unable to find common minimal polynomial"));
k_init=std::max(k_init,K.val);
}
} // !rac2.empty
} // is_fully_numeric(v2)
}
if (!rac.empty() && !is_undef(rac)){
gen theta1=_max(rac,contextptr);
// replace _EXT in vb by r1 and evaluate numerically
vecteur v2=replace_ext(vb,va,theta1,contextptr);
if (!v2.empty() && is_undef(v2))
return v2.front();
// find largest root (i.e. theta2)
if (is_fully_numeric(v2)){
vecteur rac2=real_proot(v2,1e-12,contextptr);
if (!rac2.empty() && !is_undef(rac2)){
gen theta2=_max(rac2,contextptr);
int racs=int(rac.size());
for (int i=0;i<racs;++i){
gen r1=rac[i],K;
if (r1==theta1)
continue;
v2=replace_ext(vb,va,r1,contextptr);
if (!v2.empty() && is_undef(v2))
return v2.front();
#ifndef NO_STDEXCEPT
try {
#endif
gen r2=_max(real_proot(v2,1e-12,contextptr),contextptr);
K=(r2-theta2)/(theta1-r1); // must be <= k
if (is_undef(K))
K=0;
#ifndef NO_STDEXCEPT
}
catch (std::runtime_error & ){
K=0;
}
#endif
// so that r2-theta2 <= k*theta1-k*r1
// or k*r1+r2 <= k*theta1+theta2
K=_floor(K,0)+1;
if (is_positive(K,contextptr) && K.type!=_INT_)
return gensizeerr(gettext("Unable to find common minimal polynomial"));
k_init=std::max(k_init,K.val);
}
} // !rac2.empty
}
} // if !rac.empty()
} // fully_numeric
}
else
++k_init; // start with k=1 if theta2 does not depend on theta1
matrice m;
m.reserve(na*nb);
for (k=k_init;;++k){
polynome p(2);
p.coord.push_back(monomial<gen>(1,2));
polynome q(2),tmpq(2),tmpr(2);
q.coord.push_back(monomial<gen>(k,1,1,2)); // k*a: deg=1, var=1, dim=2
q.coord.push_back(monomial<gen>(1,1,2,2)); // b: deg=1, var=2
// create the matrix
// lines are 1, k*a+b, ..., (k*a+b)^(na*nb)
// in terms of (columns)
// a^(na-1)*b^(nb-1) ... a^(na-1) ... ab^(nb-1) ... ab a b^(nb-1) ... b 1
m.clear();
vecteur ligne;
for (int j=0;j<=na*nb;++j){
if (!polynome2vecteur(p,na,nb,ligne))
return gensizeerr(gettext("alg_ext.cc/polynome2vecteur"));
// ligne.push_back(pow(theta,j));
m.push_back(ligne);
p=p*q;
// permutation of indices order before making division by pb
p.reorder(transposition(0,1,2));
p.TDivRem(pb,tmpq,tmpr,true); p.coord.swap(tmpr.coord); // p=p%pb; //
p.reorder(transposition(0,1,2));
// division by a after because b might depend on a
p.TDivRem(pa,tmpq,tmpr,true); p.coord.swap(tmpr.coord); // p=p%pa; //
}
// Add the lines corresponding to b and a (i.e. theta2, theta1)
ligne=vecteur(na*nb);
ligne[na*nb-2]=plus_one;
m.push_back(ligne);
ligne=vecteur(na*nb);
ligne[na*nb-nb-1]=plus_one;
m.push_back(ligne);
// Transpose matrix
// then we have the na*nb+3 columns 1, theta, ..., theta^(na*nb), b, a
// in terms of a basis (with na*nb coordinates)
m=mtran(m);
// reduce the matrix m to echelon form and test rank=na*nb
// if ok break, else try another value of k
matrice m_red;
vecteur pivots;
gen det;
int st=step_infolevel(contextptr);
step_infolevel(contextptr)=0;
if (!mrref(m,m_red,pivots,det,0,na*nb,0,na*nb+3,
/* fullreduction */1,0,true,1,0,
contextptr)){
step_infolevel(contextptr)=st;
return gensizeerr(contextptr);
}
step_infolevel(contextptr)=st;
m=m_red;
// the reduced matrix m should have the form
// * 0 ... 0 * * *
// 0 * ... 0 * * *
// ...
// 0 0 ... 0 * * *
// 0 0 ... 0 * * *
// 0 0 ... ? * * *
// with ? != 0, we check ?, if it is zero we try another value k
vecteur v(m[na*nb-1]._VECTptr->begin(),m[na*nb-1]._VECTptr->end()-1);
if (!is_zero__VECT(v,contextptr))
break;
}
mdividebypivot(m);
// add a -1 at the end of column na*nb (C convention, index starting at 0)
// to get the min poly
vecteur v(na*nb+1);
for (int i=0;i<na*nb;++i)
v[i]=-m[i][na*nb];
v[na*nb]=plus_one;
reverse(v.begin(),v.end());
// remove denominators
gen e;
lcmdeno_converted(v,e,contextptr);
// use column na*nb+1 to find b=theta2 in terms of theta
vecteur w(na*nb);
for (int i=0;i<na*nb;++i)
w[i]=m[i][na*nb+1];
reverse(w.begin(),w.end());
w=trim(w,0);
lcmdeno_converted(w,e,contextptr);
b=fraction(w,e);
// to get a=theta1 we use column na*nb+2
w=vecteur(na*nb);
for (int i=0;i<na*nb;++i)
w[i]=m[i][na*nb+2];
reverse(w.begin(),w.end());
w=trim(w,0);
lcmdeno_converted(w,e,contextptr);
a=fraction(w,e);
// convert to algebraic extensions
gen vg(v);
b=algebraic_EXTension(b,vg);
a=algebraic_EXTension(a,vg);
// add v to the rootof_list
if (!rootof_trylock()){
rootmap::iterator ritend=symbolic_rootof_list().end(),rit=symbolic_rootof_list().find(v);
rootof_unlock();
if (rit==ritend){
// should first check that va/vb are solvable poly
gen gaa,gbb;
if (is_known_rootof(va,gaa,contextptr) && is_known_rootof(vb,gbb,contextptr)){
if (!rootof_trylock()){
symbolic_rootof_list()[v]=gaa +k*gbb;
rootof_unlock();
}
}
}
}
return vg;
}
// assuming a is the extptr+1 of an ext, return the min pol of
// theta generating the algebraic extension
vecteur min_pol(gen & a){
if (a.type==_VECT)
return *a._VECTptr;
else {
if ( (a.type!=_EXT) || ((a._EXTptr+1)->type!=_VECT) )
return vecteur(1,gensizeerr(gettext("alg_ext.cc/min_pol")));
return *((a._EXTptr+1)->_VECTptr);
}
}
// Find an evaluation point for p at b where pb=p[b] is squarefree
bool find_good_eval(const polynome & F,polynome & Fb,vecteur & b){
int Fdeg=F.lexsorted_degree(),nvars=int(b.size());
gen Fg;
int essai=0;
