objfun.c 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 * Copyright (c) 2014 Paul Sokolovsky
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <string.h>
#include <assert.h>

#include "py/nlr.h"
#include "py/objtuple.h"
#include "py/objfun.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/bc.h"
#include "py/stackctrl.h"

#if 0 // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif

// Note: the "name" entry in mp_obj_type_t for a function type must be
// MP_QSTR_function because it is used to determine if an object is of generic
// function type.

/******************************************************************************/
/* builtin functions                                                          */

STATIC mp_obj_t fun_builtin_0_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    (void)args;
    assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_0));
    mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
    mp_arg_check_num(n_args, n_kw, 0, 0, false);
    return self->fun._0();
}

const mp_obj_type_t mp_type_fun_builtin_0 = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_builtin_0_call,
    .unary_op = mp_generic_unary_op,
};

STATIC mp_obj_t fun_builtin_1_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_1));
    mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
    mp_arg_check_num(n_args, n_kw, 1, 1, false);
    return self->fun._1(args[0]);
}

const mp_obj_type_t mp_type_fun_builtin_1 = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_builtin_1_call,
    .unary_op = mp_generic_unary_op,
};

STATIC mp_obj_t fun_builtin_2_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_2));
    mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
    mp_arg_check_num(n_args, n_kw, 2, 2, false);
    return self->fun._2(args[0], args[1]);
}

const mp_obj_type_t mp_type_fun_builtin_2 = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_builtin_2_call,
    .unary_op = mp_generic_unary_op,
};

STATIC mp_obj_t fun_builtin_3_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_3));
    mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
    mp_arg_check_num(n_args, n_kw, 3, 3, false);
    return self->fun._3(args[0], args[1], args[2]);
}

const mp_obj_type_t mp_type_fun_builtin_3 = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_builtin_3_call,
    .unary_op = mp_generic_unary_op,
};

STATIC mp_obj_t fun_builtin_var_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_var));
    mp_obj_fun_builtin_var_t *self = MP_OBJ_TO_PTR(self_in);

    // check number of arguments
    mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);

    if (self->is_kw) {
        // function allows keywords

        // we create a map directly from the given args array
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);

        return self->fun.kw(n_args, args, &kw_args);

    } else {
        // function takes a variable number of arguments, but no keywords

        return self->fun.var(n_args, args);
    }
}

const mp_obj_type_t mp_type_fun_builtin_var = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_builtin_var_call,
    .unary_op = mp_generic_unary_op,
};

/******************************************************************************/
/* byte code functions                                                        */

qstr mp_obj_code_get_name(const byte *code_info) {
    code_info = mp_decode_uint_skip(code_info); // skip code_info_size entry
    #if MICROPY_PERSISTENT_CODE
    return code_info[0] | (code_info[1] << 8);
    #else
    return mp_decode_uint_value(code_info);
    #endif
}

#if MICROPY_EMIT_NATIVE
STATIC const mp_obj_type_t mp_type_fun_native;
#endif

qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) {
    const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in);
    #if MICROPY_EMIT_NATIVE
    if (fun->base.type == &mp_type_fun_native) {
        // TODO native functions don't have name stored
        return MP_QSTR_;
    }
    #endif

    const byte *bc = fun->bytecode;
    bc = mp_decode_uint_skip(bc); // skip n_state
    bc = mp_decode_uint_skip(bc); // skip n_exc_stack
    bc++; // skip scope_params
    bc++; // skip n_pos_args
    bc++; // skip n_kwonly_args
    bc++; // skip n_def_pos_args
    return mp_obj_code_get_name(bc);
}

#if MICROPY_CPYTHON_COMPAT
STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
    (void)kind;
    mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in);
    mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o);
}
#endif

#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, size_t sz) {
    DEBUG_printf("%p: ", a);
    for (size_t i = 0; i < sz; i++) {
        DEBUG_printf("%p ", a[i]);
    }
    DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif

// With this macro you can tune the maximum number of function state bytes
// that will be allocated on the stack.  Any function that needs more
// than this will try to use the heap, with fallback to stack allocation.
#define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t))

// Set this to enable a simple stack overflow check.
#define VM_DETECT_STACK_OVERFLOW (0)

#if MICROPY_STACKLESS
mp_code_state_t *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    MP_STACK_CHECK();
    mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);

    // bytecode prelude: state size and exception stack size
    size_t n_state = mp_decode_uint_value(self->bytecode);
    size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(self->bytecode));

    // allocate state for locals and stack
    size_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
    mp_code_state_t *code_state;
    code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
    if (!code_state) {
        return NULL;
    }

    code_state->fun_bc = self;
    code_state->ip = 0;
    mp_setup_code_state(code_state, n_args, n_kw, args);

    // execute the byte code with the correct globals context
    code_state->old_globals = mp_globals_get();
    mp_globals_set(self->globals);

    return code_state;
}
#endif

STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    MP_STACK_CHECK();

    DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw);
    DEBUG_printf("Input pos args: ");
    dump_args(args, n_args);
    DEBUG_printf("Input kw args: ");
    dump_args(args + n_args, n_kw * 2);
    mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
    DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);

    // bytecode prelude: state size and exception stack size
    size_t n_state = mp_decode_uint_value(self->bytecode);
    size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(self->bytecode));

#if VM_DETECT_STACK_OVERFLOW
    n_state += 1;
#endif

    // allocate state for locals and stack
    size_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
    mp_code_state_t *code_state = NULL;
    if (state_size > VM_MAX_STATE_ON_STACK) {
        code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
    }
    if (code_state == NULL) {
        code_state = alloca(sizeof(mp_code_state_t) + state_size);
        state_size = 0; // indicate that we allocated using alloca
    }

    code_state->fun_bc = self;
    code_state->ip = 0;
    mp_setup_code_state(code_state, n_args, n_kw, args);

    // execute the byte code with the correct globals context
    code_state->old_globals = mp_globals_get();
    mp_globals_set(self->globals);
    mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
    mp_globals_set(code_state->old_globals);

#if VM_DETECT_STACK_OVERFLOW
    if (vm_return_kind == MP_VM_RETURN_NORMAL) {
        if (code_state->sp < code_state->state) {
            printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
            assert(0);
        }
    }
    // We can't check the case when an exception is returned in state[n_state - 1]
    // and there are no arguments, because in this case our detection slot may have
    // been overwritten by the returned exception (which is allowed).
    if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) {
        // Just check to see that we have at least 1 null object left in the state.
        bool overflow = true;
        for (size_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) {
            if (code_state->state[i] == MP_OBJ_NULL) {
                overflow = false;
                break;
            }
        }
        if (overflow) {
            printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
            assert(0);
        }
    }
#endif

    mp_obj_t result;
    if (vm_return_kind == MP_VM_RETURN_NORMAL) {
        // return value is in *sp
        result = *code_state->sp;
    } else {
        // must be an exception because normal functions can't yield
        assert(vm_return_kind == MP_VM_RETURN_EXCEPTION);
        // return value is in fastn[0]==state[n_state - 1]
        result = code_state->state[n_state - 1];
    }

    // free the state if it was allocated on the heap
    if (state_size != 0) {
        m_del_var(mp_code_state_t, byte, state_size, code_state);
    }

    if (vm_return_kind == MP_VM_RETURN_NORMAL) {
        return result;
    } else { // MP_VM_RETURN_EXCEPTION
        nlr_raise(result);
    }
}

#if MICROPY_PY_FUNCTION_ATTRS
STATIC void fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
    if (dest[0] != MP_OBJ_NULL) {
        // not load attribute
        return;
    }
    if (attr == MP_QSTR___name__) {
        dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in));
    }
}
#endif

const mp_obj_type_t mp_type_fun_bc = {
    { &mp_type_type },
    .name = MP_QSTR_function,
#if MICROPY_CPYTHON_COMPAT
    .print = fun_bc_print,
#endif
    .call = fun_bc_call,
    .unary_op = mp_generic_unary_op,
#if MICROPY_PY_FUNCTION_ATTRS
    .attr = fun_bc_attr,
#endif
};

mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) {
    size_t n_def_args = 0;
    size_t n_extra_args = 0;
    mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in);
    if (def_args_in != MP_OBJ_NULL) {
        assert(MP_OBJ_IS_TYPE(def_args_in, &mp_type_tuple));
        n_def_args = def_args->len;
        n_extra_args = def_args->len;
    }
    if (def_kw_args != MP_OBJ_NULL) {
        n_extra_args += 1;
    }
    mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
    o->base.type = &mp_type_fun_bc;
    o->globals = mp_globals_get();
    o->bytecode = code;
    o->const_table = const_table;
    if (def_args != NULL) {
        memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
    }
    if (def_kw_args != MP_OBJ_NULL) {
        o->extra_args[n_def_args] = def_kw_args;
    }
    return MP_OBJ_FROM_PTR(o);
}

/******************************************************************************/
/* native functions                                                           */

#if MICROPY_EMIT_NATIVE

STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    MP_STACK_CHECK();
    mp_obj_fun_bc_t *self = self_in;
    mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode);
    return fun(self_in, n_args, n_kw, args);
}

STATIC const mp_obj_type_t mp_type_fun_native = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_native_call,
    .unary_op = mp_generic_unary_op,
};

mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) {
    mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte*)fun_data, const_table);
    o->base.type = &mp_type_fun_native;
    return o;
}

#endif // MICROPY_EMIT_NATIVE

/******************************************************************************/
/* viper functions                                                            */