for (;;++essai){
Fb=peval_1(F,b,0);
if (Fb.lexsorted_degree()==Fdeg && gcd(Fb,Fb.derivative()).lexsorted_degree()==0 ){
return true;
}
b=vranm(nvars,0,0); // find another random point
}
}
static void clean(gen & g);
static void clean(polynome & p){
vector< monomial<gen> >::iterator it=p.coord.begin(),itend=p.coord.end();
for (;it!=itend;++it)
clean(it->value);
}
static void clean(gen & g){
if (g.is_symb_of_sommet(at_neg) && is_integer(g._SYMBptr->feuille))
g=-g._SYMBptr->feuille;
if (g.type==_POLY){
clean(*g._POLYptr);
return;
}
if (g.type==_VECT){
iterateur it=g._VECTptr->begin(),itend=g._VECTptr->end();
for (;it!=itend;++it)
clean(*it);
return;
}
if (g.type==_EXT){
clean(*g._EXTptr);
clean(*(g._EXTptr+1));
}
}
// in-place reduction of algebraic extensions
void clean_ext_reduce(vecteur & v){
iterateur it=v.begin(),itend=v.end();
for (;it!=itend;++it)
clean_ext_reduce(*it);
}
void clean_ext_reduce(gen & g){
if (g.type==_EXT){
g=ext_reduce(g);
return;
}
if (g.type==_VECT){
clean_ext_reduce(*g._VECTptr);
return;
}
if (g.type==_POLY){
vector< monomial<gen> >::iterator it=g._POLYptr->coord.begin(),itend=g._POLYptr->coord.end();
for (;it!=itend;++it)
clean_ext_reduce(it->value);
return;
}
if (g.type==_FRAC)
clean_ext_reduce(g._FRACptr->num);
}
// a and b are supposed to be *(_EXTptr+1) of some algebraic extension
// common_EXT will return a new algebraic extension
// (suitable to be an extptr+1)
// and will modify a and b to be ext of the returned common_EXT
gen common_EXT(gen & a,gen & b,const vecteur * l,GIAC_CONTEXT){
if (a==b)
return a;
if (a.type==_FRAC)
return common_EXT(a._FRACptr->num,b,l,contextptr);
if (b.type==_FRAC)
return common_EXT(a,b._FRACptr->num,l,contextptr);
// extract minimal polynomials
gen a_orig(a),b_orig(b);
gen a__VECT,b__VECT;
if (a.type==_VECT)
a__VECT=a;
else {
if ( (a.type!=_EXT) || ((a._EXTptr+1)->type!=_VECT) )
return gensizeerr(gettext("alg_ext.cc/common_EXT"));
a__VECT=*(a._EXTptr+1);
}
if (b.type==_VECT)
b__VECT=b;
else {
if ( (b.type!=_EXT) || ((b._EXTptr+1)->type!=_VECT) )
return gensizeerr(gettext("alg_ext.cc/common_EXT"));
b__VECT=*(b._EXTptr+1);
}
int as=int(a__VECT._VECTptr->size()),bs=int(b__VECT._VECTptr->size());
if (bs>as)
return common_EXT(b,a,l,contextptr);
if (as==3 && bs==3 && is_one(a[0]) && is_one(b[0]) && is_zero(a[1]) && is_zero(b[1]) && a[2]==-b[2]){ // sqrt(X) and sqrt(-X)
b=algebraic_EXTension(makevecteur(cst_i,0),a);
gen tmp=a;
a=algebraic_EXTension(makevecteur(1,0),a);
return tmp;
}
// special handling if both extensions are cyclotomic
int ac=is_cyclotomic(*a__VECT._VECTptr,epsilon(contextptr)),bc;
if (ac && (bc=is_cyclotomic(*b__VECT._VECTptr,epsilon(contextptr))) ){
int cc=ac*bc/gcd(ac,bc);
gen res=gen(cyclotomic(cc),_POLY1__VECT);
a__VECT=gen(vecteur(cc/ac+1),_POLY1__VECT);
a__VECT._VECTptr->front()=1;
a=algebraic_EXTension(a__VECT,res);
b__VECT=gen(vecteur(cc/bc+1),_POLY1__VECT);
b__VECT._VECTptr->front()=1;
b=algebraic_EXTension(b__VECT,res);
return res;
}
// reduce extension degree by factorizing b__VECT over Q[a]
polynome p(poly12polynome(*b__VECT._VECTptr));
polynome p_content(p.dim);
factorization f;
gen an,extra_div;
ext_factor(p,algebraic_EXTension(a__VECT,a__VECT),an,p_content,f,false,extra_div);
// now choose in the factorization which factor is relevant for b
// this is done by approximation if possible
// or by choosing the factor of lowest degree
// this way we update b__VECT
int min_deg=int(b__VECT._VECTptr->size());
factorization::const_iterator f_it=f.begin(),f_itend=f.end();
bool trouve=false;
if (f_itend-f_it==1)
trouve=true;
vecteur racines;
vector<double> real_racines;
int innerdim=0;
const_iterateur b_it=b__VECT._VECTptr->begin(),b_itend=b__VECT._VECTptr->end();
for (;b_it!=b_itend;++b_it){
if (b_it->type==_POLY)
innerdim=b_it->_POLYptr->dim;
}
vecteur vb(innerdim);
gen racine_max=undef;
if (!trouve){
// Change for multivariate polynomials p, added evaluation
if (innerdim){
gen params;
*logptr(contextptr) << gettext("Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.") << endl;
if (l && l->size()>=2){
for (int i=1;i<l->size();++i){
params=(*l)[i];
if (params.type==_VECT && !params._VECTptr->empty())
break;
}
// IMPROVE: using context and *l look for assumptions
if (params.type==_VECT){
vecteur paramv=*params._VECTptr;
for (unsigned j=0;j<paramv.size() && j<vb.size();++j){
gen p=paramv[j];
if (p.type!=_IDNT)
continue;
if (p==cst_pi){
vb[j]=p;
continue;
}
gen g,g2=p._IDNTptr->eval(1,g,contextptr);
if ((g2.type==_VECT) && (g2.subtype==_ASSUME__VECT)){
vecteur V=*g2._VECTptr;
if ( V.size()==3 && V[1].type==_VECT && V[2].type==_VECT){
for (unsigned i=0;i<V[1]._VECTptr->size();++i){
gen tmp=(*V[1]._VECTptr)[i];
if (tmp.type==_VECT && tmp._VECTptr->size()==2){
gen a=tmp._VECTptr->front(),b=tmp._VECTptr->back();
if (a==minus_inf)
vb[j]=b-1;
else {
if (b==plus_inf)
vb[j]=a+1;
else {
if (a+b==0)
vb[j]=b/2;
else
vb[j]=(a+b)/2;
}
}
}
}
} // end if V.size()==3
} // end g2 assume_vect
} // end for j
} // end params.type==_VECT
}
vecteur vb0=vb;
polynome pb(1),px(unsplitmultivarpoly(p,innerdim));
find_good_eval(px,pb,vb); // need to modify find_good_eval for assumptions...