#if MICROPY_EMIT_NATIVE

typedef struct _mp_obj_fun_viper_t {
    mp_obj_base_t base;
    size_t n_args;
    void *fun_data; // GC must be able to trace this pointer
    mp_uint_t type_sig;
} mp_obj_fun_viper_t;

typedef mp_uint_t (*viper_fun_0_t)(void);
typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
typedef mp_uint_t (*viper_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);

STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    mp_obj_fun_viper_t *self = self_in;

    mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);

    void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);

    mp_uint_t ret;
    if (n_args == 0) {
        ret = ((viper_fun_0_t)fun)();
    } else if (n_args == 1) {
        ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4));
    } else if (n_args == 2) {
        ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8));
    } else if (n_args == 3) {
        ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8), mp_convert_obj_to_native(args[2], self->type_sig >> 12));
    } else {
        // compiler allows at most 4 arguments
        assert(n_args == 4);
        ret = ((viper_fun_4_t)fun)(
            mp_convert_obj_to_native(args[0], self->type_sig >> 4),
            mp_convert_obj_to_native(args[1], self->type_sig >> 8),
            mp_convert_obj_to_native(args[2], self->type_sig >> 12),
            mp_convert_obj_to_native(args[3], self->type_sig >> 16)
        );
    }

    return mp_convert_native_to_obj(ret, self->type_sig);
}

STATIC const mp_obj_type_t mp_type_fun_viper = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_viper_call,
    .unary_op = mp_generic_unary_op,
};

mp_obj_t mp_obj_new_fun_viper(size_t n_args, void *fun_data, mp_uint_t type_sig) {
    mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t);
    o->base.type = &mp_type_fun_viper;
    o->n_args = n_args;
    o->fun_data = fun_data;
    o->type_sig = type_sig;
    return o;
}

#endif // MICROPY_EMIT_NATIVE

/******************************************************************************/
/* inline assembler functions                                                 */

#if MICROPY_EMIT_INLINE_ASM

typedef struct _mp_obj_fun_asm_t {
    mp_obj_base_t base;
    size_t n_args;
    void *fun_data; // GC must be able to trace this pointer
    mp_uint_t type_sig;
} mp_obj_fun_asm_t;

typedef mp_uint_t (*inline_asm_fun_0_t)(void);
typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);

// convert a Micro Python object to a sensible value for inline asm
STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
    // TODO for byte_array, pass pointer to the array
    if (MP_OBJ_IS_SMALL_INT(obj)) {
        return MP_OBJ_SMALL_INT_VALUE(obj);
    } else if (obj == mp_const_none) {
        return 0;
    } else if (obj == mp_const_false) {
        return 0;
    } else if (obj == mp_const_true) {
        return 1;
    } else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) {
        return mp_obj_int_get_truncated(obj);
    } else if (MP_OBJ_IS_STR(obj)) {
        // pointer to the string (it's probably constant though!)
        size_t l;
        return (mp_uint_t)mp_obj_str_get_data(obj, &l);
    } else {
        mp_obj_type_t *type = mp_obj_get_type(obj);
        if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
        } else if (type == &mp_type_float) {
            // convert float to int (could also pass in float registers)
            return (mp_int_t)mp_obj_float_get(obj);
#endif
        } else if (type == &mp_type_tuple || type == &mp_type_list) {
            // pointer to start of tuple (could pass length, but then could use len(x) for that)
            size_t len;
            mp_obj_t *items;
            mp_obj_get_array(obj, &len, &items);
            return (mp_uint_t)items;
        } else {
            mp_buffer_info_t bufinfo;
            if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
                // supports the buffer protocol, return a pointer to the data
                return (mp_uint_t)bufinfo.buf;
            } else {
                // just pass along a pointer to the object
                return (mp_uint_t)obj;
            }
        }
    }
}

STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    mp_obj_fun_asm_t *self = self_in;

    mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);

    void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);

    mp_uint_t ret;
    if (n_args == 0) {
        ret = ((inline_asm_fun_0_t)fun)();
    } else if (n_args == 1) {
        ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0]));
    } else if (n_args == 2) {
        ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
    } else if (n_args == 3) {
        ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
    } else {
        // compiler allows at most 4 arguments
        assert(n_args == 4);
        ret = ((inline_asm_fun_4_t)fun)(
            convert_obj_for_inline_asm(args[0]),
            convert_obj_for_inline_asm(args[1]),
            convert_obj_for_inline_asm(args[2]),
            convert_obj_for_inline_asm(args[3])
        );
    }

    return mp_convert_native_to_obj(ret, self->type_sig);
}

STATIC const mp_obj_type_t mp_type_fun_asm = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_asm_call,
    .unary_op = mp_generic_unary_op,
};

mp_obj_t mp_obj_new_fun_asm(size_t n_args, void *fun_data, mp_uint_t type_sig) {
    mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
    o->base.type = &mp_type_fun_asm;
    o->n_args = n_args;
    o->fun_data = fun_data;
    o->type_sig = type_sig;
    return o;
}

#endif // MICROPY_EMIT_INLINE_ASM