if (vb==vb0)
*logptr(contextptr) << gettext("The choice was done assuming ") << params << "=" << vb << endl;
else
*logptr(contextptr) << gettext("Non regular value ") << vb0 << gettext(" was discarded and replaced randomly by ") << params << "=" << vb << endl;
racines=proot(polynome2poly1(pb));
}
else
racines=proot(*b__VECT._VECTptr);
if (is_undef(racines)) return gensizeerr(contextptr);
// racines= list of approx roots if b__VECT is numeric
// empty if not numeric
racine_max=in_select_root(racines,is_real(b__VECT,contextptr),contextptr);
}
if (!trouve && !is_undef(racine_max)){ // select root for b
// now eval each factor over racine_max and choose the one with
// minimal absolute value
double min_abs=0;
for (;f_it!=f_itend;++f_it){
vecteur vtmp(polynome2poly1(f_it->fact));
gen tmp;
lcmdeno_converted(vtmp,tmp,contextptr);
int maxsave=max_sum_sqrt(contextptr);
max_sum_sqrt(0,contextptr);
if (innerdim)
tmp=r2sym(vtmp,vecteur(1,vb),contextptr);
else
tmp=r2sym(vtmp,vecteur(1,vecteur(0)),contextptr);
max_sum_sqrt(maxsave,contextptr);
tmp=evalf(tmp,1,contextptr);
if (tmp.type==_VECT && !tmp._VECTptr->empty())
tmp=tmp/tmp._VECTptr->front();
gen f_racine_max(evalf_double(abs(horner(tmp,racine_max),contextptr),1,contextptr));
if (f_racine_max.type!=_DOUBLE_)
continue;
double current_evaluation=fabs(f_racine_max._DOUBLE_val);
if (!trouve){
trouve=true;
min_abs=current_evaluation;
p=f_it->fact;
}
else {
if (min_abs>current_evaluation){
min_abs=current_evaluation;
p=f_it->fact;
}
}
}
}
if (!trouve) {
for (;f_it!=f_itend;++f_it){
if ( (b.type==_EXT) && is_zero(horner(polynome2poly1(f_it->fact,1),*b._EXTptr)) ){
p=f_it->fact;
break;
}
int d=f_it->fact.lexsorted_degree();
if (d && (d<=min_deg)){
p=f_it->fact;
min_deg=d;
}
}
} // end choose by degree
clean(p);
b__VECT=polynome2poly1(p/p.coord.front().value); // p must be monic (?)
// compute new minimal polynomial
int k;
gen res1=common_minimal_POLY(a__VECT,b__VECT,a,b,k,contextptr);
if ((a_orig.type==_EXT) && (b_orig.type==_EXT) && !is_undef(res1))
return algebraic_EXTension(a_orig+gen(k)*b_orig,res1);
else
return res1;
}
gen ext_add(const gen & aa,const gen & bb,GIAC_CONTEXT){
gen a(ext_reduce(aa)),b(ext_reduce(bb));
if ( (a.type!=_EXT) || (b.type!=_EXT) )
return a+b;
if (*(a._EXTptr+1)==*(b._EXTptr+1)){
if ( (a._EXTptr->type==_VECT) && (b._EXTptr->type==_VECT)){
gen c=new ref_vecteur;
addmodpoly(*a._EXTptr->_VECTptr,*b._EXTptr->_VECTptr,*c._VECTptr);
return ext_reduce(c,*(a._EXTptr+1));
return ext_reduce(*(a._EXTptr->_VECTptr)+ *(b._EXTptr->_VECTptr),*(a._EXTptr+1));
}
else
return ext_reduce(*a._EXTptr+*b._EXTptr,*(a._EXTptr+1));
}
gen c=common_EXT(*(a._EXTptr+1),*(b._EXTptr+1),0,contextptr);
if (is_undef(c)) return c;
// if c.type==_INT_/_ZINT, call ichinrem on a.extptr,b.extptr,...
return ext_reduce(a)+ext_reduce(b);
}
gen ext_sub(const gen & a,const gen & b,GIAC_CONTEXT){
if (*(a._EXTptr+1)==*(b._EXTptr+1)){
if ( (a._EXTptr->type==_VECT) && (b._EXTptr->type==_VECT)){
#if 1
gen c=new ref_vecteur;
submodpoly(*a._EXTptr->_VECTptr,*b._EXTptr->_VECTptr,*c._VECTptr);
return ext_reduce(c,*(a._EXTptr+1));
#endif
return ext_reduce(*(a._EXTptr->_VECTptr)- *(b._EXTptr->_VECTptr),*(a._EXTptr+1));
}
else
return ext_reduce(*a._EXTptr-*b._EXTptr,*(a._EXTptr+1));
}
return ext_add(a,-b,contextptr);
}
gen ext_mul(const gen & aa,const gen & bb,GIAC_CONTEXT){
gen a(ext_reduce(aa)),b(ext_reduce(bb));
if ( (a.type!=_EXT) || (b.type!=_EXT) )
return a*b;
if (*(a._EXTptr+1)==*(b._EXTptr+1)){
if ((a._EXTptr->type==_VECT) && (b._EXTptr->type==_VECT)){
#if 1
gen c=new ref_vecteur;
operator_times(*a._EXTptr->_VECTptr,*b._EXTptr->_VECTptr,0,*c._VECTptr);
return ext_reduce(c,*(a._EXTptr+1));
#endif
return ext_reduce( *(a._EXTptr->_VECTptr) * *(b._EXTptr->_VECTptr),*(a._EXTptr+1));
}
else
return ext_reduce((*a._EXTptr)*(*b._EXTptr),*(a._EXTptr+1));
}
gen c=common_EXT(*(a._EXTptr+1),*(b._EXTptr+1),0,contextptr);
if (is_undef(c)) return c;
// if c.type==_INT_/_ZINT, call ichinrem on a._EXTptr,b._EXTptr,...
return ext_reduce(a)*ext_reduce(b);
}
gen inv_EXT(const gen & aa){
if (aa.type!=_EXT)
return inv(aa,context0);
gen a(ext_reduce(aa));
if (a.type==_FRAC){
return a._FRACptr->den*inv_EXT(a._FRACptr->num);
}
if (a.type!=_EXT)
return inv(a,context0);
if (a._EXTptr->type==_VECT){
vecteur u,v,d;
egcd(*(a._EXTptr->_VECTptr),*((a._EXTptr+1)->_VECTptr),0,u,v,d);
if (d.size()!=1)
return gensizeerr(gettext("inv_EXT"));
gen de=d.front(),du=u;
simplify(du,de);
return fraction(algebraic_EXTension(du,*(a._EXTptr+1)),de);
}
return gentypeerr(gettext("inv_EXT"));
}
gen horner_rootof(const vecteur & p,const gen & g,GIAC_CONTEXT){
if (g.type==_SYMB && g._SYMBptr->feuille.type==_VECT &&
// false
int(g._SYMBptr->feuille._VECTptr->size())>max_sum_sqrt(contextptr)
)
return symb_horner(p,g);
const_iterateur it=p.begin(),itend=p.end();
gen res;
for (;it!=itend;++it){
res=ratnormal(res*g+*it,contextptr);
}
return ratnormal(res,contextptr);
}
bool has_rootof_value(const gen & Pmin,gen & value,GIAC_CONTEXT){
value=undef;
if (contextptr && contextptr->globalcontextptr->rootofs){
const vecteur & r=*contextptr->globalcontextptr->rootofs;
for (unsigned i=0;i<r.size();++i){
gen ri=r[i];
if (ri.type==_VECT && ri._VECTptr->size()==2 && Pmin.type==_VECT && ri._VECTptr->front().type==_VECT && *Pmin._VECTptr==*ri._VECTptr->front()._VECTptr){
value=ri._VECTptr->back();
return true;
}
}
}
return !is_undef(value);
}
static string printasrootof(const gen & g,const char * s,GIAC_CONTEXT){
if (contextptr && g.type==_VECT && g._VECTptr->size()==2){
gen value;
if (g._VECTptr->front().type==_VECT && has_rootof_value(g._VECTptr->back(),value,contextptr)){
value=horner_rootof(*g._VECTptr->front()._VECTptr,value,contextptr);
string res=value.print(contextptr);
if (need_parenthesis(value))
res=("("+res)+')';
return res;
}
}
string res(s);
res+='(';
res+=g.print(contextptr);
res+=')';
return res;
}
// rootof has 2 args: P(theta) and Pmin(theta)
gen symb_rootof(const gen & p,const gen &pmin,GIAC_CONTEXT){
if (p.type!=_VECT)
return p;
// first check that pmin is in the list of known rootof
gen value(undef);
if (!rootof_trylock()){
rootmap::iterator it=symbolic_rootof_list().find(pmin),itend=symbolic_rootof_list().end();
if (it!=itend)
value=it->second;
rootof_unlock();
}
if (is_undef(value))
return symbolic(at_rootof,makevecteur(p,pmin));
return horner_rootof(*p._VECTptr,value,contextptr);
// return ratnormal(ratnormal(symb_horner(*p._VECTptr,it->second)));
}
gen rootof(const gen & e,GIAC_CONTEXT){
if (e.type!=_VECT){
vecteur v=lidnt(e);
if (v.size()==1)
return rootof(_symb2poly(makesequence(e,v.front()),contextptr),contextptr);
return gentypeerr(gettext("rootof"));
}
if (e.type==_VECT && *e._VECTptr==makevecteur(1,0,1)){
*logptr(contextptr) << "rootof([1,0,1]) was converted to i" << endl;
return cst_i;
}
if (e._VECTptr->size()==2 && e._VECTptr->front().type!=_VECT){
vecteur v=lidnt(e);
if (v.size()!=1)
return gentypeerr(gettext("rootof"));
return rootof(makesequence(_symb2poly(makesequence(e._VECTptr->front(),v.front()),contextptr),_symb2poly(makesequence(e._VECTptr->back(),v.front()),contextptr)),contextptr);
}
if (e._VECTptr->size()!=2 || e._VECTptr->back().type!=_VECT)
return rootof(makesequence(makevecteur(1,0),e),contextptr);
if (has_num_coeff(e))
return approx_rootof(e,contextptr);
if (!lop(lvar(e),at_pow).empty()){
*logptr(contextptr) << gettext("Algebraic extensions not allowed in a rootof")<<endl;
return approx_rootof(e,contextptr);
}
// should call factor before returning unevaluated rootof
if (e.type==_VECT && e._VECTptr->size()==2 && e._VECTptr->back().type==_VECT){
vecteur v2=*e._VECTptr->back()._VECTptr;
gen g(1);
lcmdeno(v2,g,contextptr);
return symbolic(at_rootof,gen(makevecteur(e._VECTptr->front(),gen(v2,e._VECTptr->back().subtype)),e.subtype));
}
return symbolic(at_rootof,e);
}
gen approx_rootof(const gen & e,GIAC_CONTEXT){
if ( (e.type!=_VECT) || (e._VECTptr->size()!=2) )
return gensizeerr(contextptr);
if (!lidnt(e).empty())
return symbolic(at_rootof,e);
gen a=e._VECTptr->front(),b=e._VECTptr->back();
return alg_evalf(a,b,contextptr);
}
/* statically in derive.cc
static gen d1_rootof(const gen & args,GIAC_CONTEXT){
return gentypeerr(contextptr);
return zero;
}
static gen d2_rootof(const gen & args,GIAC_CONTEXT){
return gentypeerr(contextptr);
return zero;
}
define_unary_function_ptr( D1_rootof,alias_D1_rootof,new unary_function_eval(0,&d1_rootof,""));
define_unary_function_ptr( D2_rootof,alias_D2_rootof,new unary_function_eval(0,&d2_rootof,""));
static unary_function_ptr d_rootof(int i){
if (i==1)
return D1_rootof;
if (i==2)
return D2_rootof;
return gensizeerr(contextptr);
return 0;
}
partial_derivative_multiargs D_rootof(&d_rootof);
*/
static const char _rootof_s []="rootof";
static define_unary_function_eval2 (__rootof,&giac::rootof,_rootof_s,&printasrootof);
define_unary_function_ptr5( at_rootof ,alias_at_rootof,&__rootof,0,true);
gen max_algext(const gen & args,GIAC_CONTEXT){
gen g=args;
if (!is_integral(g) || g.type!=_INT_ || g.val<3)
return gensizeerr(contextptr);
return MAX_ALG_EXT_ORDER_SIZE=MAX_COMMON_ALG_EXT_ORDER_SIZE=g.val;
}
static const char _max_algext_s []="max_algext";
static define_unary_function_eval (__max_algext,&giac::max_algext,_max_algext_s);
define_unary_function_ptr5( at_max_algext ,alias_at_max_algext,&__max_algext,0,true);
static vecteur sturm(const gen & g){
if (g.type!=_POLY)
return vecteur(1,g);
polynome p(*g._POLYptr);
polynome pl(lgcd(p));
polynome pp=p/pl;
polynome cont(p.dim);
factorization f(sqff(pp));
factorization::const_iterator it=f.begin(),itend=f.end();
gen a=p.coord.front().value;
for (;it!=itend;++it){
if (it->mult %2)
a=a/it->fact.coord.front().value;
}
vecteur v(1,pl.coord.empty()?a:a/pl.coord.front().value*pl);
for (it=f.begin();it!=itend;++it){
if (it->mult %2)
v.push_back(sturm_seq(it->fact,cont));
}
return v;
}
vecteur sturm(const gen &g,const gen & x,GIAC_CONTEXT){
if (g.type==_VECT)
return vecteur(1,gensizeerr(contextptr));
vecteur l;
if (!is_zero(x))
l.push_back(x);
lvar(g,l);
fraction fa(e2r(g,l,contextptr));
gen n,d;
fxnd(fa,n,d);
vecteur v=mergevecteur(sturm(n),sturm(d));
vecteur res,tmp,ll=cdr_VECT(l);
const_iterateur it=v.begin(),itend=v.end();
for (;it!=itend;++it){
if (it->type==_VECT){
const_iterateur jt=it->_VECTptr->begin(),jtend=it->_VECTptr->end();
vecteur tmpres;
tmpres.reserve(int(jtend-jt));
for (;jt!=jtend;++jt){
if (jt->type==_POLY){
tmp=polynome2poly1(*(jt->_POLYptr),1);
tmpres.push_back(r2e(tmp,ll,contextptr));
}
else
tmpres.push_back(*jt);
}
res.push_back(tmpres);
}
else { // it->type != _VECT but we must convert anyway the cst coeff!
if (it->type==_POLY){
gen tmpg=polynome2poly1(*(it->_POLYptr),1).front();
res.push_back(r2e(tmpg,ll,contextptr));
}
else
res.push_back(*it);
}
}
return res;
}
// v is a sequence of dense polynomials
// each poly is evaluated at a, then we count # of sign changes
// ignoring zeros
// The function modifies a sign variable according to the sign first
// non-zero element of v
static int number_of_sign_changes(const vecteur & v,const gen & a0,int & global_sign,GIAC_CONTEXT){
gen a=exact(a0,contextptr);
gen w=normal(apply1st(v,a,horner),contextptr);
int previous_sign=0,current_sign,res=0;
const_iterateur it=w._VECTptr->begin(),itend=w._VECTptr->end();
for (;it!=itend;++it){
if (is_exactly_zero(*it))
continue;
if (ck_is_strictly_positive(*it,contextptr))
current_sign=1;
else
current_sign=-1;
if (!previous_sign) {// assign first non-zero sign
previous_sign=current_sign;
global_sign = global_sign *current_sign;
}
if (previous_sign==current_sign)
continue;
++res;
previous_sign=current_sign;
}
return res;
}
static int sturmab(const gen & g,const gen & x,const gen & a,const gen & b,bool remove_b_root,GIAC_CONTEXT){
if (g.type==_VECT){
#ifdef NO_STDEXCEPT
return -2;
#else
setsizeerr(contextptr);
#endif
}
if (ck_is_strictly_greater(a,b,contextptr))
return sturmab(g,x,b,a,contextptr);
if (a==b){
gen tmp;
if (is_inf(a) && x.type==_IDNT)
tmp=limit(g,*x._IDNTptr,a,0,contextptr);
else
tmp=subst(g,x,a,false,contextptr);
int s=fastsign(tmp,contextptr);
if (s==1 || s==-1)
return (s-1)/2;
}
#ifdef NO_STDEXCEPT
vecteur lvarg(lvar(g));
if (!lvarg.empty() && lvarg!=vecteur(1,x))
return -2;
#endif
int res=0,dontcare,global_sign=1;
vecteur v=sturm(g,x,contextptr);
if (is_undef(v))
return -2;
const_iterateur it=v.begin(),itend=v.end();
for (;it!=itend;++it){
if (it->type==_VECT){
res += number_of_sign_changes(*it->_VECTptr,a,global_sign,contextptr)-number_of_sign_changes(*it->_VECTptr,b,dontcare,contextptr);
if (remove_b_root && is_zero(horner(it->_VECTptr->front(),b)))
--res;
}
else {
if (!ck_is_positive(*it,contextptr))
global_sign = -global_sign;
}
}
if (res)
return res;
return (global_sign-1)/2;
}
int sturmab(const gen & g,const gen & x,const gen & a,const gen & b,GIAC_CONTEXT){
return sturmab(g,x,a,b,false,contextptr);
}
gen _sturmab(const gen & g_orig,GIAC_CONTEXT){
if ( g_orig.type==_STRNG && g_orig.subtype==-1) return g_orig;
if ( g_orig.type!=_VECT || g_orig._VECTptr->size()<3 )
return gensizeerr(contextptr);
vecteur v(*g_orig._VECTptr);
int s=int(v.size());
gen P(v[0]),x(vx_var),a,b;
if (s==3){ a=v[1]; b=v[2]; }
else {
x=v[1]; a=v[2]; b=v[3];
if (P.type==_VECT)
*logptr(contextptr) << gettext("Warning: variable name ignored: ") << x << endl;
}
gen ai=im(a,contextptr);
gen bi=im(b,contextptr);
if (!is_zero(ai) || !is_zero(bi)){
gen p=_e2r(gen(makevecteur(P,vecteur(1,x)),_SEQ__VECT),contextptr),n,d,g1,g2;
if (is_undef(p)) return p;
fxnd(p,n,d);
vecteur nr;
int n1;
#if 0 // replace by 1 if you want to count complex rational root on the edges
if (n.type==_POLY && n._POLYptr->dim==1){
polynome nrp=*n._POLYptr;
nr=crationalroot(nrp,true);
n1=csturm_square(nrp,a,b,g1,contextptr);
}
else
n1=csturm_square(n,a,b,g1,contextptr);
#else
n1=csturm_square(n,a,b,g1,contextptr);
#endif
int d1=csturm_square(d,a,b,g2,contextptr);
if (n1==-1 || d1==-1)
return gensizeerr(contextptr);
return int(nr.size())+gen(n1)/2+cst_i*gen(d1)/2;
}
if (s==5 && v[4].type==_INT_)
return sturmab(P,x,a,b,v[4].val!=0,contextptr);
return sturmab(P,x,a,b,contextptr);
}
static const char _sturmab_s []="sturmab";
static define_unary_function_eval (__sturmab,&giac::_sturmab,_sturmab_s);
define_unary_function_ptr5( at_sturmab ,alias_at_sturmab,&__sturmab,0,true);
gen _sturm(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
if (g.type!=_VECT || (g.type==_VECT && g.subtype!=_SEQ__VECT) )
return sturm(g,zero,contextptr);
vecteur & v = *g._VECTptr;
int s=int(v.size());
if (s==2)
return sturm(v.front(),v.back(),contextptr);
if (s==4)
return _sturmab(g,contextptr);
if (s==3){
if (v[2].type!=_IDNT)
return gensizeerr(contextptr);
gen S=_e2r(gen(makevecteur(v[0],v[2]),_SEQ__VECT),contextptr);
if (is_undef(S)) return S;
gen R=_e2r(gen(makevecteur(v[1],v[2]),_SEQ__VECT),contextptr);
if (is_undef(R)) return R;
if (S.type==_FRAC)
S=S._FRACptr->num;
if (R.type==_FRAC)
R=R._FRACptr->num;
modpoly r0(gen2vecteur(S)),r1(gen2vecteur(R));
vecteur listquo,coeffP,coeffR;
gen pgcd=csturm_seq(r0,r1,listquo,coeffP,coeffR,contextptr);
return makevecteur(r0,r1,pgcd,listquo,coeffP,coeffR);
}
return gendimerr(contextptr);
}
static const char _sturm_s []="sturm";
static define_unary_function_eval (__sturm,&giac::_sturm,_sturm_s);
define_unary_function_ptr5( at_sturm ,alias_at_sturm,&__sturm,0,true);
gen _sturmseq(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
// should return in the same format as maple
return _sturm(g,contextptr);
}
static const char _sturmseq_s []="sturmseq";
static define_unary_function_eval (__sturmseq,&giac::_sturmseq,_sturmseq_s);
define_unary_function_ptr5( at_sturmseq ,alias_at_sturmseq,&__sturmseq,0,true);
void recompute_minmax(const vecteur & w,const vecteur & range,const gen & expr,const gen & var,gen & resmin,gen & resmax,vecteur & xmin,vecteur & xmax,int direction,GIAC_CONTEXT){
const_iterateur it=w.begin(),itend=w.end();
for (;it!=itend;++it){
if (ck_is_strictly_greater(*it,range[1],contextptr) || ck_is_strictly_greater(range[0],*it,contextptr))
continue;
#ifdef NO_STDEXCEPT
gen tmp=limit(expr,*var._IDNTptr,*it,direction,contextptr);
#else
gen tmp;
try {
tmp=limit(expr,*var._IDNTptr,*it,direction,contextptr);
} catch (std::runtime_error & err){
tmp=undef;
}
#endif
if (is_undef(tmp) || tmp==unsigned_inf)
continue;
if (tmp==resmax && !equalposcomp(xmax,*it))
xmax.push_back(*it);
else {
if (ck_is_strictly_greater(tmp,resmax,contextptr)){
resmax=tmp;
xmax=vecteur(1,*it);
}
}
if (tmp==resmin && !equalposcomp(xmin,*it))
xmin.push_back(*it);
else {
if (ck_is_strictly_greater(resmin,tmp,contextptr)){
resmin=tmp;
xmin=vecteur(1,*it);
}
}
}
}
// minmax=0 both 1 min, 2 max, /3 =1 if return x instead of f(x)
gen fminmax(const gen & g,int minmax,GIAC_CONTEXT){
gen expr,var;
vecteur v(gen2vecteur(g));
if (v.size()==1)
v.push_back(vx_var);
if (v.size()!=2)
return gensizeerr(contextptr);
expr=v[0];
var=v[1];
// avoid inf recursion like g0(x):=ln(abs(ln(x)));
// g1(x,xp):=x/(ln(x))^(xp);g0(g1(x,.3));
gen varev=eval(var,1,contextptr);
if (varev!=var && contains(varev,var))
return undef;
if (expr.type==_SYMB){
unary_function_ptr & u=expr._SYMBptr->sommet;
if (u==at_exp || u==at_ln || u==at_atan || u==at_abs){
gen tmp=fminmax(makevecteur(expr._SYMBptr->feuille,var),minmax,contextptr);
if (is_undef(tmp))
return tmp;
if (u==at_abs && tmp.type==_VECT && tmp._VECTptr->size()==2 ){
gen t1=tmp._VECTptr->front();
gen t2=tmp._VECTptr->back();
if (is_positive(t1,contextptr))
return tmp;
if (is_positive(-t2,contextptr)){
return gen(makevecteur(-t2,-t1),_LINE__VECT);
}
// t1<=0 t2>=0
if (is_greater(-t1,t2,contextptr))
return gen(makevecteur(0,-t1),_LINE__VECT);
else
return gen(makevecteur(0,t2),_LINE__VECT);
}
if (u==at_ln && tmp.type==_VECT && tmp._VECTptr->size()==2 && is_positive(-tmp._VECTptr->front(),contextptr) )
tmp._VECTptr->front()=zero;
if (minmax/3)
return tmp;
else
return u(tmp,contextptr);
}
}
bool do_find_range=true;
vecteur range;
if (is_equal(var)){
gen tmp=var._SYMBptr->feuille;
if (tmp.type==_VECT && tmp._VECTptr->size()==2){
gen varminmax=tmp._VECTptr->back();
var=tmp._VECTptr->front();
if (varminmax.is_symb_of_sommet(at_interval) && varminmax._SYMBptr->feuille.type==_VECT){
range=*varminmax._SYMBptr->feuille._VECTptr;
do_find_range=false;
}
}
}
// gensizeerr replaced by undef because otherwise abs(sin(exp(x))) fails on emcc
if (var.type!=_IDNT)
return undef; // gensizeerr(contextptr);
if (do_find_range){
find_range(var,range,contextptr);
if (range.size()!=1 || range.front().type!=_VECT)
return gensizeerr(gettext("Or condition not implemented"));
range=*range.front()._VECTptr;
}
if (range.size()!=2)
return gensizeerr(gettext("fminmax, range ")+gen(range).print(contextptr));
if (range[0]==minus_inf || range[1]==plus_inf){
// periodic function?
vecteur w=lvarx(trig2exp(expr,contextptr),var);
gen period=0;
for (unsigned i=0;i<w.size();++i){
if (!w[i].is_symb_of_sommet(at_exp)){
period=0;
break;
}
gen tmp=w[i]._SYMBptr->feuille,a,b;
if (!is_linear_wrt(tmp,var,a,b,contextptr) || !is_zero(re(a,contextptr))){
period=0;
break;
}
if (is_zero(a))
continue;
a=ratnormal(cst_two_pi/im(a,contextptr),contextptr); // current period
if (is_zero(period))
period=a;
else { // find common period (if it exists)
b=ratnormal(period/a,contextptr);
if (b.type!=_INT_ && b.type!=_FRAC){
period=0;
break;
}
if (b.type==_FRAC)
period=period*b._FRACptr->den;
}
}
if (!is_zero(period)){
if (w.size()>1)
expr=simplify(expr,contextptr);
if (range[0]==minus_inf){
if (range[1]==plus_inf){
range[1]=period/2;
range[0]=-range[1];
}
else
range[0]=range[1]-period;
}
else
range[1]=range[0]+period;
}
}
gen df(derive(expr,var,contextptr));
if (is_undef(df))
return df;
vecteur w;
if (range==makevecteur(minus_inf,plus_inf))
w=solve(df,var,2,contextptr);
else {
// FIXME: check if var is quoted, otherwise it will be erased
gen savevar=var;
var._IDNTptr->in_eval(1,var,savevar,contextptr);
// if (var._IDNTptr->in_eval(1,var,savevar,contextptr)) 1;
giac_assume(symbolic(at_and,makevecteur(symb_superieur_egal(var,range[0]),symb_inferieur_egal(var,range[1]))),contextptr);
w=solve(df,var,2,contextptr);
if (savevar==var)
purgenoassume(var,contextptr);
else
sto(savevar,var,contextptr);
}
if (w.empty() && debug_infolevel)
*logptr(contextptr) << gettext("Warning: ") << df << gettext("=0: no solution found") << endl;
vecteur wvar=makevecteur(cst_pi);
lidnt(w,wvar,false);
if (wvar.size()>1)
return undef;
gen resmin=plus_inf;
gen resmax=minus_inf;
vecteur xmin,xmax;
// Extrema
recompute_minmax(w,range,expr,var,resmin,resmax,xmin,xmax,0,contextptr);
// Limits at begin and end of range
recompute_minmax(vecteur(1,range[0]),range,expr,var,resmin,resmax,xmin,xmax,1,contextptr);
recompute_minmax(vecteur(1,range[1]),range,expr,var,resmin,resmax,xmin,xmax,-1,contextptr);
// Singularities
vecteur ws=find_singularities(expr,*var._IDNTptr,0,contextptr);
int wss=int(ws.size());
w.clear();
for (int i=0;i<wss;++i){
if (ws[i]!=range[0] && ws[i]!=range[1])
w.push_back(ws[i]);
}
recompute_minmax(w,range,expr,var,resmin,resmax,xmin,xmax,1,contextptr);
recompute_minmax(w,range,expr,var,resmin,resmax,xmin,xmax,-1,contextptr);
if (minmax/3){
if (minmax %3 ==1)
return xmin;
if (minmax %3 ==2)
return xmax;
return gen(makevecteur(xmin,xmax),_LINE__VECT);
}
else {
if (minmax %3 ==1)
return resmin;
if (minmax %3 ==2)
return resmax;
return gen(makevecteur(resmin,resmax),_LINE__VECT);
}
}
bool is_constant_idnt(const gen & g); // FIXME -> prog.h
// find extremals values of g
// should be improved (currently return -1..1 for sin and cos
int find_range(const gen & g,vecteur & a,GIAC_CONTEXT){
if (g.type==_IDNT){
gen g2=g._IDNTptr->eval(1,g,contextptr);
if ((g2.type==_VECT) && (g2.subtype==_ASSUME__VECT)){
vecteur v=*g2._VECTptr;
if ( (v.size()==3) && (v.front()==vecteur(0) || v.front()==_DOUBLE_ || v.front()==_ZINT || v.front()==_SYMB || v.front()==0) && (v[1].type==_VECT)){
a=*v[1]._VECTptr;
return 1;
}
if (v.size()==1 && v.front()==_ZINT)
return 2;
}
}
if (g.type==_SYMB){
#ifndef NO_STDEXCEPT
try {
#endif
if (g._SYMBptr->feuille.type==_SPOL1)
return 0;
vecteur lv0(lvar(g._SYMBptr->feuille)),lv; // remove cst idnt
for (unsigned i=0;i<lv0.size();++i){
if (evalf_double(lv0[i],1,contextptr).type!=_DOUBLE_) // if (!is_constant_idnt(lv0[i]))
lv.push_back(lv0[i]);
}
if (!lv.empty()){
gen res=fminmax(makevecteur(g,lv[0]),0,contextptr);
if (is_undef(res))
return 0;
a=vecteur(1,res);
return 1;
}
#ifndef NO_STDEXCEPT
}
catch (std::runtime_error & ){
}
#endif
unary_function_ptr s(g._SYMBptr->sommet);
if ( (s==at_sin) || (s==at_cos) ){
a=vecteur(1,gen(makevecteur(minus_one,plus_one),_LINE__VECT));
return 1;
}
}
a=vecteur(1,gen(makevecteur(minus_inf,plus_inf),_LINE__VECT));
return 1;
}
bool is_sqrt(const gen & a,gen & arg){
if (a.is_symb_of_sommet(at_sqrt)){
arg=a._SYMBptr->feuille;
return true;
}
if (!a.is_symb_of_sommet(at_pow))
return false;
gen & f = a._SYMBptr->feuille;
if (f.type!=_VECT || f._VECTptr->size()!=2)
return false;
arg = f._VECTptr->front();
gen & expo = f._VECTptr->back();
if (expo.type!=_FRAC || !is_one(expo._FRACptr->num))
return false;
gen & d =expo._FRACptr->den;
if (d.type!=_INT_ || d.val!=2)
return false;
return true;
}
static int insturmsign1(const gen & g0,bool strict,GIAC_CONTEXT){
gen g=recursive_normal(exact(g0,contextptr),contextptr);
if (has_i(g))
return 0;
vecteur v(lvar(g));
// search for a sqrt inside v: sign(a+b*sqrt(c))=
// = sign(a) if a^2-c*b^2 > 0,
// = sign(b) if a^2-c*b^2 < 0
int s=int(v.size());
if (!s
#ifdef EMCC
|| s>1
#endif
)
return fastsign(g,contextptr);
gen v0(v[0]);
for (int i=0;i<s;++i){ // replace by first idnt with an assumption
if (v[i].type==_IDNT && v[i]._IDNTptr->eval(1,v[i],contextptr).type!=_IDNT){
v0=v[i];
}
gen a,b,c;
if (is_sqrt(v[i],c)){
identificateur x(" x");
gen g1=subst(g,v[i],x,false,contextptr);
if (is_linear_wrt(g1,x,b,a,contextptr)){
gen s=sign(a*b,contextptr);
if (is_one(s) && (s=sign(a,contextptr)).type==_INT_)
return s.val;
s=sign(a*a-c*b*b,contextptr);
if (s.type!=_INT_ || is_zero(s.val))
return 0;
s=(is_one(s))?sign(a,contextptr):sign(b,contextptr);
if (is_one(s))
return 1;
if (is_minus_one(s))
return -1;
return 0;
}
}
}
vecteur a;
if (!find_range(v0,a,contextptr))
return -2;
int previous_sign=2,current_sign=0;
#ifndef NO_STDEXCEPT
try {
#endif
const_iterateur ita=a.begin(),itaend=a.end();
for (;ita!=itaend;++ita){
if ( (ita->type!=_VECT) || (ita->subtype!=_LINE__VECT) || (ita->_VECTptr->size()!=2) )
return 0;
gen last(ita->_VECTptr->back());
gen gg(g);
identificateur idnttmp("t");
gen testg(subst(g,v0,idnttmp,false,contextptr));
if (is_zero(limit(testg,idnttmp,last,-1,contextptr))){
if (strict && (v0.is_symb_of_sommet(at_sin) || v0.is_symb_of_sommet(at_cos)))
return 0;
gen tmp=_fxnd(gg,contextptr);
if (tmp.type!=_VECT || tmp._VECTptr->size()!=2){
#ifdef NO_STDEXCEPT
return -2;
#else
setsizeerr(contextptr);
#endif
}
gen num=tmp._VECTptr->front(),den=tmp._VECTptr->back(),tmpden;
tmp=_e2r(makevecteur(num,v0),contextptr);
tmpden=_e2r(makevecteur(den,v0),contextptr);
if (is_undef(tmp) || is_undef(tmpden))
return -2;
if (is_inf(last) && tmpden.type==_VECT)
den=den/pow(v0,2*int(tmpden._VECTptr->size()/2));
tmp=gen2vecteur(tmp);
modpoly p(*tmp._VECTptr),q;
if (!is_inf(last)) {
while (is_zero(horner(p,last,0,q)))
p=-q;
}
gg=_r2e(gen(makevecteur(p,v0),_SEQ__VECT),contextptr)/den;
}
current_sign=sturmab(gg,v0,ita->_VECTptr->front(),last,true,contextptr);
if (current_sign>0 || current_sign==-2)
return 0;
if (previous_sign==2)
previous_sign=current_sign;
if (previous_sign!=current_sign)
return 0;
}
#ifndef NO_STDEXCEPT
}
catch (std::runtime_error & ){
return 0;
}
#endif
return 2*current_sign+1;
}
static int insturmsign(const gen & g0,bool strict,GIAC_CONTEXT){
//bool absb=eval_abs(contextptr);
//eval_abs(false,contextptr);
int res=insturmsign1(g0,strict,contextptr);
return res;
//eval_abs(absb,contextptr);
}
int sturmsign(const gen & g0,bool strict,GIAC_CONTEXT){
int fs=fastsign(g0,contextptr);
if (fs) return fs;
gen g=simplifier(g0,contextptr);
// first check some operators inv, *, exp, sqrt
int tmp;
if (g.is_symb_of_sommet(at_neg)){
tmp=sturmsign(g._SYMBptr->feuille,strict,contextptr);
return tmp==-2?tmp:-tmp;
}
if (g.is_symb_of_sommet(at_inv)){
tmp=sturmsign(g._SYMBptr->feuille,strict,contextptr);
return tmp;
}
if (g.is_symb_of_sommet(at_exp))
return 1;
/* if (g.is_symb_of_sommet(at_pow) && g._SYMBptr->feuille[1]==plus_one_half)
return 1; */
if (g.is_symb_of_sommet(at_prod)){
gen &f=g._SYMBptr->feuille;
vecteur v(gen2vecteur(f));
int s=int(v.size());
vecteur w;
int res=1,currentsign;
// remove cst coeffs and exp/
for (int i=0;i<s;++i){
if (v[i].is_symb_of_sommet(at_sqrt) && sturmsign(v[i]._SYMBptr->feuille,strict,contextptr)==1)
continue;
if ( (currentsign=fastsign(v[i],contextptr)) )
res *= currentsign;
else
w.push_back(v[i]);
}
switch (w.size()){
case 0:
return res;
case 1:
tmp=insturmsign(w.front(),strict,contextptr); return tmp==-2?-2:res*tmp;
default:
tmp=insturmsign(symbolic(at_prod,w),strict,contextptr); return tmp==-2?-2:res*tmp;
}
}
return insturmsign(g,strict,contextptr);
}
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC